1
|
Filippi M, Ghirelli A, Spinelli EG, Agosta F. A comprehensive update on neuroimaging endpoints in amyotrophic lateral sclerosis. Expert Rev Neurother 2025; 25:397-413. [PMID: 39985812 DOI: 10.1080/14737175.2025.2470324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION There are currently few treatments approved for amyotrophic lateral sclerosis (ALS). Additionally, there remains a significant unmet need for reliable, standardized biomarkers to assess endpoints in clinical trials. Magnetic resonance imaging (MRI)- and positron emission tomography (PET)-derived metrics could help in patient selection and stratification, shortening trial duration and reducing costs. AREAS COVERED This review focuses on the potential use of neuroimaging endpoints in the context of ALS therapeutic trials, providing insights on structural and functional neuroimaging, plexus and muscle alterations, glial involvement and neuroinflammation, envisioning how these surrogates of disease progression could be implemented in clinical trials. A PubMed search covering the past 15 years was performed. EXPERT OPINION Neuroimaging is essential in understanding ALS pathophysiology, aiding in disease progression tracking and evaluating therapeutic interventions. High costs, limited accessibility, lack of standardization, and patient tolerability limit their use in routine ALS care. Addressing these obstacles is essential for fully harnessing neuroimaging potential in improving diagnostics and treatment in ALS.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alma Ghirelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
3
|
Miura S, Hiruki S, Okada T, Takei SI, Senzaki K, Okada Y, Ochi M, Tanabe Y, Ochi H, Igase M, Ohyagi Y, Shibata H. Case report: Frontotemporal dementia and amyotrophic lateral sclerosis caused by a missense variant (p.Arg89Trp) in the valosin-containing protein gene. Front Genet 2023; 14:1155998. [PMID: 37303947 PMCID: PMC10250589 DOI: 10.3389/fgene.2023.1155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Frontotemporal dementia and/or amyotrophic lateral sclerosis 6, also known as amyotrophic lateral sclerosis 14, is an autosomal dominant, progressive neurodegenerative disorder caused by various mutations in the valosin-containing protein gene. In this report, we examined a 51-year-old female Japanese patient with frontotemporal dementia and amyotrophic lateral sclerosis. The patient began noticing gait disturbances at the age of 45 years. Neurological examination at the age of 46 years met the Awaji criteria for clinically probable amyotrophic lateral sclerosis. At the age of 49 years, she tended to have poor mood and an aversion to activity. Her symptoms gradually worsened. She required a wheelchair for transport and had difficulty communicating with others because of poor comprehension. She then began to frequently exhibit irritability. Eventually, she was admitted to the psychiatric hospital because uncontrollable violent behavior throughout the day. Longitudinal brain magnetic resonance imaging revealed progressive brain atrophy with temporal dominance, non-progressive cerebellar atrophy, and some non-specific white matter intensities. Brain single photon emission computed tomography showed hypoperfusion in the bilateral temporal lobes and cerebellar hemispheres. Clinical exome sequencing revealed the presence of a heterozygous nonsynonymous variant (NM_007126.5, c.265C>T; p.Arg89Trp) in the valosin-containing protein gene, which was absent in the 1000 Genomes Project, the Exome Aggregation Consortium Database, and the Genome Aggregation Database, and was predicted to be "damaging" by PolyPhen-2 and "deleterious" using SIFT with a Combined Annotation Dependent Depletion score of 35. We also confirmed the absence of this variant in 505 Japanese control subjects. Therefore, we concluded that the variant in the valosin-containing protein gene was responsible for the symptoms of this patient.
