1
|
Murovec B, Berti S, Yahya S, Spaniol J, Keshavarz B. Early cortical processing of coherent vs. non-coherent motion stimuli in younger and older adults: An event-related potential (ERP) study investigating visually induced vection. Neuropsychologia 2025; 212:109140. [PMID: 40209881 DOI: 10.1016/j.neuropsychologia.2025.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The neurophysiological basis of vection (i.e., the illusion of self-motion) is not well understood. Preliminary evidence suggests that neural predictors of vection can be identified through event-related potentials (ERPs) and that these markers may correlate with vection intensity. The current study examined age-related differences in neurocortical activity during the early stages of sensory processing of vection-inducing stimuli. Twenty-two younger (age range: 20-35 years) and 25 older adults (age range: 65-83) observed optokinetic stimuli in two blocks, a short (∼3s) presentation block and a long (35s) presentation block. In both types of blocks, the optokinetic stimuli varied in motion coherence (coherent vs. non-coherent motion). During the short presentation block, EEG was used to measure neural activity in the form of ERPs time-locked to the onset of visual motion, whereas subjective ratings of vection intensity, duration, and onset latency were collected during the long presentation block. Vection was significantly stronger following coherent vs. non-coherent motion for both age groups. ERP analyses revealed differences between coherent and non-coherent motion at parietal-occipital electrodes around 100-150 ms (P1) and 150-230 ms (P2), with greater area under the curve (AUC) during non-coherent vs. coherent motion. Neither vection ratings nor ERPs showed significant age differences for coherent visual motion; however, age differences in ERPs were observed during the processing of non-coherent visual motion. These findings indicate that the subjective experience of vection and the neurophysiological mechanisms underlying visual processing preceding vection remain relatively stable with age. However, they also reveal age-related differences in the processing of non-coherent motion.
Collapse
Affiliation(s)
- Brandy Murovec
- Toronto Metropolitan University, Toronto, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
| | - Stefan Berti
- Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susan Yahya
- Toronto Metropolitan University, Toronto, Canada
| | | | - Behrang Keshavarz
- Toronto Metropolitan University, Toronto, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada.
| |
Collapse
|
2
|
Harada S, Teraoka R, Kuroda N, Teramoto W. Aging does not affect auditory motion discrimination based on interaural level differences. Iperception 2025; 16:20416695241311206. [PMID: 40041547 PMCID: PMC11874038 DOI: 10.1177/20416695241311206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/14/2024] [Indexed: 03/06/2025] Open
Abstract
It is well known that aging affects fundamental perceptual functions. Numerous studies have investigated age-related changes in visual motion perception and demonstrated that aging impairs motion processing. However, limited studies have explored age-related changes in auditory motion perception, and whether aging influences auditory motion perception based on interaural level differences remains unknown. This study examined age-related differences in the discrimination of auditory motion direction based on interaural level differences. We conducted two experiments to estimate the signal-to-noise ratio and motion coherence thresholds required to discriminate auditory motion and visual motion directions, respectively, in younger and older adults. Results showed that age significantly impairs visual motion discrimination; however, it does not impair auditory motion discrimination. These findings suggest that aging does not affect auditory motion perception based on interaural level differences, at least with the broadband noise used in this experiment.
Collapse
Affiliation(s)
- Shinya Harada
- Faculty of Humanities and Social Sciences (Psychology), Kumamoto University, Kumamoto, Japan
| | - Ryo Teraoka
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, Japan
| | - Naoki Kuroda
- Faculty of Humanities and Social Sciences (Psychology), Kumamoto University, Kumamoto, Japan
| | - Wataru Teramoto
- Faculty of Humanities and Social Sciences (Psychology), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Di Ponzio M, Battaglini L, Bertamini M, Contemori G. Behavioural stochastic resonance across the lifespan. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1048-1064. [PMID: 39256251 PMCID: PMC11525268 DOI: 10.3758/s13415-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
Stochastic resonance (SR) is the phenomenon wherein the introduction of a suitable level of noise enhances the detection of subthreshold signals in non linear systems. It manifests across various physical and biological systems, including the human brain. Psychophysical experiments have confirmed the behavioural impact of stochastic resonance on auditory, somatic, and visual perception. Aging renders the brain more susceptible to noise, possibly causing differences in the SR phenomenon between young and elderly individuals. This study investigates the impact of noise on motion detection accuracy throughout the lifespan, with 214 participants ranging in age from 18 to 82. Our objective was to determine the optimal noise level to induce an SR-like response in both young and old populations. Consistent with existing literature, our findings reveal a diminishing advantage with age, indicating that the efficacy of noise addition progressively diminishes. Additionally, as individuals age, peak performance is achieved with lower levels of noise. This study provides the first insight into how SR changes across the lifespan of healthy adults and establishes a foundation for understanding the pathological alterations in perceptual processes associated with aging.
