1
|
Argyriou S, Fullard JF, Krivinko JM, Lee D, Wingo TS, Wingo AP, Sweet RA, Roussos P. Beyond memory impairment: the complex phenotypic landscape of Alzheimer's disease. Trends Mol Med 2024; 30:713-722. [PMID: 38821772 PMCID: PMC11329360 DOI: 10.1016/j.molmed.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 06/02/2024]
Abstract
Neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD) constitute multifaceted behavioral manifestations that reflect processes of emotional regulation, thinking, and social behavior. They are as prevalent in AD as cognitive impairment and develop independently during the progression of neurodegeneration. As studying NPSs in AD is clinically challenging, most AD research to date has focused on cognitive decline. In this opinion article we summarize emerging literature on the prevalence, time course, and the underlying genetic, molecular, and pathological mechanisms related to NPSs in AD. Overall, we propose that NPSs constitute a cluster of core symptoms in AD, and understanding their neurobiology can lead to a more holistic approach to AD research, paving the way for more accurate diagnostic tests and personalized treatments embracing the goals of precision medicine.
Collapse
Affiliation(s)
- Stathis Argyriou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Josh M Krivinko
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghoon Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA; Veterans Affairs Atlanta Health Care System, Decatur, GA, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Street, Bronx, NY, USA; Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Street, Bronx, NY, USA.
| |
Collapse
|
2
|
Ray NR, Kumar A, Zaman A, del Rosario P, Mena PR, Manoochehri M, Stein C, De Vito AN, Sweet RA, Hohman TJ, Cuccaro ML, Beecham GW, Huey ED, Reitz C. Disentangling the genetic underpinnings of neuropsychiatric symptoms in Alzheimer's disease in the Alzheimer's Disease Sequencing Project: Study design and methodology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70000. [PMID: 39183746 PMCID: PMC11342352 DOI: 10.1002/dad2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Neuropsychiatric symptoms (NPS) are highly prevalent in Alzheimer's disease (AD). There are no effective treatments targeting these symptoms. METHODS To facilitate identification of causative mechanistic pathways, we initiated an effort (NIH: U01AG079850) to collate, harmonize, and analyze all available NPS data (≈ 100,000 samples) of diverse ancestries with whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP). RESULTS This study will generate a genomic resource for Alzheimer's disease with both harmonized whole-genome sequencing and NPS phenotype data that will be publicly available through NIAGADS. Primary analyses will (1) identify novel genetic risk factors associated with NPS in AD, (2) characterize the shared genetic architecture of NPS in AD and primary psychiatric disorders, and (3) assess the role of ancestry effects in the etiology of NPS in AD. DISCUSSION Expansion of the ADSP to harmonize and refine NPS phenotypes coupled with the proposed core analyses will lay the foundation to disentangle the molecular mechanisms underlying these detrimental symptoms in AD in diverse populations. Highlights Neuropsychiatric symptoms (NPS) are highly prevalent in Alzheimer's disease (AD).There are no effective treatments targeting NPS in AD.The current effort aims to collate, harmonize, and analyze all NPS data from the Alzheimer's Disease Sequencing Project.Core analyses will identify underlying genetic factors and mechanistic pathways.The harmonized genomic and phenotypic data from this initiative will be available through National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site.
