1
|
Shahidehpour RK, Nelson PT, Srinivasan S, Yu Z, Bachstetter AD. Assessing Co-Localization of ITM2B With Alzheimer's Disease and Limbic-Predominant Age-Related TDP-43 Encephalopathy Neuropathologic Changes. Neuropathology 2025. [PMID: 40042444 DOI: 10.1111/neup.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 02/16/2025] [Indexed: 03/24/2025]
Abstract
Mutations in the Integral membrane protein 2B (ITM2B) gene are linked to the development of familial British and Danish dementias, two relatively early-onset dementia disorders known also to be associated with Tau neurofibrillary tangles (NFTs). However, to date, the involvement of ITM2B in limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC) remains unclear. To address this question, we used brain samples from the University of Kentucky Alzheimer's Disease Research Center community-based autopsy cohort. We investigated the patterns and co-localizations of ITM2B immunohistochemistry in subiculum, CA1, CA2, CA3 and dentate gyrus of the hippocampus from brains with Alzheimer's disease neuropathologic changes (ADNC), LATE-NC, and comorbid ADNC+LATE-NC, as well as low-pathology controls (n = 4 per disease state). There was frequent co-localization between ITM2B protein and intracellular Tau pathology in ADNC; however, there was a far weaker rate of co-localization between ITM2B and TDP-43 pathology. There also was, as previously described, an association between ITM2B immunostaining and neuritic-appearing amyloid plaques. Additionally, co-localization of intracellular ITM2B pathology with Thioflavin-S in NFTs suggested a potential role for ITM2B in marking neurons undergoing transition from relatively healthy (early NFT-bearing cells) to more severely affected (later NFT-bearing) cellular disease states. This study indicates that ITM2B has a relatively specific pattern of involvement in Tau-related neurodegeneration and in neuritic amyloid plaques, while implying minimal, if any, role for ITM2B in the synergistic relationship between Tau and TDP-43 pathologies.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, Kentucky, USA
| | - Sukanya Srinivasan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Zhong Yu
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
3
|
Fernandez A, Gomez MT, Vidal R. Lack of ApoE inhibits ADan amyloidosis in a mouse model of familial Danish dementia. J Biol Chem 2022; 299:102751. [PMID: 36436561 PMCID: PMC9792896 DOI: 10.1016/j.jbc.2022.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
The Apolipoprotein E-ε4 allele (APOE-ε4) is the strongest genetic risk factor for late onset Alzheimer disease (AD). ApoE plays a critical role in amyloid-β (Aβ) accumulation in AD, and genetic deletion of the murine ApoE gene in mouse models results in a decrease or inhibition of Aβ deposition. The association between the presence of ApoE and amyloid in amyloidoses suggests a more general role for ApoE in the fibrillogenesis process. However, whether decreasing levels of ApoE would attenuate amyloid pathology in different amyloidoses has not been directly addressed. Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease characterized by the presence of widespread parenchymal and vascular Danish amyloid (ADan) deposition and neurofibrillary tangles. A transgenic mouse model for FDD (Tg-FDD) is characterized by parenchymal and vascular ADan deposition. To determine the effect of decreasing ApoE levels on ADan accumulation in vivo, we generated a mouse model by crossing Tg-FDD mice with ApoE KO mice (Tg-FDD+/-/ApoE-/-). Lack of ApoE results in inhibition of ADan deposition up to 18 months of age. Additionally, our results from a genetic screen of Tg-FDD+/-/ApoE-/- mice emphasize the significant role for ApoE in neurodegeneration in FDD via glial-mediated mechanisms. Taken together, our findings suggest that the interaction between ApoE and ADan plays a key role in FDD pathogenesis, in addition to the known role for ApoE in amyloid plaque formation in AD.
Collapse
Affiliation(s)
- Anllely Fernandez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maria-Teresa Gomez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, USA,For correspondence: Ruben Vidal
| |
Collapse
|
4
|
Martins F, Santos I, da Cruz E Silva OAB, Tambaro S, Rebelo S. The role of the integral type II transmembrane protein BRI2 in health and disease. Cell Mol Life Sci 2021; 78:6807-6822. [PMID: 34480585 PMCID: PMC11072861 DOI: 10.1007/s00018-021-03932-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BRI2 is a type II transmembrane protein ubiquitously expressed whose physiological function remains poorly understood. Although several recent important advances have substantially impacted on our understanding of BRI2 biology and function, providing valuable information for further studies on BRI2. These findings have contributed to a better understanding of BRI2 biology and the underlying signaling pathways involved. In turn, these might provide novel insights with respect to neurodegeneration processes inherent to BRI2-related pathologies, namely Familial British and Danish dementias, Alzheimer's disease, ITM2B-related retinal dystrophy, and multiple sclerosis. In this review, we provided a state-of-the-art outline of BRI2 biology, both in physiological and pathological conditions, and discuss the proposed molecular underlying mechanisms. Overall, the BRI2 knowledge here reviewed is of extreme importance and may contribute to propose BRI2 and/or BRI2 proteolytic fragments as novel therapeutic targets for neurodegenerative diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabela Santos
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
6
|
The Amyloid-Tau-Neuroinflammation Axis in the Context of Cerebral Amyloid Angiopathy. Int J Mol Sci 2019; 20:ijms20246319. [PMID: 31847365 PMCID: PMC6941131 DOI: 10.3390/ijms20246319] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with the accumulation of Aβ, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis has been associated with an active immune response and perivascular deposition of hyperphosphorylated tau. Despite the fact that in Alzheimer’s disease (AD) a major focus of research has been the understanding of the connection between parenchymal amyloid plaques, tau aggregates in the form of neurofibrillary tangles (NFTs), and immune activation, the contribution of tau and neuroinflammation to neurodegeneration associated with CAA remains understudied. In this review, we discussed the existing evidence regarding the amyloid diversity in CAA and its relation to tau pathology and immune response, as well as the possible contribution of molecular and cellular mechanisms, previously associated with parenchymal amyloid in AD and AD-related dementias, to the pathogenesis of CAA. The detailed understanding of the “amyloid-tau-neuroinflammation” axis in the context of CAA could open the opportunity to develop therapeutic interventions for dementias associated with CAA that are currently being proposed for AD and AD-related dementias.