Collapse
Affiliation(s)
- Shiroh Miura
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shigeyoshi Hiruki
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tomohisa Okada
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Satoko Itani Takei
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kensuke Senzaki
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yoko Okada
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masayuki Ochi
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hirofumi Ochi
- Department of Intractable Disease and Aging Science, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Michiya Igase
- Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
4
|
Pfeffer G, Lee G, Pontifex CS, Fanganiello RD, Peck A, Weihl CC, Kimonis V. Multisystem Proteinopathy Due to VCP Mutations: A Review of Clinical Heterogeneity and Genetic Diagnosis. Genes (Basel) 2022; 13:963. [PMID: 35741724 PMCID: PMC9222868 DOI: 10.3390/genes13060963] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
In this work, we review clinical features and genetic diagnosis of diseases caused by mutations in the gene encoding valosin-containing protein (VCP/p97), the functionally diverse AAA-ATPase. VCP is crucial to a multitude of cellular functions including protein quality control, stress granule formation and clearance, and genomic integrity functions, among others. Pathogenic mutations in VCP cause multisystem proteinopathy (VCP-MSP), an autosomal dominant, adult-onset disorder causing dysfunction in several tissue types. It can result in complex neurodegenerative conditions including inclusion body myopathy, frontotemporal dementia, amyotrophic lateral sclerosis, or combinations of these. There is also an association with other neurodegenerative phenotypes such as Alzheimer-type dementia and Parkinsonism. Non-neurological presentations include Paget disease of bone and may also include cardiac dysfunction. We provide a detailed discussion of genotype-phenotype correlations, recommendations for genetic diagnosis, and genetic counselling implications of VCP-MSP.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grace Lee
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California Irvine Medical Center, Orange, CA 92868, USA; (G.L.); (V.K.)
| | - Carly S. Pontifex
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Roberto D. Fanganiello
- Oral Ecology Research Group, Faculty of Dental Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Allison Peck
- Cure VCP Disease, Inc., Americus, GA 31709, USA;
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Virginia Kimonis
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California Irvine Medical Center, Orange, CA 92868, USA; (G.L.); (V.K.)
| |
Collapse
|
5
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
6
|
Ferrari V, Cristofani R, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Piccolella M, Galbiati M, Rusmini P, Poletti A. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int J Mol Sci 2022; 23:1939. [PMID: 35216053 PMCID: PMC8878954 DOI: 10.3390/ijms23041939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Barbara Tedesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS—Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| |
Collapse
|
7
|
Feng SY, Lin H, Che CH, Huang HP, Liu CY, Zou ZY. Phenotype of VCP Mutations in Chinese Amyotrophic Lateral Sclerosis Patients. Front Neurol 2022; 13:790082. [PMID: 35197922 PMCID: PMC8858817 DOI: 10.3389/fneur.2022.790082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the valosin-containing protein (VCP) gene have been linked to amyotrophic lateral sclerosis (ALS) in the Caucasian populations. However, the phenotype of VCP mutations in Chinese patients with (ALS) remains unclear. Targeted next-generation sequencing covered 28 ALS-related genes including the VCP gene was undertaken to screen in a Chinese cohort of 275 sporadic ALS cases and 15 familial ALS pedigrees. An extensive literature review was performed to identify all patients with ALS carrying VCP mutations previously reported. The clinical characteristics and genetic features of ALS patients with VCP mutations were reviewed. One known p.R155C mutation in the VCP gene was detected in two siblings from a familial ALS pedigree and two sporadic individuals. In addition, the same VCP p.R155C mutation was detected in an additional patient with ALS referred in 2021. Three patients with VCP p.R155C mutation presented with muscular weakness starting from proximal extremities to distal extremities. The other patient developed a phenotype of Paget's disease of bone in addition to the progressive muscular atrophy. We reported the first VCP mutation carrier manifesting ALS with Paget's disease of bone in the Chinese population. Our findings expand the phenotypic spectrum of the VCP mutations in Chinese patients with ALS and suggest that ALS patients with VCP p.R155C mutations tend to present with relatively young onset, symmetrical involvement of proximal muscles weakness of arms or legs, and then progressed to distal muscles of limbs.