Collapse
Affiliation(s)
- Nicholas R. Ray
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Ajneesh Kumar
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Andrew Zaman
- The John P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiFloridaUSA
- Dr. John T. MacDonald Foundation Department of Human GeneticsUniversity of MiamiMiamiFloridaUSA
| | - Pamela del Rosario
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Pedro R. Mena
- The John P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiFloridaUSA
- Dr. John T. MacDonald Foundation Department of Human GeneticsUniversity of MiamiMiamiFloridaUSA
| | - Masood Manoochehri
- Department of Psychiatry and Human BehaviorAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Colin Stein
- Department of Psychiatry and Human BehaviorAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Alyssa N. De Vito
- Department of Psychiatry and Human BehaviorAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Robert A. Sweet
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael L. Cuccaro
- The John P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiFloridaUSA
- Dr. John T. MacDonald Foundation Department of Human GeneticsUniversity of MiamiMiamiFloridaUSA
| | - Gary W. Beecham
- The John P. Hussman Institute for Human GenomicsUniversity of MiamiMiamiFloridaUSA
- Dr. John T. MacDonald Foundation Department of Human GeneticsUniversity of MiamiMiamiFloridaUSA
| | - Edward D. Huey
- Department of Psychiatry and Human BehaviorAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Christiane Reitz
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
- Department of EpidemiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
3
|
Antonsdottir IM, Creese B, Klei L, DeMichele‐Sweet MAA, Weamer EA, Garcia‐Gonzalez P, Marquie M, Boada M, Alarcón‐Martín E, Valero S, NIA‐LOAD Family Based Study Consortium, Alzheimer's Disease Genetics Consortium (ADGC), AddNeuroMed Consortium, Liu Y, Hooli B, Aarsland D, Selbaek G, Bergh S, Rongve A, Saltvedt I, Skjellegrind HK, Engdahl B, Andreassen OA, Borroni B, Mecocci P, Wedatilake Y, Mayeux R, Foroud T, Ruiz A, Lopez OL, Kamboh MI, Ballard C, Devlin B, Lyketsos C, Sweet RA. Genetic associations with psychosis and affective disturbance in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12472. [PMID: 38784964 PMCID: PMC11114588 DOI: 10.1002/trc2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/01/2023] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Individuals with Alzheimer's disease (AD) commonly experience neuropsychiatric symptoms of psychosis (AD+P) and/or affective disturbance (depression, anxiety, and/or irritability, AD+A). This study's goal was to identify the genetic architecture of AD+P and AD+A, as well as their genetically correlated phenotypes. METHODS Genome-wide association meta-analysis of 9988 AD participants from six source studies with participants characterized for AD+P AD+A, and a joint phenotype (AD+A+P). RESULTS AD+P and AD+A were genetically correlated. However, AD+P and AD+A diverged in their genetic correlations with psychiatric phenotypes in individuals without AD. AD+P was negatively genetically correlated with bipolar disorder and positively with depressive symptoms. AD+A was positively correlated with anxiety disorder and more strongly correlated than AD+P with depressive symptoms. AD+P and AD+A+P had significant estimated heritability, whereas AD+A did not. Examination of the loci most strongly associated with the three phenotypes revealed overlapping and unique associations. DISCUSSION AD+P, AD+A, and AD+A+P have both shared and divergent genetic associations pointing to the importance of incorporating genetic insights into future treatment development. Highlights It has long been known that psychotic and affective symptoms are often comorbid in individuals diagnosed with Alzheimer's disease. Here we examined for the first time the genetic architecture underlying this clinical observation, determining that psychotic and affective phenotypes in Alzheimer's disease are genetically correlated.Nevertheless, psychotic and affective phenotypes in Alzheimer's disease diverged in their genetic correlations with psychiatric phenotypes assessed in individuals without Alzheimer's disease. Psychosis in Alzheimer's disease was negatively genetically correlated with bipolar disorder and positively with depressive symptoms, whereas the affective phenotypes in Alzheimer's disease were positively correlated with anxiety disorder and more strongly correlated than psychosis with depressive symptoms.Psychosis in Alzheimer's disease, and the joint psychotic and affective phenotype, had significant estimated heritability, whereas the affective in AD did not.Examination of the loci most strongly associated with the psychotic, affective, or joint phenotypes revealed overlapping and unique associations.
Collapse
|
4
|
Lee WP, Choi SH, Shea MG, Cheng PL, Dombroski BA, Pitsillides AN, Heard-Costa NL, Wang H, Bulekova K, Kuzma AB, Leung YY, Farrell JJ, Lin H, Naj A, Blue EE, Nusetor F, Wang D, Boerwinkle E, Bush WS, Zhang X, De Jager PL, Dupuis J, Farrer LA, Fornage M, Martin E, Pericak-Vance M, Seshadri S, Wijsman EM, Wang LS, Schellenberg GD, Destefano AL, Haines JL, Peloso GM. Association of Common and Rare Variants with Alzheimer's Disease in over 13,000 Diverse Individuals with Whole-Genome Sequencing from the Alzheimer's Disease Sequencing Project. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.01.23294953. [PMID: 37693521 PMCID: PMC10491367 DOI: 10.1101/2023.09.01.23294953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alzheimer's Disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. Here, we investigated the association between AD and both common variants and aggregates of rare coding and noncoding variants in 13,371 individuals of diverse ancestry with whole genome sequence (WGS) data. Pooled-population analyses identified genetic variants in or near APOE, BIN1, and LINC00320 significantly associated with AD (p < 5×10-8). Population-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and noncoding variants in this region. Finally, we observed suggestive associations (p < 5×10-5) of aggregates of rare coding rare variants in ABCA7 among non-Hispanic Whites (p=5.4×10-6), and rare noncoding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p=7.2×10-8). Complementary pooled-population and population-specific analyses offered unique insights into the genetic architecture of AD.