Collapse
Affiliation(s)
- Michele Di Ponzio
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Padua, Italy
- Neuro.Vis.U.S. Laboratory, University of Padova, Padua, Italy
- Centro Di Ateneo Dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padua, Italy
| | - Marco Bertamini
- Department of General Psychology, University of Padova, Padua, Italy
| | - Giulio Contemori
- Department of General Psychology, University of Padova, Padua, Italy.
| |
Collapse
|
4
|
Yan S, Zhang Y, Yin X, Chen J, Zhu Z, Jin H, Li H, Yin J, Jiang Y. Alterations in white matter integrity and network topological properties are associated with a decrease in global motion perception in older adults. Front Aging Neurosci 2023; 15:1045263. [PMID: 36967826 PMCID: PMC10034108 DOI: 10.3389/fnagi.2023.1045263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Previous studies have mainly explored the effects of structural and functional aging of cortical regions on global motion sensitivity in older adults, but none have explored the structural white matter (WM) substrates underlying the age-related decrease in global motion perception (GMP). In this study, random dot kinematogram and diffusion tensor imaging were used to investigate the effects of age-related reductions in WM fiber integrity and connectivity across various regions on GMP. We recruited 106 younger adults and 94 older adults and utilized both tract-based spatial statistics analysis and graph theoretical analysis to comprehensively investigate group differences in WM microstructural and network connections between older and younger adults at the microscopic and macroscopic levels. Moreover, partial correlation analysis was used to explore the relationship between alterations in WM and the age-related decrease in GMP. The results showed that decreased GMP in older adults was related to decreased fractional anisotropy (FA) of the inferior frontal-occipital fasciculus, inferior longitudinal fasciculus, anterior thalamic radiation, superior longitudinal fasciculus, and cingulum cingulate gyrus. Decreased global efficiency of the WM structural network and increased characteristic path length were closely associated with decreased global motion sensitivity. These results suggest that the reduced GMP in older adults may stem from reduced WM integrity in specific regions of WM fiber tracts as well as decreased efficiency of information integration and communication between distant cortical regions, supporting the “disconnection hypothesis” of cognitive aging.
Collapse
Affiliation(s)
- Shizhen Yan
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yuping Zhang
- Medicine School of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojuan Yin
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Juntao Chen
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Ziliang Zhu
- State Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Hua Jin
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
- *Correspondence: Hua Jin,
| | - Han Li
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Jianzhong Yin
- Department of Radiology, People’s Hospital of Haikou, Haikou, China
| | - Yunpeng Jiang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| |
Collapse
|
5
|
Yan S, Chen J, Yin X, Zhu Z, Liang Z, Jin H, Li H, Yin J, Jiang Y, Xia Y. The structural basis of age-related decline in global motion perception at fast and slow speeds. Neuropsychologia 2023; 183:108507. [PMID: 36773806 DOI: 10.1016/j.neuropsychologia.2023.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
A decrease in global motion perception (GMP) has been reported in older adults, and this age-related decline in GMP varies with the speed of global motion. However, no studies have investigated whether the asynchronous age-related decline in GMP is related to degenerative changes in brain structure. In this study, the random dot kinematogram paradigm and structural magnetic resonance imaging were used to investigate the asynchronous aging of GMP at fast and slow speeds (called fast GMP and slow GMP, respectively) and their relationships with brain structure. Ninety-four older adults (65.74 ± 4.50 yrs) and 90 younger adults (22.83 ± 4.84 yrs) participated in the experiment. The results showed that older adults had higher motion coherence thresholds (MCT) than younger adults at both fast and slow speeds. Brain-behavior correlation analyses of younger adults revealed that none of the correlations between morphological measures and MCTs survived correction for multiple comparisons. For older adults, slow MCT was correlated with cortical thickness in the bilateral V4v, V5/MT+, left V7, V8, LO, and surface area in the right V7. Fast MCT was significantly correlated with gray matter volume in the right V7 and thickness in the left V5/MT+. These results support the view that global motion extraction occurs within two speed-tuned systems that are at least partially independent in terms of their neural substrates, which deteriorate with age at different speeds. Aging of GMP is also associated with morphological changes in the visual cortex. Age-related cerebral atrophy in the dorsal stream may impair both fast and slow GMP, whereas aging of the ventral stream specifically impairs slow GMP.
