1
|
Armada G, Roque S, Serre-Miranda C, Ferreira L, Vale A, Rodrigues AJ, Hong W, Correia-Neves M, Vieira N. SNX27: A trans-species cognitive modulator with implications for anxiety and stress susceptibility. Neurobiol Stress 2024; 30:100619. [PMID: 38500791 PMCID: PMC10945257 DOI: 10.1016/j.ynstr.2024.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Sorting Nexin 27 (SNX27) is a brain-enriched endosome-associated cargo adaptor that shapes excitatory control, being relevant for cognitive and reward processing, and for several neurological conditions. Despite this, SNX27's role in the nervous system remains poorly explored. To further understand SNX27 function, we performed an extensive behavioral characterization comprising motor, cognitive and emotional dimensions of SNX27+/- mice. Furthermore, attending on the recently described association between SNX27 function and cellular stress signaling mechanisms in vitro, we explored SNX27-stress interplay using a Caenorhabditis elegans Δsnx-27 mutant and wild-type (WT) rodents after stress exposure. SNX27+/- mice, as C. elegans Δsnx-27 mutants, present cognitive impairments, highlighting a conserved role for SNX27 in cognitive modulation across species. Interestingly, SNX27 downmodulation leads to anxiety-like behavior in mice evaluated in the Elevated Plus Maze (EPM). This anxious phenotype is associated with increased dendritic complexity of the bed nucleus of the stria terminalis (BNST) neurons, and increased complexity of the basolateral amygdala (BLA) pyramidal neurons. These findings highlight the still unknown role of SNX27 in anxiety regulation. Moreover, we uncovered a direct link between SNX27 dysfunction and stress susceptibility in C. elegans and found that stress-exposed rodents display decreased SNX27 levels in stress-susceptible brain regions. Altogether, we provided new insights on SNX27's relevance in anxiety-related behaviors and neuronal structure in stress-associated brain regions.
Collapse
Affiliation(s)
- Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Liliana Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Vale
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Chandra M, Kendall AK, Jackson LP. Toward Understanding the Molecular Role of SNX27/Retromer in Human Health and Disease. Front Cell Dev Biol 2021; 9:642378. [PMID: 33937239 PMCID: PMC8083963 DOI: 10.3389/fcell.2021.642378] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Aberrations in membrane trafficking pathways have profound effects in cellular dynamics of cellular sorting processes and can drive severe physiological outcomes. Sorting nexin 27 (SNX27) is a metazoan-specific sorting nexin protein from the PX-FERM domain family and is required for endosomal recycling of many important transmembrane receptors. Multiple studies have shown SNX27-mediated recycling requires association with retromer, one of the best-known regulators of endosomal trafficking. SNX27/retromer downregulation is strongly linked to Down's Syndrome (DS) via glutamate receptor dysfunction and to Alzheimer's Disease (AD) through increased intracellular production of amyloid peptides from amyloid precursor protein (APP) breakdown. SNX27 is further linked to addiction via its role in potassium channel trafficking, and its over-expression is linked to tumorigenesis, cancer progression, and metastasis. Thus, the correct sorting of multiple receptors by SNX27/retromer is vital for normal cellular function to prevent human diseases. The role of SNX27 in regulating cargo recycling from endosomes to the cell surface is firmly established, but how SNX27 assembles with retromer to generate tubulovesicular carriers remains elusive. Whether SNX27/retromer may be a putative therapeutic target to prevent neurodegenerative disease is now an emerging area of study. This review will provide an update on our molecular understanding of endosomal trafficking events mediated by the SNX27/retromer complex on endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
4
|
Kumar V, Lee JD, Coulson EJ, Woodruff TM. A validated quantitative method for the assessment of neuroprotective barrier impairment in neurodegenerative disease models. J Neurochem 2020; 158:807-817. [PMID: 32628780 DOI: 10.1111/jnc.15119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) are highly specialized structures that limit molecule entry from the blood and maintain homeostasis within the central nervous system (CNS). BBB and BSCB breakdown are associated with multiple neurodegenerative diseases. Given the key role of neuroprotective barrier impairment in neurodegeneration, it is important to identify an effective quantitative method to assess barrier integrity in animal models. In this study, we developed and validated a quantitative method for assessing BBB and BSCB integrity using sodium fluorescein, a compound that outperformed other fluorescent dyes. We demonstrated using this method that multiple CNS regions progressively increase in permeability in models of Huntington's disease and amyotrophic lateral sclerosis, whereas biphasic disruption occurred in a mouse model of Alzheimer's disease with disease progression. Collectively, we report a quantitative fluorometric marker with validated reproducible experimental methods that allows the effective assessment of BBB and BSCB integrity in animal models. This method could be useful to further the understanding of the contribution of these neuroprotective barriers to neurodegeneration processes.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Qld, Australia
| |
Collapse
|