Collapse
Affiliation(s)
- Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Margaret G Shea
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nancy L Heard-Costa
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katia Bulekova
- Research Computing Services, Information Services & Technology, Boston University, Boston, MA, USA
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Farrell
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Adam Naj
- Department of Biostatistics, Epidemiology, and Informatics, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Frederick Nusetor
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dongyu Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoling Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Lindsay A Farrer
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
- Department of Ophthalmology, Department of Medicine, Boston University Medical School, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eden Martin
- John P Hussman Institute for Human Genomics, Miami, FL, USA
- John T Macdonald Department of Human Genetics, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret Pericak-Vance
- John P Hussman Institute for Human Genomics, Miami, FL, USA
- John T Macdonald Department of Human Genetics, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ellen M Wijsman
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita L Destefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Nowrangi MA, Outen JD, Kim J, Avramopoulos D, Lyketsos CG, Rosenberg PB. Neuropsychiatric Symptoms of Alzheimer's Disease: An Anatomic-Genetic Framework for Treatment Development. J Alzheimers Dis 2023; 95:53-68. [PMID: 37522204 DOI: 10.3233/jad-221247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Despite the burden on patients and caregivers, there are no approved therapies for the neuropsychiatric symptoms of Alzheimer's disease (NPS-AD). This is likely due to an incomplete understanding of the underlying mechanisms. OBJECTIVE To review the neurobiological mechanisms of NPS-AD, including depression, psychosis, and agitation. METHODS Understanding that genetic encoding gives rise to the function of neural circuits specific to behavior, we review the genetics and neuroimaging literature to better understand the biological underpinnings of depression, psychosis, and agitation. RESULTS We found that mechanisms involving monoaminergic biosynthesis and function are likely key elements of NPS-AD and while current treatment approaches are in line with this, the lack of effectiveness may be due to contributions from additional mechanisms including neurodegenerative, vascular, inflammatory, and immunologic pathways. CONCLUSION Within an anatomic-genetic framework, development of novel effective biological targets may engage targets within these pathways but will require a better understanding of the heterogeneity in NPS-AD.
Collapse
Affiliation(s)
- Milap A Nowrangi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - John D Outen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| |
Collapse
|
6
|
Benmelouka AY, Ouerdane Y, Outani O, Alnasser YT, Alghamdi BS, Perveen A, Ashraf GM, Ebada MA. Alzheimer's Disease-Related Psychosis: An Overview of Clinical Manifestations, Pathogenesis, and Current Treatment. Curr Alzheimer Res 2022; 19:285-301. [PMID: 35440308 DOI: 10.2174/1567205019666220418151914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Behavioral and psychotic manifestations, including aggression, delusions, and hallucinations, are frequent comorbidities in patients with debilitating nervous illnesses such as Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis, Multiple Sclerosis, and Parkinson's disease. AD-related psychosis may be linked to a poor disease prognosis, highlighting that early detection and management are mandatory. The manifestations are variable and may be very heterogeneous, imposing a real diagnostic issue. Some assessment tools such as BEHAVE-AD, CERAD-BRSD, and the Psycho-Sensory Hallucinations Scale have been designed to facilitate the diagnosis. The mechanisms behind neurodegeneration-related psychosis are complex and are not fully understood, imposing a burden on researchers to find appropriate management modalities. Familial history and some genetic disturbances may have a determinant role in these delusions and hallucinations in cases with AD. The loss of neuronal cells, atrophy in some regions of the central nervous, and synaptic dysfunction may also contribute to these comorbidities. Furthermore, inflammatory disturbances triggered by pro-inflammatory agents such as interleukins and tumor necrosis factors are stratified among the potential risk factors of the onset of numerous psychotic symptoms in Alzheimer's patients. Little is known about the possible management tools; therefore, it is urgent to conduct well-designed trials to investigate pharmacological and non-pharmacological interventions that can improve the care process of these patients. This review summarizes the current findings regarding the AD-related psychosis symptoms, pathological features, assessment, and management.