Collapse
Affiliation(s)
- Shizhen Yan
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Juntao Chen
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Xiaojuan Yin
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Ziliang Zhu
- State Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ziping Liang
- Mental Health Education Center, Zhengzhou University, Zhengzhou, China
| | - Hua Jin
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China.
| | - Han Li
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Jianzhong Yin
- Radiology Department, People's Hospital of Haikou, Haikou, China
| | - Yunpeng Jiang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yaoyuan Xia
- Department of Physical Education, Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|
6
|
Scheel N, Keller JN, Binder EF, Vidoni ED, Burns JM, Thomas BP, Stowe AM, Hynan LS, Kerwin DR, Vongpatanasin W, Rossetti H, Cullum CM, Zhang R, Zhu DC. Evaluation of noise regression techniques in resting-state fMRI studies using data of 434 older adults. Front Neurosci 2022; 16:1006056. [PMID: 36340768 PMCID: PMC9626831 DOI: 10.3389/fnins.2022.1006056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Subject motion is a well-known confound in resting-state functional MRI (rs-fMRI) and the analysis of functional connectivity. Consequently, several clean-up strategies have been established to minimize the impact of subject motion. Physiological signals in response to cardiac activity and respiration are also known to alter the apparent rs-fMRI connectivity. Comprehensive comparisons of common noise regression techniques showed that the "Independent Component Analysis based strategy for Automatic Removal of Motion Artifacts" (ICA-AROMA) was a preferred pre-processing technique for teenagers and adults. However, motion and physiological noise characteristics may differ substantially for older adults. Here, we present a comprehensive comparison of noise-regression techniques for older adults from a large multi-site clinical trial of exercise and intensive pharmacological vascular risk factor reduction. The Risk Reduction for Alzheimer's Disease (rrAD) trial included hypertensive older adults (60-84 years old) at elevated risk of developing Alzheimer's Disease (AD). We compared the performance of censoring, censoring combined with global signal regression, non-aggressive and aggressive ICA-AROMA, as well as the Spatially Organized Component Klassifikator (SOCK) on the rs-fMRI baseline scans from 434 rrAD subjects. All techniques were rated based on network reproducibility, network identifiability, edge activity, spatial smoothness, and loss of temporal degrees of freedom (tDOF). We found that non-aggressive ICA-AROMA did not perform as well as the other four techniques, which performed table with marginal differences, demonstrating the validity of these techniques. Considering reproducibility as the most important factor for longitudinal studies, given low false-positive rates and a better preserved, more cohesive temporal structure, currently aggressive ICA-AROMA is likely the most suitable noise regression technique for rs-fMRI studies of older adults.