Collapse
Affiliation(s)
- Shu-Yan Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, China
- Zhengzhou University People's Hospital, Zhengzhou, China
| | - Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhang-Yu Zou
| |
Collapse
|
8
|
Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2021; 14:581950. [PMID: 33679322 PMCID: PMC7929997 DOI: 10.3389/fncel.2020.581950] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular redox state, or balance between cellular oxidation and reduction reactions, serves as a vital antioxidant defence system that is linked to all important cellular activities. Redox regulation is therefore a fundamental cellular process for aerobic organisms. Whilst oxidative stress is well described in neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction and their contributions to pathophysiology are only just emerging. ALS is a fatal neurodegenerative disease affecting motor neurons, with few useful treatments. Hence there is an urgent need to develop more effective therapeutics in the future. Here, we discuss the increasing evidence for redox dysregulation as an important and primary contributor to ALS pathogenesis, which is associated with multiple disease mechanisms. Understanding the connection between redox homeostasis, proteins that mediate redox regulation, and disease pathophysiology in ALS, may facilitate a better understanding of disease mechanisms, and lead to the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
9
|
Matsubara T, Izumi Y, Oda M, Takahashi M, Maruyama H, Miyamoto R, Watanabe C, Tachiyama Y, Morino H, Kawakami H, Saito Y, Murayama S. An autopsy report of a familial amyotrophic lateral sclerosis case carrying VCP Arg487His mutation with a unique TDP-43 proteinopathy. Neuropathology 2021; 41:118-126. [PMID: 33415820 DOI: 10.1111/neup.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
We here report an autopsy case of familial amyotrophic lateral sclerosis (ALS) with p.Arg487His mutation in the valosin-containing protein (VCP) gene (VCP), in which upper motor neurons (UMNs) were predominantly involved. Moreover, our patient developed symptoms of frontotemporal dementia later in life and pathologically exhibited numerous phosphorylated transactivation response DNA-binding protein of 43 kDa (p-TDP-43)-positive neuronal cytoplasmic inclusions and short dystrophic neurites with a few lentiform neuronal intranuclear inclusions, sharing the features of frontotemporal lobar degeneration with TDP-43 pathology type A pattern. A review of previous reports of ALS with VCP mutations suggests that our case is unique in terms of its UMN-predominant lesion pattern and distribution of p-TDP-43 pathology. Thus, this case report effectively expands the clinical and pathological phenotype of ALS in patients with a VCP mutation.
Collapse
Affiliation(s)
- Tomoyasu Matsubara
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuishin Izumi
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaya Oda
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan
| | | | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Chigusa Watanabe
- Department of Neurology, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Yoshiro Tachiyama
- Department of Clinical Laboratory, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Molecular Research Center for Children's Mental Development (Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders), United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Guo X, Zhao Z, Shen H, Qi B, Li N, Hu J. VCP myopathy: A family with unusual clinical manifestations. Muscle Nerve 2019; 59:365-369. [PMID: 30488450 DOI: 10.1002/mus.26389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Xuan Guo
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Zhe Zhao
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Hongrui Shen
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Bing Qi
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Nan Li
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| | - Jing Hu
- Department of Neuromuscular DiseaseThe Third Hospital of Hebei Medical University 139# Ziqiang Road, Shijiazhuang City Hebei Province, 050051 P. R. China
| |
Collapse
|
12
|
Hirano M, Samukawa M, Isono C, Saigoh K, Nakamura Y, Kusunoki S. Noncoding repeat expansions for ALS in Japan are associated with the ATXN8OS gene. NEUROLOGY-GENETICS 2018; 4:e252. [PMID: 30109267 PMCID: PMC6089696 DOI: 10.1212/nxg.0000000000000252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Objective To assess the contribution of noncoding repeat expansions in Japanese patients with amyotrophic lateral sclerosis (ALS). Methods Sporadic ALS in Western countries is frequently associated with noncoding repeat expansions in the C9ORF72 gene. Spinocerebellar ataxia type 8 (SCA8) is another noncoding repeat disease caused by expanded CTA/CTG repeats in the ATXN8OS gene. Although the involvement of upper and lower motor neurons in SCA8 has been reported, a positive association between SCA8 and ALS remains unestablished. Spinocerebellar ataxia type 36 is a recently identified disease caused by noncoding repeat expansions in the NOP56 gene and is characterized by motor neuron involvement. We collected blood samples from 102 Japanese patients with sporadic ALS and analyzed the ATXN8OS gene by the PCR–Sanger sequencing method and the C9ORF72 and NOP56 genes by repeat-primed PCR assay. Results Three patients with ALS (3%) had mutations in the ATXN8OS gene, whereas no patient had a mutation in the C9ORF72 or NOP56 gene. The mutation-positive patients were clinically characterized by neck weakness or bulbar-predominant symptoms. None of our patients had apparent cerebellar atrophy on MRI, but 2 had nonsymptomatic abnormalities in the white matter or putamen. Conclusions Our finding reveals the importance of noncoding repeat expansions in Japanese patients with ALS and extends the clinical phenotype of SCA8. Three percent seems small but is still relatively large for Japan, considering that the most commonly mutated genes, including the SOD1 and SQSTM1 genes, only account for 2%–3% of sporadic patients each.