Collapse
Affiliation(s)
| | | | - Oumaima Outani
- Faculty of Medicine and Pharmacy of Rabat, Mohammed 5 University
| | | | - Badrah S Alghamdi
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah
| | - Asma Perveen
- Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah
| | - Mahmoud Ahmed Ebada
- Faculty of Medicine, Zagazig University, Zagazig, Al-Sharkia.,Internal Medicine Resident, Ministry of Health and Population of Egypt, Cairo
| |
Collapse
|
7
|
DeChellis-Marks MR, Wei Y, Ding Y, Wolfe CM, Krivinko JM, MacDonald ML, Lopez OL, Sweet RA, Kofler J. Psychosis in Alzheimer's Disease Is Associated With Increased Excitatory Neuron Vulnerability and Post-transcriptional Mechanisms Altering Synaptic Protein Levels. Front Neurol 2022; 13:778419. [PMID: 35309563 PMCID: PMC8925864 DOI: 10.3389/fneur.2022.778419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/04/2022] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's disease with psychosis (AD+P) is a heritable phenotypic variant of the disease which is associated with more rapid cognitive deterioration compared to Alzheimer's disease without psychosis (AD-P). Cognitive decline in AD correlates with synapse loss, and our previous studies suggest that those with AD+P have a differentially affected synaptic proteome relative to those with AD-P. In this study, we utilized RNA-sequencing of dorsolateral prefrontal cortex (DLPFC) in a cohort of 80 AD cases to evaluate novel transcriptomic signatures that may confer risk of psychosis in AD. We found that AD+P was associated with a 9% reduction in excitatory neuron proportion compared to AD-P [Mean (SD) AD+P 0.295 (0.061); AD-P 0.324 (0.052), p = 0.026]. mRNA levels contributed only modestly to altered synaptic proteins in AD+P relative to AD-P. Instead, network analysis identified altered expression of gene modules from protein ubiquitination, unfolded protein response, eukaryotic initiation factor 2 (EIF2) signaling and endoplasmic reticulum stress pathways in AD+P. We previously found that neuropathologies account for ~18% of the variance in the occurrence of psychosis in AD. Further inclusion of cell type proportions and differentially expressed modules increased the percent of the variance in psychosis occurrence accounted for in our AD cohort to 67.5%.
Collapse
Affiliation(s)
| | - Yue Wei
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Cody M. Wolfe
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Joshua M. Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Oscar L. Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
8
|
DeMichele-Sweet MAA, Klei L, Creese B, Harwood JC, Weamer EA, McClain L, Sims R, Hernandez I, Moreno-Grau S, Tárraga L, Boada M, Alarcón-Martín E, Valero S, Liu Y, Hooli B, Aarsland D, Selbaek G, Bergh S, Rongve A, Saltvedt I, Skjellegrind HK, Engdahl B, Stordal E, Andreassen OA, Djurovic S, Athanasiu L, Seripa D, Borroni B, Albani D, Forloni G, Mecocci P, Serretti A, De Ronchi D, Politis A, Williams J, Mayeux R, Foroud T, Ruiz A, Ballard C, Holmans P, Lopez OL, Kamboh MI, Devlin B, Sweet RA. Genome-wide association identifies the first risk loci for psychosis in Alzheimer disease. Mol Psychiatry 2021; 26:5797-5811. [PMID: 34112972 PMCID: PMC8660923 DOI: 10.1038/s41380-021-01152-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
Psychotic symptoms, defined as the occurrence of delusions or hallucinations, are frequent in Alzheimer disease (AD with psychosis, AD + P). AD + P affects ~50% of individuals with AD, identifies a subgroup with poor outcomes, and is associated with a greater degree of cognitive impairment and depressive symptoms, compared to subjects without psychosis (AD - P). Although the estimated heritability of AD + P is 61%, genetic sources of risk are unknown. We report a genome-wide meta-analysis of 12,317 AD subjects, 5445 AD + P. Results showed common genetic variation accounted for a significant portion of heritability. Two loci, one in ENPP6 (rs9994623, O.R. (95%CI) 1.16 (1.10, 1.22), p = 1.26 × 10-8) and one spanning the 3'-UTR of an alternatively spliced transcript of SUMF1 (rs201109606, O.R. 0.65 (0.56-0.76), p = 3.24 × 10-8), had genome-wide significant associations with AD + P. Gene-based analysis identified a significant association with APOE, due to the APOE risk haplotype ε4. AD + P demonstrated negative genetic correlations with cognitive and educational attainment and positive genetic correlation with depressive symptoms. We previously observed a negative genetic correlation with schizophrenia; instead, we now found a stronger negative correlation with the related phenotype of bipolar disorder. Analysis of polygenic risk scores supported this genetic correlation and documented a positive genetic correlation with risk variation for AD, beyond the effect of ε4. We also document a small set of SNPs likely to affect risk for AD + P and AD or schizophrenia. These findings provide the first unbiased identification of the association of psychosis in AD with common genetic variation and provide insights into its genetic architecture.