Collapse
Affiliation(s)
- Norman Scheel
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Ellen F. Binder
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric D. Vidoni
- Alzheimer’s Disease Center, University of Kansas, Fairway, KS, United States
| | - Jeffrey M. Burns
- Alzheimer’s Disease Center, University of Kansas, Fairway, KS, United States
| | - Binu P. Thomas
- UT Southwestern Medical Center, Dallas, TX, United States
| | - Ann M. Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Linda S. Hynan
- UT Southwestern Medical Center, Dallas, TX, United States
| | - Diana R. Kerwin
- Texas Health Presbyterian Hospital, Dallas, TX, United States
| | | | - Heidi Rossetti
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | - Rong Zhang
- UT Southwestern Medical Center, Dallas, TX, United States,Texas Health Presbyterian Hospital, Dallas, TX, United States
| | - David C. Zhu
- Department of Radiology, Michigan State University, East Lansing, MI, United States,*Correspondence: David C. Zhu,
| |
Collapse
|
7
|
Zajac L, Killiany R. Activity Strength within Optic Flow-Sensitive Cortical Regions Is Associated with Visual Path Integration Accuracy in Aged Adults. Brain Sci 2021; 11:brainsci11020245. [PMID: 33669177 PMCID: PMC7919670 DOI: 10.3390/brainsci11020245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Spatial navigation is a cognitive skill fundamental to successful interaction with our environment, and aging is associated with weaknesses in this skill. Identifying mechanisms underlying individual differences in navigation ability in aged adults is important to understanding these age-related weaknesses. One understudied factor involved in spatial navigation is self-motion perception. Important to self-motion perception is optic flow–the global pattern of visual motion experienced while moving through our environment. A set of optic flow-sensitive (OF-sensitive) cortical regions was defined in a group of young (n = 29) and aged (n = 22) adults. Brain activity was measured in this set of OF-sensitive regions and control regions using functional magnetic resonance imaging while participants performed visual path integration (VPI) and turn counting (TC) tasks. Aged adults had stronger activity in RMT+ during both tasks compared to young adults. Stronger activity in the OF-sensitive regions LMT+ and RpVIP during VPI, not TC, was associated with greater VPI accuracy in aged adults. The activity strength in these two OF-sensitive regions measured during VPI explained 42% of the variance in VPI task performance in aged adults. The results of this study provide novel support for global motion processing as a mechanism underlying visual path integration in normal aging.
Collapse
Affiliation(s)
- Lauren Zajac
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street (L 1004), Boston, MA 02118, USA;
- Center for Biomedical Imaging, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
- Correspondence:
| | - Ronald Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street (L 1004), Boston, MA 02118, USA;
- Center for Biomedical Imaging, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
8
|
JIN H, LIANG Z, ZHU Z, YAN S, LIN L, AISIKAER A, YIN J, JIANG Y, TIAN X. Aging of global motion perception is accompanied by the changes of resting-state functional activity in the middle temporal gyrus. ACTA PSYCHOLOGICA SINICA 2021. [DOI: 10.3724/sp.j.1041.2021.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Karaduman A, Karoglu-Eravsar ET, Kaya U, Aydin A, Adams MM, Kafaligonul H. The optomotor response of aging zebrafish reveals a complex relationship between visual motion characteristics and cholinergic system. Neurobiol Aging 2020; 98:21-32. [PMID: 33227566 DOI: 10.1016/j.neurobiolaging.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
Understanding the principles underlying age-related changes in motion perception is paramount for improving the quality of life and health of older adults. However, the mechanisms underlying age-related alterations in this aspect of vision, which is essential for survival in a dynamic world, still remain unclear. Using optomotor responses to drifting gratings, we investigated age-related changes in motion detection of adult zebrafish (wild-type/AB-strain and achesb55/+ mutants with decreased levels of acetylcholinesterase). Our results pointed out negative optomotor responses that significantly depend on the spatial frequency and contrast level of stimulation, providing supporting evidence for the visual motion-driven aspect of this behavior mainly exhibited by adult zebrafish. Although there were no significant main effects of age and genotype, we found a significant three-way interaction between contrast level, age, and genotype. In the contrast domain, the changes in optomotor responses and thus in the detection of motion direction were age- and genotype-specific. Accordingly, these behavioral findings suggest a strong but complicated relationship between visual motion characteristics and the cholinergic system during neural aging.
Collapse
Affiliation(s)
- Aysenur Karaduman
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Utku Kaya
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Alaz Aydin
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.
| |
Collapse
|
10
|
Dijkstra BW, Bekkers EMJ, Gilat M, de Rond V, Hardwick RM, Nieuwboer A. Functional neuroimaging of human postural control: A systematic review with meta-analysis. Neurosci Biobehav Rev 2020; 115:351-362. [PMID: 32407735 DOI: 10.1016/j.neubiorev.2020.04.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
Abstract
Postural instability is a strong risk factor for falls that becomes more prominent with aging. To facilitate treatment and prevention of falls in an aging society, a thorough understanding of the neural networks underlying postural control is warranted. Here, we present a systematic review of the functional neuroimaging literature of studies measuring posture-related neural activity in healthy subjects. Study methods were overall heterogeneous. Eleven out of the 14 studies relied on postural simulation in a supine position (e.g. motor imagery). The key nodes of human postural control involved the brainstem, cerebellum, basal ganglia, thalamus and several cortical regions. An activation likelihood estimation meta-analysis revealed that the anterior cerebellum was consistently activated across the wide range of postural tasks. The cerebellum is known to modulate the brainstem nuclei involved in the control of posture. Hence, this systematic review with meta-analysis provides insight into the neural correlates which underpin human postural control and which may serve as a reference for future neural network and region of interest analyses.