Collapse
Affiliation(s)
- Makito Hirano
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Makoto Samukawa
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Chiharu Isono
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Kazumasa Saigoh
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Yusaku Nakamura
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| | - Susumu Kusunoki
- Department of Neurology (M.H., M.S., K.S., and S.K.), Kindai University Faculty of Medicine, Osakasayama, Japan; and Department of Neurology (M.H., C.I., and Y.N.), Kindai University Sakai Hospital, Japan
| |
Collapse
|
13
|
Inoue K, Fujimura H, Toyooka K, Hirano M, Nakamura Y, Sakoda S. An autopsy case of familial amyotrophic lateral sclerosis and dementia with p.R487H VCP gene mutation. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1434925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Kimiko Inoue
- Department of Neurology, Toneyama National Hospital, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| | - Harutoshi Fujimura
- Department of Neurology, Toneyama National Hospital, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| | - Keiko Toyooka
- Department of Neurology, Toneyama National Hospital, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| | - Makito Hirano
- Faculty of Medicine, Department of Neurology, Sakai Hospital, Kinki University, Osaka, Japan
| | - Yusaku Nakamura
- Faculty of Medicine, Department of Neurology, Sakai Hospital, Kinki University, Osaka, Japan
| | - Saburo Sakoda
- Department of Neurology, Toneyama National Hospital, Toneyama 5-1-1, Toyonaka, Osaka 560-8552, Japan
| |
Collapse
|
14
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Mizuno Y, Mori-Yoshimura M, Oya Y, Nishikawa A, Nishino I, Takahashi Y. [Two cases of nemaline myopathy presenting with hypertrophy of distal limbs with prominent asymmetry]. Rinsho Shinkeigaku 2017; 57:691-697. [PMID: 29070751 DOI: 10.5692/clinicalneurol.cn-001024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nemaline myopathy commonly presents with symmetrical proximal weakness. Here we report two cases of nemaline myopathy presenting with distal dominant involvement with prominent asymmetry. Case 1 was a 37-year-old man who recalled frequently falling down and had right calf atrophy since he was 3-years-old. He had right calf muscle atrophy and weakness and steppage gait; his cardiopulmonary function was normal. Case 2 was a 35-year-old man with right calf muscle atrophy and weakness since childhood. He had right dominant distal leg weakness and atrophy together with respiratory failure and started noninvasive positive pressure ventilation. He also developed cardiomyopathy and died from acute respiratory failure due to pneumonia at age 39. Both cases harbored compound heterozygous nebulin (NEB) mutations with c.20131 C>T:p.Arg6711Trp and a nonsense mutation. Nemaline myopathy associated with NEB mutations can present as distal dominant myopathy with prominent asymmetry.
Collapse
Affiliation(s)
- Yukio Mizuno
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry.,Department of Neurology, Yokohama Asahi Chuo General Hospital
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Atsuko Nishikawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| |
Collapse
|
16
|
Hirano M, Yamagishi Y, Yanagimoto S, Saigoh K, Nakamura Y, Kusunoki S. Time Course of Radiological Imaging and Variable Interindividual Symptoms in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Associated with p.Arg487His Mutation in the VCP Gene. Eur Neurol 2017; 78:78-83. [PMID: 28738334 DOI: 10.1159/000478906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
To our knowledge, this is the first study to report the time course of radiological imaging of 3 patients from 2 families with VCP-related amyotrophic lateral sclerosis (ALS) and dementia. Both families shared the same p.Arg487His mutation in the VCP gene encoding valosin-containing protein. The first patient started to have a typical form of ALS, followed by dementia 7 years later. The second patient, a brother of the first one, had frontotemporal dementia and parkinsonism. The third patient had simultaneous ALS and dementia. All patients seemed to have progressive brain atrophy as their clinical symptoms progressed. The common and characteristic finding was atrophy of the temporal lobes including the hippocampi. The relation between imaging findings and symptoms varied considerably among the 3 patients.