Collapse
Affiliation(s)
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Byron Creese
- University of Exeter Medical School, College of Medicine and Health, Exeter, UK
- Norwegian, Exeter and King's College Consortium for Genetics of Neuropsychiatric Symptoms in Dementia, Exeter, UK
| | - Janet C Harwood
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Elise A Weamer
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Isabel Hernandez
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergi Valero
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Yushi Liu
- Global Statistical Science, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Basavaraj Hooli
- Neurodegeneration Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London and Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Geir Selbaek
- Norwegian National Advisory Unit in Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sverre Bergh
- Research Centre of Age-related Functional Decline and Disease, Innlandet Hospital Trust, Pb 68, Ottestad, Norway
| | - Arvid Rongve
- Department of Research and Innovation, Helse Fonna, Haugesund and Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Ingvild Saltvedt
- Geriatric Department, St. Olav Hospital, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Håvard K Skjellegrind
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Bo Engdahl
- Norwegian Institute of Public Health, Oslo, Norway
| | - Eystein Stordal
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lavinia Athanasiu
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Davide Seripa
- Department of Hematology and Stem Cell Transplant, Vito Fazzi Hospital, Lecce, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Diego Albani
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianluigi Forloni
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Antonis Politis
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- UK Dementia Research Institute @ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Richard Mayeux
- Departments of Neurology, Psychiatry and Epidemiology, Columbia University, New York, NY, USA
| | - Tatiana Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Agustin Ruiz
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Psychosis-associated DNA methylomic variation in Alzheimer's disease cortex. Neurobiol Aging 2020; 89:83-88. [PMID: 32007278 DOI: 10.1016/j.neurobiolaging.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 01/01/2020] [Indexed: 11/22/2022]
Abstract
Psychotic symptoms are a common and debilitating feature of Alzheimer's disease (AD) and are associated with a more rapid course of decline. Current evidence from postmortem and neuroimaging studies implicates frontal, temporal, and parietal lobes, with reported disruptions in monoaminergic pathways. However, the molecular mechanisms underlying this remain unclear. In the present study, we investigated methylomic variation associated with AD psychosis in 3 key brain regions implicated in the etiology of psychosis (prefrontal cortex, entorhinal cortex, and superior temporal gyrus) in postmortem brain samples from 29 AD donors with psychosis and 18 matched AD donors without psychosis. We identified psychosis-associated methylomic changes in a number of loci, with these genes being enriched in known schizophrenia-associated genetic and epigenetic variants. One of these known loci resided in the AS3MT gene-previously implicated in schizophrenia in a large GWAS meta-analysis. We used bisulfite-pyrosequencing to confirm hypomethylation across 4 neighboring CpG sites in the ASM3T gene. Finally, our regional analysis nominated multiple CpG sites in TBX15 and WT1, which are genes that have been previously implicated in AD. Thus one potential implication from our study is whether psychosis-associated variation drives reported associations in AD case-control studies.