Collapse
Affiliation(s)
- Bauke W Dijkstra
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Esther M J Bekkers
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Moran Gilat
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Robert M Hardwick
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium; Institute of Neuroscience, Université Catholique De Louvain, Brussels, Belgium.
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| |
Collapse
|
11
|
Sepulveda JA, Anderson AJ, Wood JM, McKendrick AM. Differential aging effects in motion perception tasks for central and peripheral vision. J Vis 2020; 20:8. [PMID: 32433734 PMCID: PMC7409591 DOI: 10.1167/jov.20.5.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The perception of motion is considered critical for performing everyday tasks, such as locomotion and driving, and relies on different levels of visual processing. However, it is unclear whether healthy aging differentially affects motion processing at specific levels of processing, or whether performance at central and peripheral spatial eccentricities is altered to the same extent. The aim of this study was to explore the effects of aging on hierarchically different components of motion processing: the minimum displacement of dots to perceive motion (Dmin), the minimum contrast and speed to determine the direction of motion, spatial surround suppression of motion, global motion coherence (translational and radial), and biological motion. We measured motion perception in both central vision and at 15° eccentricity, comparing performance in 20 older (60-79 years) and 20 younger (19-34 years) adults. Older adults had significantly elevated thresholds, relative to younger adults, for motion contrast, speed, Dmin, and biological motion. The differences between younger and older participants were of similar magnitude in central and peripheral vision, except for surround suppression of motion, which was weaker in central vision for the older group, but stronger in the periphery. Our findings demonstrate that the effects of aging are not uniform across all motion tasks. Whereas the performance of some tasks in the periphery can be predicted from the results in central vision, the effects of age on surround suppression of motion shows markedly different characteristics between central and peripheral vision.
Collapse
|
12
|
The two-process theory of biological motion processing. Neurosci Biobehav Rev 2020; 111:114-124. [PMID: 31945392 DOI: 10.1016/j.neubiorev.2020.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023]
Abstract
Perception, identification, and understanding of others' actions from motion information are vital for our survival in the social world. A breakthrough in the understanding of action perception was the discovery that our visual system is sensitive to human action from the sparse motion input of only a dozen point lights, a phenomenon known as biological motion (BM) processing. Previous psychological and computational models cannot fully explain the emerging evidence for the existence of BM processing during early ontogeny. Here, we propose a two-process model of the mechanisms underlying BM processing. We hypothesize that the first system, the 'Step Detector,' rapidly processes the local foot motion and feet-below-the-body information that is specific to vertebrates, is less dependent on postnatal learning, and involves subcortical networks. The second system, the 'Bodily Action Evaluator,' slowly processes the fine global structure-from-motion, is specific to conspecific, and dependent on gradual learning processed in cortical networks. This proposed model provides new insight into research on the development of BM processing.
Collapse
|
13
|
Age effects on the neural processing of object-context associations in briefly flashed natural scenes. Neuropsychologia 2020; 136:107264. [DOI: 10.1016/j.neuropsychologia.2019.107264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/30/2019] [Accepted: 11/11/2019] [Indexed: 01/31/2023]
|
14
|
Affiliation(s)
- Jutta Billino
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Karin S. Pilz
- Faculty of Behavioural and Social Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Ward LM, Morison G, Simmers AJ, Shahani U. Age-Related Changes in Global Motion Coherence: Conflicting Haemodynamic and Perceptual Responses. Sci Rep 2018; 8:10013. [PMID: 29968729 PMCID: PMC6030110 DOI: 10.1038/s41598-018-27803-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/08/2018] [Indexed: 11/22/2022] Open
Abstract
Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response.
Collapse
Affiliation(s)
- Laura McKernan Ward
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom.
| | - Gordon Morison
- Department of Engineering, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Anita Jane Simmers
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Uma Shahani
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| |
Collapse
|