Collapse
Affiliation(s)
- Makito Hirano
- Department of Neurology, Sakai Hospital Kindai University Faculty of Medicine, Sakai, Japan.,Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yuko Yamagishi
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Satoshi Yanagimoto
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazumasa Saigoh
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yusaku Nakamura
- Department of Neurology, Sakai Hospital Kindai University Faculty of Medicine, Sakai, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Sabatelli M, Marangi G, Conte A, Tasca G, Zollino M, Lattante S. New ALS-Related Genes Expand the Spectrum Paradigm of Amyotrophic Lateral Sclerosis. Brain Pathol 2016; 26:266-75. [PMID: 26780671 DOI: 10.1111/bpa.12354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons. Clinical heterogeneity is a well-recognized feature of the disease as age of onset, site of onset and the duration of the disease can vary greatly among patients. A number of genes have been identified and associated to familial and sporadic forms of ALS but the majority of cases remains still unexplained. Recent breakthrough discoveries have demonstrated that clinical manifestations associated with ALS-related genes are not circumscribed to motor neurons involvement. In this view, ALS appears to be linked to different conditions over a continuum or spectrum in which overlapping phenotypes may be identified. In this review, we aim to examine the increasing number of spectra, including ALS/Frontotemporal Dementia and ALS/Myopathies spectra. Considering all these neurodegenerative disorders as different phenotypes of the same spectrum can help to identify common pathological pathways and consequently new therapeutic targets in these incurable diseases.
Collapse
Affiliation(s)
- Mario Sabatelli
- Department of Geriatrics, Neurosciences and Orthopedics, Clinic Center NEMO-Roma. Institute of Neurology
| | - Giuseppe Marangi
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| | - Amelia Conte
- Department of Geriatrics, Neurosciences and Orthopedics, Clinic Center NEMO-Roma. Institute of Neurology
| | | | - Marcella Zollino
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| | - Serena Lattante
- Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
18
|
Tang WK, Xia D. Mutations in the Human AAA + Chaperone p97 and Related Diseases. Front Mol Biosci 2016; 3:79. [PMID: 27990419 PMCID: PMC5131264 DOI: 10.3389/fmolb.2016.00079] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
A number of neurodegenerative diseases have been linked to mutations in the human protein p97, an abundant cytosolic AAA+ (ATPase associated with various cellular activities) ATPase, that functions in a large number of cellular pathways. With the assistance of a variety of cofactors and adaptor proteins, p97 couples the energy of ATP hydrolysis to conformational changes that are necessary for its function. Disease-linked mutations, which are found at the interface between two main domains of p97, have been shown to alter the function of the protein, although the pathogenic mutations do not appear to alter the structure of individual subunit of p97 or the formation of the hexameric biological unit. While exactly how pathogenic mutations alter the cellular function of p97 remains unknown, functional, biochemical and structural differences between wild-type and pathogenic mutants of p97 are being identified. Here, we summarize recent progress in the study of p97 pathogenic mutants.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
19
|
Woollacott IOC, Rohrer JD. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. J Neurochem 2016; 138 Suppl 1:6-31. [PMID: 27144467 DOI: 10.1111/jnc.13654] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/10/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
The term frontotemporal dementia (FTD) describes a clinically, genetically and pathologically diverse group of neurodegenerative disorders. Symptoms of FTD can present in individuals in their 20s through to their 90s, but the mean age at onset is in the sixth decade. The most common presentation is with a change in personality and impaired social conduct (behavioural variant FTD). Less frequently patients present with language problems (primary progressive aphasia). Both of these groups of patients can develop motor features consistent with either motor neuron disease (usually the amyotrophic lateral sclerosis variant) or parkinsonism (most commonly a progressive supranuclear palsy or corticobasal syndrome). In about a third of cases FTD is familial, with mutations in the progranulin, microtubule-associated protein tau and chromosome 9 open reading frame 72 genes being the major causes. Mutations in a number of other genes including TANK-binding kinase 1 are rare causes of familial FTD. This review aims to clarify the often confusing terminology of FTD, and outline the various clinical features and diagnostic criteria of sporadic and familial FTD syndromes. It will also discuss the current major challenges in FTD research and clinical practice, and potential areas for future research. This review clarifies the terminology of frontotemporal dementia (FTD) and summarizes the various clinical features and most recent diagnostic criteria of sporadic and familial FTD syndromes. It also discusses the current major challenges in FTD research and clinical practice, and highlights potential areas for future research.