Collapse
|
10
|
Tsuang DW, Greenwood TA, Jayadev S, Davis M, Shutes-David A, Bird TD. A Genetic Study of Psychosis in Huntington's Disease: Evidence for the Involvement of Glutamate Signaling Pathways. J Huntingtons Dis 2019; 7:51-59. [PMID: 29480208 DOI: 10.3233/jhd-170277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psychotic symptoms of delusions and hallucinations occur in about 5% of persons with Huntington's disease (HD). The mechanisms underlying these occurrences are unknown, but the same symptoms also occur in schizophrenia, and thus genetic risk factors for schizophrenia may be relevant to the development of psychosis in HD. OBJECTIVE To investigate the possible role of genes associated with schizophrenia in the occurrence of psychotic symptoms in HD. METHODS DNA from subjects with HD and psychosis (HD+P; n = 47), subjects with HD and no psychosis (HD-P; n = 126), and controls (CTLs; n = 207) was genotyped using the Infinium PsychArray-24 v1.1 BeadChip. The allele frequencies of single-nucleotide polymorphisms (SNPs) that were previously associated with schizophrenia and related psychiatric disorders were compared between these groups. RESULTS Of the 30 candidate genes tested, 10 showed an association with psychosis in HD. The majority of these genes, including CTNNA2, DRD2, ERBB4, GRID2, GRIK4, GRM1, NRG1, PCNT, RELN, and SLC1A2, demonstrate network interactions related to glutamate signaling. CONCLUSIONS This study suggests genetic associations between several previously identified candidate genes for schizophrenia and the occurrence of psychotic symptoms in HD. These data support the potential role of genes related to glutamate signaling in HD psychosis.
Collapse
Affiliation(s)
- Debby W Tsuang
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Marie Davis
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Andrew Shutes-David
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Thomas D Bird
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
DeMichele-Sweet MAA, Weamer EA, Klei L, Vrana DT, Hollingshead DJ, Seltman HJ, Sims R, Foroud T, Hernandez I, Moreno-Grau S, Tárraga L, Boada M, Ruiz A, Williams J, Mayeux R, Lopez OL, Sibille EL, Kamboh MI, Devlin B, Sweet RA. Genetic risk for schizophrenia and psychosis in Alzheimer disease. Mol Psychiatry 2018; 23:963-972. [PMID: 28461698 PMCID: PMC5668212 DOI: 10.1038/mp.2017.81] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/29/2022]
Abstract
Psychotic symptoms, defined as the occurrence of delusions or hallucinations, are frequent in Alzheimer disease (AD), affecting ~40 to 60% of individuals with AD (AD with psychosis (AD+P)). In comparison with AD subjects without psychosis, AD+P subjects have more rapid cognitive decline and poor outcomes. Prior studies have estimated the heritability of psychosis in AD at 61%, but the underlying genetic sources of this risk are not known. We evaluated a Discovery Cohort of 2876 AD subjects with (N=1761) or without psychosis (N=1115). All subjects were genotyped using a custom genotyping array designed to evaluate single-nucleotide polymorphisms (SNPs) with evidence of genetic association with AD+P and include SNPs affecting or putatively affecting risk for schizophrenia and AD. Results were replicated in an independent cohort of 2194 AD subjects with (N=734) or without psychosis (N=1460). We found that AD+P is associated with polygenic risk for a set of novel loci and inversely associated with polygenic risk for schizophrenia. Among the biologic pathways identified by the associations of schizophrenia SNPs with AD+P are endosomal trafficking, autophagy and calcium channel signaling. To the best of our knowledge, these findings provide the first clear demonstration that AD+P is associated with common genetic variation. In addition, they provide an unbiased link between polygenic risk for schizophrenia and a lower risk of psychosis in AD. This provides an opportunity to leverage progress made in identifying the biologic effects of schizophrenia alleles to identify novel mechanisms protecting against more rapid cognitive decline and psychosis risk in AD.
