1
|
McCrary DJ, Naismith T, Jansen S. Domain-specific folding of the tandem β-propeller protein Coronin 7 (Coro7) by CCT/TRiC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642617. [PMID: 40161770 PMCID: PMC11952392 DOI: 10.1101/2025.03.11.642617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Chaperonin containing tailless complex polypeptide 1 (CCT) or TCP-1 ring complex (TRiC) plays a central role in maintaining cellular homeostasis by supporting protein folding and damping protein aggregation. Besides the abundant cytoskeletal proteins, actin and tubulin, CCT/TRiC is emerging as an obligate chaperone for WD40 proteins, which are comprised of one or multiple β-propeller domains. To date, only WD40 proteins consisting of a single β-propeller domain have been described as CCT/TRiC substrates. Using a combination of biotin proximity ligation, mass spec analysis and co-immunoprecipitation, we here identify the tandem β-propeller protein, Coronin 7 (Coro7), as a novel CCT/TRiC interactor. Transient knockdown of CCT/TRiC further severely diminished expression of Coro7, suggesting that Coro7 is a bona fide CCT/TRiC substrate. Interestingly, co-immunoprecipitation of truncated Coro7 proteins demonstrated that CCT/TRiC only interacts with the first β-propeller domain of Coro7. In line with this, fusion of a miniTurboID tag to the N- or C-terminus of Coro7 showed significant enrichment of all CCT/TRiC subunits for the first, but not the second β-propeller domain. Similarly, co-immunoprecipitation with individual Coro7 β-propeller domains generated by introduction of a protease cleavage site in full length Coro7, confirmed that CCT/TRiC only binds to the first β-propeller domain. Altogether, our study shows that CCT/TRiC can also function as a chaperone for multi-β-propeller domain proteins, likely by initiating the folding of the first β-propeller domain, which can then help template autonomous folding of consecutive β-propeller domains.
Collapse
Affiliation(s)
- DeHaven J. McCrary
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - Teri Naismith
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| |
Collapse
|
2
|
Ahn EH, Park JB. Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy. Cells 2025; 14:89. [PMID: 39851517 PMCID: PMC11764136 DOI: 10.3390/cells14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea;
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- ELMED Co., Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
3
|
Song Q, E S, Zhang Z, Liang Y. Neuroplasticity in the transition from acute to chronic pain. Neurotherapeutics 2024; 21:e00464. [PMID: 39438166 PMCID: PMC11585895 DOI: 10.1016/j.neurot.2024.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Acute pain is a transient sensation that typically serves as part of the body's defense mechanism. However, in certain patients, acute pain can evolve into chronic pain, which persists for months or even longer. Neuroplasticity refers to the capacity for variation and adaptive alterations in the morphology and functionality of neurons and synapses, and it plays a significant role in the transmission and modulation of pain. In this paper, we explore the molecular mechanisms and signaling pathways underlying neuroplasticity during the transition of pain. We also examine the effects of neurotransmitters, inflammatory mediators, and central sensitization on neuroplasticity, as well as the potential of neuroplasticity as a therapeutic strategy for preventing chronic pain. The aims of this article is to clarify the role of neuroplasticity in the transformation from acute pain to chronic pain, with the hope of providing a novel theoretical basis for unraveling the pathogenesis of chronic pain and offering more effective strategies and approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Qingbiao Song
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Sihan E
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Zhiyu Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, China
| | - Yingxia Liang
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Cheon Y, Yoon S, Lee JH, Kim K, Kim HJ, Hong SW, Yun YR, Shim J, Kim SH, Lu B, Lee M, Lee S. A Novel Interaction between MFN2/Marf and MARK4/PAR-1 Is Implicated in Synaptic Defects and Mitochondrial Dysfunction. eNeuro 2023; 10:ENEURO.0409-22.2023. [PMID: 37550059 PMCID: PMC10444538 DOI: 10.1523/eneuro.0409-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023] Open
Abstract
As cellular energy powerhouses, mitochondria undergo constant fission and fusion to maintain functional homeostasis. The conserved dynamin-like GTPase, Mitofusin2 (MFN2)/mitochondrial assembly regulatory factor (Marf), plays a role in mitochondrial fusion, mutations of which are implicated in age-related human diseases, including several neurodegenerative disorders. However, the regulation of MFN2/Marf-mediated mitochondrial fusion, as well as the pathologic mechanism of neurodegeneration, is not clearly understood. Here, we identified a novel interaction between MFN2/Marf and microtubule affinity-regulating kinase 4 (MARK4)/PAR-1. In the Drosophila larval neuromuscular junction, muscle-specific overexpression of MFN2/Marf decreased the number of synaptic boutons, and the loss of MARK4/PAR-1 alleviated the synaptic defects of MFN2/Marf overexpression. Downregulation of MARK4/PAR-1 rescued the mitochondrial hyperfusion phenotype caused by MFN2/Marf overexpression in the Drosophila muscles as well as in the cultured cells. In addition, knockdown of MARK4/PAR-1 rescued the respiratory dysfunction of mitochondria induced by MFN2/Marf overexpression in mammalian cells. Together, our results indicate that the interaction between MFN2/Marf and MARK4/PAR-1 is fine-tuned to maintain synaptic integrity and mitochondrial homeostasis, and its dysregulation may be implicated in neurologic pathogenesis.
Collapse
Affiliation(s)
- Yeongmi Cheon
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
- Laboratory of Molecular Biochemistry, Chonnam National University, Gwangju 61186, Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sunggyu Yoon
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Korea
| | - Jae-Hyuk Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41068, Korea
| | - Sung Wook Hong
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea
| | - Ye-Rang Yun
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Korea
| | - Sung-Hak Kim
- Laboratory of Molecular Biochemistry, Chonnam National University, Gwangju 61186, Korea
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Korea
| |
Collapse
|
5
|
Oba T, Saito T, Asada A, Shimizu S, Iijima KM, Ando K. Microtubule affinity-regulating kinase 4 with an Alzheimer's disease-related mutation promotes tau accumulation and exacerbates neurodegeneration. J Biol Chem 2020; 295:17138-17147. [PMID: 33020179 PMCID: PMC7863894 DOI: 10.1074/jbc.ra120.014420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/19/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulation of the microtubule-associated protein tau is associated with Alzheimer's disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser-262 and Ser-356 plays critical roles in tau accumulation and toxicity. Microtubule affinity-regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317D, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser-262/356-dependent and -independent mechanisms. Using transgenic Drosophila expressing human MARK4 (MARK4wt) or a mutant version of MARK4 (MARK4ΔG316E317D), we found that coexpression of MARK4wt and MARK4ΔG316E317D increased total tau levels and enhanced tau-induced neurodegeneration and that MARK4ΔG316E317D had more potent effects than MARK4wt Interestingly, the in vitro kinase activities of MARK4wt and MARK4ΔG316E317D were similar. When tau phosphorylation at Ser-262 and Ser-356 was blocked by alanine substitutions, MARK4wt did not promote tau accumulation or exacerbate neurodegeneration, whereas coexpression of MARK4ΔG316E317D did. Both MARK4wt and MARK4ΔG316E317D increased the levels of oligomeric forms of tau; however, only MARK4ΔG316E317D further increased the detergent insolubility of tau in vivo Together, these findings suggest that MARK4ΔG316E317D increases tau levels and exacerbates tau toxicity via a novel gain-of-function mechanism and that modification in this region of MARK4 may affect disease pathogenesis.
Collapse
Affiliation(s)
- Toshiya Oba
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Taro Saito
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Asada
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Sawako Shimizu
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kanae Ando
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|