Collapse
Affiliation(s)
- Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
20
|
Evangelista T, Weihl CC, Kimonis V, Lochmüller H. 215th ENMC International Workshop VCP-related multi-system proteinopathy (IBMPFD) 13-15 November 2015, Heemskerk, The Netherlands. Neuromuscul Disord 2016; 26:535-47. [PMID: 27312024 DOI: 10.1016/j.nmd.2016.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, University of California - Irvine Medical Centre, Irvine, USA
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK.
| | | |
Collapse
|
21
|
Hirano M, Nakamura Y, Kusunoki S. [Valosin-containing protein-related amyotrophic lateral sclerosis in Japan]. Rinsho Shinkeigaku 2016; 56:285-286. [PMID: 27025943 DOI: 10.5692/clinicalneurol.cn-000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Makito Hirano
- Department of Neurology, Kindai University Sakai Hospital
| | | | | |
Collapse
|
22
|
Segawa M, Hoshi A, Ugawa Y. [Valosin-containing protein-related amyotrophic lateral sclerosis in Japan]. Rinsho Shinkeigaku 2016; 56:287-288. [PMID: 27025944 DOI: 10.5692/clinicalneurol.cn-000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Mari Segawa
- Department of Neurology, School of Medicine, Fukushima Medical University
| | | | | |
Collapse
|
23
|
Fan AC, Leung AKL. RNA Granules and Diseases: A Case Study of Stress Granules in ALS and FTLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:263-96. [PMID: 27256390 DOI: 10.1007/978-3-319-29073-7_11] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA granules are microscopically visible cellular structures that aggregate by protein-protein and protein-RNA interactions. Using stress granules as an example, we discuss the principles of RNA granule formation, which rely on the multivalency of RNA and multi-domain proteins as well as low-affinity interactions between proteins with prion-like/low-complexity domains (e.g. FUS and TDP-43). We then explore how dysregulation of RNA granule formation is linked to neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), and discuss possible strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Alexander C Fan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Nakamura R, Sone J, Atsuta N, Tohnai G, Watanabe H, Yokoi D, Nakatochi M, Watanabe H, Ito M, Senda J, Katsuno M, Tanaka F, Li Y, Izumi Y, Morita M, Taniguchi A, Kano O, Oda M, Kuwabara S, Abe K, Aiba I, Okamoto K, Mizoguchi K, Hasegawa K, Aoki M, Hattori N, Tsuji S, Nakashima K, Kaji R, Sobue G. Next-generation sequencing of 28 ALS-related genes in a Japanese ALS cohort. Neurobiol Aging 2015; 39:219.e1-8. [PMID: 26742954 DOI: 10.1016/j.neurobiolaging.2015.11.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
Abstract
We investigated the frequency and contribution of variants of the 28 known amyotrophic lateral sclerosis (ALS)-related genes in Japanese ALS patients. We designed a multiplex, polymerase chain reaction-based primer panel to amplify the coding regions of the 28 ALS-related genes and sequenced DNA samples from 257 Japanese ALS patients using an Ion Torrent PGM sequencer. We also performed exome sequencing and identified variants of the 28 genes in an additional 251 ALS patients using an Illumina HiSeq 2000 platform. We identified the known ALS pathogenic variants and predicted the functional properties of novel nonsynonymous variants in silico. These variants were confirmed by Sanger sequencing. Known pathogenic variants were identified in 19 (48.7%) of the 39 familial ALS patients and 14 (3.0%) of the 469 sporadic ALS patients. Thirty-two sporadic ALS patients (6.8%) harbored 1 or 2 novel nonsynonymous variants of ALS-related genes that might be deleterious. This study reports the first extensive genetic screening of Japanese ALS patients. These findings are useful for developing genetic screening and counseling strategies for such patients.
Collapse
Affiliation(s)
- Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Sone
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hazuki Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Neurology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Daichi Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- Bioinformatics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jo Senda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Neurology, Komaki City Hospital, Komaki, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Osamu Kano
- Division of Neurology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Japan
| | - Koichi Okamoto
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Kouichi Mizoguchi
- Department of Neurology, National Hospital Organization Shizuoka-Fuji Hospital, Fujinomiya, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Nakashima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ryuji Kaji
- Department of Neurology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | |
Collapse
|
25
|
Benussi A, Padovani A, Borroni B. Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia. Front Aging Neurosci 2015; 7:171. [PMID: 26388768 PMCID: PMC4555036 DOI: 10.3389/fnagi.2015.00171] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a genetically and pathologically heterogeneous disorder characterized by personality changes, language impairment, and deficits of executive functions associated with frontal and temporal lobe degeneration. Different phenotypes have been defined on the basis of presenting clinical symptoms, i.e., the behavioral variant of FTD, the agrammatic variant of primary progressive aphasia, and the semantic variant of PPA. Some patients have an associated movement disorder, either parkinsonism, as in progressive supranuclear palsy and corticobasal syndrome, or motor neuron disease (FTD-MND). A family history of dementia is found in 40% of cases of FTD and about 10% have a clear autosomal-dominant inheritance. Genetic studies have identified several genes associated with monogenic FTD: microtubule-associated protein tau, progranulin, TAR DNA-binding protein 43, valosin-containing protein, charged multivesicular body protein 2B, fused in sarcoma, and the hexanucleotide repeat expansion in intron 1 of the chromosome 9 open reading frame 72. Patients often present with an extensive phenotypic variability, even among different members of the same kindred carrying an identical disease mutation. The objective of the present work is to review and evaluate available literature data in order to highlight recent advances in clinical, biological, and neuroimaging features of monogenic frontotemporal lobar degeneration and try to identify different mechanisms underlying the extreme phenotypic heterogeneity that characterizes this disease.