Collapse
Affiliation(s)
| | - Elise A. Weamer
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Dylan T. Vrana
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA
| | - Deborah J. Hollingshead
- Genomics Research Core of the Health Sciences Core Research Facilities, University of Pittsburgh, Pittsburgh, PA
| | - Howard J. Seltman
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Tatiana Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Isabel Hernandez
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Agustin Ruiz
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Richard Mayeux
- Departments of Neurology, Psychiatry and Epidemiology, Columbia University, New York, NY
| | - Oscar L. Lopez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| | - Etienne L. Sibille
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Departments of Psychiatry and of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
- VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC) VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
12
|
Krivinko JM, Erickson SL, Abrahamson EE, Wills ZP, Ikonomovic MD, Penzes P, Sweet RA. Kalirin reduction rescues psychosis-associated behavioral deficits in APPswe/PSEN1dE9 transgenic mice. Neurobiol Aging 2017; 54:59-70. [PMID: 28319837 PMCID: PMC5502748 DOI: 10.1016/j.neurobiolaging.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/18/2017] [Accepted: 02/09/2017] [Indexed: 12/17/2022]
Abstract
Psychosis in Alzheimer's disease (AD+P) represents a distinct clinical and neurobiological AD phenotype and is associated with more rapid cognitive decline, higher rates of abnormal behaviors, and increased caregiver burden compared with AD without psychosis. On a molecular level, AD+P is associated with greater reductions in the protein kalirin, a guanine exchange factor which has also been linked to the psychotic disease, schizophrenia. In this study, we sought to determine the molecular and behavioral consequences of kalirin reduction in APPswe/PSEN1dE9 mice. We evaluated mice with and without kalirin reduction during tasks measuring psychosis-associated behaviors and spatial memory. We found that kalirin reduction in APPswe/PSEN1dE9 mice significantly attenuated psychosis-associated behavior at 12 months of age without changing spatial memory performance. The 12-month-old APPswe/PSEN1dE9 mice with reduced kalirin levels also had increased levels of the active, phosphorylated forms of p21 protein (Cdc42/Rac)-activated kinases (PAKs), which function in signaling pathways for maintenance of dendritic spine density, morphology, and function.
Collapse
Affiliation(s)
- Josh M Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan L Erickson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zachary P Wills
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
An L, Adeli E, Liu M, Zhang J, Lee SW, Shen D. A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer's Disease Diagnosis. Sci Rep 2017; 7:45269. [PMID: 28358032 PMCID: PMC5372170 DOI: 10.1038/srep45269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022] Open
Abstract
Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer's disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms (SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use those features to build the classifier. However, with the presence of many redundant features, the most discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps for improved classifier learning. To positively guide the data manifold preservation process, we utilize both labeled and unlabeled data during training, making our method semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually informative features from both MRI and SNP, and using the most discriminative samples for training. The superior classification results demonstrate the effectiveness of our approach, as compared with the rivals.
Collapse
Affiliation(s)
- Le An
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ehsan Adeli
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jun Zhang
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC 27599, USA
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Shah C, DeMichele-Sweet MAA, Sweet RA. Genetics of psychosis of Alzheimer disease. Am J Med Genet B Neuropsychiatr Genet 2017; 174:27-35. [PMID: 26756273 PMCID: PMC5154859 DOI: 10.1002/ajmg.b.32413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
Psychotic symptoms, comprised of delusions and hallucinations, occur in about half of individuals with Alzheimer disease (AD with psychosis, AD+P). These individuals have greater agitation, aggression, depression, functional impairment, and mortality than individuals without psychosis (AD-P). Although the exact etiopathogenesis of AD+P is unclear, the rapidly developing field of genomics continues to expand our understanding of this disease. Several independent studies have demonstrated familial aggregation and heritability of AD+P. Linkage studies have been suggestive of loci on several chromosomes associated with AD+P. Association studies examining apolipoprotein E gene, the best established genetic risk factor for late-onset AD, did not find any significant association of this gene with AD+P. Other candidate gene studies focusing on monoamine neurotransmitter systems have yielded equivocal results. A genome-wide association study and studies examining copy number variations recently have detected suggestive associations, but have been underpowered. Approaches to increase sizes of AD+P samples for genome wide association studies are discussed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chintan Shah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Robert A. Sweet
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
- VISN 4 Mental Health Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
|