Collapse
|
7
|
Thygesen C, Ilkjær L, Kempf SJ, Hemdrup AL, von Linstow CU, Babcock AA, Darvesh S, Larsen MR, Finsen B. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APP SWE/PS1 ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Front Cell Neurosci 2018; 12:397. [PMID: 30459560 PMCID: PMC6232379 DOI: 10.3389/fncel.2018.00397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation, characterized by chronic activation of the myeloid-derived microglia, is a hallmark of Alzheimer’s disease (AD). Systemic inflammation, typically resulting from infection, has been linked to the progression of AD due to exacerbation of the chronic microglial reaction. However, the mechanism and the consequences of this exacerbation are largely unknown. Here, we mimicked systemic inflammation in AD with weekly intraperitoneal (i.p.) injections of APPSWE/PS1ΔE9 transgenic mice with E. coli lipopolysaccharide (LPS) from 9 to 12 months of age, corresponding to the period with the steepest increase in amyloid pathology. We found that the repeated LPS injections ameliorated amyloid pathology in the neocortex while increasing the neuroinflammatory reaction. To elucidate mechanisms, we analyzed the proteome of the hippocampus from the same mice as well as in unique samples of CNS myeloid cells. The repeated LPS injections stimulated protein pathways of the complement system, retinoid receptor activation and oxidative stress. CNS myeloid cells from transgenic mice showed enrichment in pathways of amyloid-beta clearance and elevated levels of the lysosomal protease cathepsin Z, as well as amyloid precursor protein, apolipoprotein E and clusterin. These proteins were found elevated in the proteome of both LPS and vehicle injected transgenics, and co-localized to CD11b+ microglia in transgenic mice and in primary murine microglia. Additionally, cathepsin Z, amyloid precursor protein, and apolipoprotein E appeared associated with amyloid plaques in neocortex of AD cases. Interestingly, cathepsin Z was expressed in microglial-like cells and co-localized to CD68+ microglial lysosomes in AD cases, and it was expressed in perivascular cells in AD and control cases. Taken together, our results implicate systemic LPS administration in ameliorating amyloid pathology in early-to-mid stage disease in the APPSWE/PS1ΔE9 mouse and attract attention to the potential disease involvement of cathepsin Z expressed in CNS myeloid cells in AD.
Collapse
Affiliation(s)
- Camilla Thygesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Laura Ilkjær
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefan J Kempf
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anne Louise Hemdrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Alicia A Babcock
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sultan Darvesh
- Department of Medicine (Neurology and Geriatric Medicine) - Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, Canada
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Chen G, Abelein A, Nilsson HE, Leppert A, Andrade-Talavera Y, Tambaro S, Hemmingsson L, Roshan F, Landreh M, Biverstål H, Koeck PJB, Presto J, Hebert H, Fisahn A, Johansson J. Bri2 BRICHOS client specificity and chaperone activity are governed by assembly state. Nat Commun 2017; 8:2081. [PMID: 29234026 PMCID: PMC5727130 DOI: 10.1038/s41467-017-02056-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer’s disease the amyloid-β peptide (Aβ) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces Aβ fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible non-fibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of Aβ, while dimers strongly suppress Aβ fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity. The BRICHOS domain is a chaperone that can act against amyloid-β peptide fibril formation and non-fibrillar protein aggregation. Here the authors use a multidisciplinary approach and show that the Bri2 BRICHOS domain has qualitatively different chaperone activities depending on its quaternary structure.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Axel Abelein
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Harriet E Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, and School of Technology and Health, KTH Royal institute of Technology, 141 83, Huddinge, Sweden
| | - Axel Leppert
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neuronal Oscillations Lab, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Lovisa Hemmingsson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Firoz Roshan
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neuronal Oscillations Lab, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Michael Landreh
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK.,Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Tomtebodavägen 23 A, 171 65, Stockholm, Sweden
| | - Henrik Biverstål
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden.,Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV, 1006, Latvia
| | - Philip J B Koeck
- Department of Biosciences and Nutrition, Karolinska Institutet, and School of Technology and Health, KTH Royal institute of Technology, 141 83, Huddinge, Sweden
| | - Jenny Presto
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet, and School of Technology and Health, KTH Royal institute of Technology, 141 83, Huddinge, Sweden
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neuronal Oscillations Lab, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden.
| |
Collapse
|