Collapse
Affiliation(s)
- Alberto Benussi
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Zhang X, Gui L, Zhang X, Bulfer SL, Sanghez V, Wong DE, Lee Y, Lehmann L, Lee JS, Shih PY, Lin HJ, Iacovino M, Weihl CC, Arkin MR, Wang Y, Chou TF. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc Natl Acad Sci U S A 2015; 112:E1705-14. [PMID: 25775548 PMCID: PMC4394316 DOI: 10.1073/pnas.1418820112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dominant mutations in p97/VCP (valosin-containing protein) cause a rare multisystem degenerative disease with varied phenotypes that include inclusion body myopathy, Paget's disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. p97 disease mutants have altered N-domain conformations, elevated ATPase activity, and altered cofactor association. We have now discovered a previously unidentified disease-relevant functional property of p97 by identifying how the cofactors p37 and p47 regulate p97 ATPase activity. We define p37 as, to our knowledge, the first known p97-activating cofactor, which enhances the catalytic efficiency (kcat/Km) of p97 by 11-fold. Whereas both p37 and p47 decrease the Km of ATP in p97, p37 increases the kcat of p97. In contrast, regulation by p47 is biphasic, with decreased kcat at low levels but increased kcat at higher levels. By deleting a region of p47 that lacks homology to p37 (amino acids 69-92), we changed p47 from an inhibitory cofactor to an activating cofactor, similar to p37. Our data suggest that cofactors regulate p97 ATPase activity by binding to the N domain. Induced conformation changes affect ADP/ATP binding at the D1 domain, which in turn controls ATPase cycling. Most importantly, we found that the D2 domain of disease mutants failed to be activated by p37 or p47. Our results show that cofactors play a critical role in controlling p97 ATPase activity, and suggest that lack of cofactor-regulated communication may contribute to p97-associated disease pathogenesis.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502; College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Lin Gui
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502; College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048
| | - Stacie L Bulfer
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Valentina Sanghez
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502
| | - Daniel E Wong
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502
| | - YouJin Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Lynn Lehmann
- NanoTemper Technologies, Inc., South San Francisco, CA 94080
| | - James Siho Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Pei-Yin Shih
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Henry J Lin
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502
| | - Michelina Iacovino
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048
| | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA 90502;
| |
Collapse
|
27
|
Carrì MT, Valle C, Bozzo F, Cozzolino M. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front Cell Neurosci 2015; 9:41. [PMID: 25741238 PMCID: PMC4330888 DOI: 10.3389/fncel.2015.00041] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 12/12/2022] Open
Abstract
It is well known that mitochondrial damage (MD) is both the major contributor to oxidative stress (OS) (the condition arising from unbalance between production and removal of reactive oxygen species) and one of the major consequences of OS, because of the high dependance of mitochondrial function on redox-sensitive targets such as intact membranes. Conditions in which neuronal cells are not able to cope with MD and OS seem to lead or contribute to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), at least in the most studied superoxide dismutase 1 (SOD1)-linked genetic variant. As summarized in this review, new evidence indicates that MD and OS play a role also in non-SOD1 ALS and thus they may represent a target for therapy despite previous failures in clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Carrì
- Department of Biology, Università di Roma Tor Vergata Rome, Italy ; Fondazione Santa Lucia, IRCCS Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia, IRCCS Rome, Italy ; Institute of Cell Biology and Neurobiology, IBCN, National Research Council, CNR Rome, Italy
| | - Francesca Bozzo
- Department of Biology, Università di Roma Tor Vergata Rome, Italy ; Fondazione Santa Lucia, IRCCS Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council, CNR, Molecular Mechanisms of Neurodegenerative Diseases Rome, Italy
| |
Collapse
|