1
|
Roy N, Singleton SP, Jamison K, Mukherjee P, Shah SA, Kuceyeski A. Brain activity dynamics after traumatic brain injury indicate increased state transition energy and preference of lower order states. Neuroimage Clin 2025; 46:103799. [PMID: 40381376 PMCID: PMC12143839 DOI: 10.1016/j.nicl.2025.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Traumatic Brain Injury (TBI) can cause structural damage to the neural tissue and white matter connections in the brain, disrupting its functional coactivation patterns. Although there are a wealth of studies investigating TBI-related changes in the brain's structural and functional connectomes, fewer studies have investigated TBI-related changes to the brain's dynamic landscape. Network control theory is a framework that integrates structural connectomes and functional time-series to quantify brain dynamics. Using this approach, we analyzed longitudinal trajectories of brain dynamics from acute to chronic injury phases in two cohorts of individuals with mild and moderate to severe TBI, and compared them to non-brain-injured, age- and sex-matched control individuals' trajectories. Our analyses suggest individuals with mild TBI initially have brain activity dynamics similar to controls but then shift in the subacute and chronic stages of the injury (1 month and 12 months post-injury) to favor lower-order visual-dominant states compared to higher-order default mode dominant states. We further find that, compared to controls, individuals with mild TBI have overall decreased entropy and increased transition energy demand in the sub-acute and chronic stages that correlates with poorer attention performance. Finally, we found that the asymmetry in top-down to bottom-up transition energies increased in subacute and chronic stages of mild TBI, possibly indicating decreased efficacy of top-down inhibition. We replicate most findings with the moderate to severe TBI dataset, indicating their robustness, with the notable exception of finding the opposite correlation between global transition energy and mean reaction time (MRT). We attribute differences to the cohorts' varied injury severity, with perhaps a stronger compensatory mechanism in moderate to severe TBI. Overall, our findings reveal shifting brain dynamics after mild to severe TBI that relate to behavioral measures of attention, shedding light on post-injury mechanisms of recovery.
Collapse
Affiliation(s)
- Nate Roy
- Cornell University, Ithaca, NY, USA.
| | | | | | | | | | | |
Collapse
|
2
|
Jiang Q, Liu J, Huang S, Wang XY, Chen X, Liu GH, Ye K, Song W, Masters CL, Wang J, Wang YJ. Antiageing strategy for neurodegenerative diseases: from mechanisms to clinical advances. Signal Transduct Target Ther 2025; 10:76. [PMID: 40059211 PMCID: PMC11891338 DOI: 10.1038/s41392-025-02145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
In the context of global ageing, the prevalence of neurodegenerative diseases and dementia, such as Alzheimer's disease (AD), is increasing. However, the current symptomatic and disease-modifying therapies have achieved limited benefits for neurodegenerative diseases in clinical settings. Halting the progress of neurodegeneration and cognitive decline or even improving impaired cognition and function are the clinically meaningful goals of treatments for neurodegenerative diseases. Ageing is the primary risk factor for neurodegenerative diseases and their associated comorbidities, such as vascular pathologies, in elderly individuals. Thus, we aim to elucidate the role of ageing in neurodegenerative diseases from the perspective of a complex system, in which the brain is the core and peripheral organs and tissues form a holistic network to support brain functions. During ageing, the progressive deterioration of the structure and function of the entire body hampers its active and adaptive responses to various stimuli, thereby rendering individuals more vulnerable to neurodegenerative diseases. Consequently, we propose that the prevention and treatment of neurodegenerative diseases should be grounded in holistic antiageing and rejuvenation means complemented by interventions targeting disease-specific pathogenic events. This integrated approach is a promising strategy to effectively prevent, pause or slow down the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qiu Jiang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xuan-Yue Wang
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Xiaowei Chen
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
| |
Collapse
|
3
|
Dark HE, Shafer AT, Cordon J, An Y, Lewis A, Moghekar A, Landman B, Resnick SM, Walker KA. Association of Plasma Biomarkers of Alzheimer Disease and Neurodegeneration With Longitudinal Intra-Network Functional Brain Connectivity. Neurology 2025; 104:e210271. [PMID: 39889254 PMCID: PMC11784718 DOI: 10.1212/wnl.0000000000210271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/12/2024] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is defined by cortical β-amyloid (Aβ), tau, and neurodegeneration, which contribute to cognitive decline, in part, by altering large-scale functional brain networks. While cortical Aβ and tau have been associated with changes in functional brain connectivity, it is unknown whether plasma biomarkers relate to such changes. In a healthy community sample of cognitively unimpaired adults free from major CNS disease from the Baltimore Longitudinal Study of Aging, we examined whether plasma biomarkers of AD pathology (Aβ42/40, phosphorylated tau [pTau-181]), astrogliosis (glial fibrillary acidic protein [GFAP]), and neuronal injury (neurofilament light chain [NfL]) were associated with longitudinal changes in functional connectivity and whether changes in functional connectivity were related to longitudinal cognition. METHODS Plasma biomarkers were measured using the Quanterix SIMOA assays. Intranetwork connectivity (3T resting-state fMRI) from 7 functional networks was derived using a predefined cortical parcellation mask for each participant visit. Cognitive performance was assessed concurrently with fMRI scan. Covariate-adjusted linear mixed-effect models were used to determine (1) whether plasma biomarkers were associated with longitudinal changes in connectivity, (2) whether the magnitude of the biomarker-connectivity relationships differed by amyloid status, and (3) whether changes in connectivity co-occurred with longitudinal changes in cognition. RESULTS Our primary findings (n = 486; age = 65.5 ± 16.2 years; 54% female; mean follow-up time = 4.3 ± 1.7 years) showed that higher baseline GFAP was associated with faster declines in somatomotor (β = -0.04, p = 0.01, 95% CI -0.06 to -0.01), limbic (β = -0.03, p = 0.02, 95% CI -0.06 to -0.005), and frontoparietal (β = -0.04, p = 0.02, 95% CI -0.07 to -0.01) network connectivity. Amyloid status moderated several biomarker-connectivity associations. For instance, higher baseline NfL was related to faster declines in visual and limbic network connectivity, but only among amyloid-positive participants. Among 421 participants with ≥2 fMRI visits (age = 71.7 ± 11.4 years; 55% female; follow-up time = 3.9 ± 1.6 years), longitudinal changes in connectivity were associated with concurrent declines in cognition; however, these results did not survive multiple comparison correction. DISCUSSION Among cognitively unimpaired participants, plasma biomarkers of amyloidosis, astrogliosis, and neuronal injury are associated with declines in network connectivity, particularly among amyloid-positive participants. Major limitations include the lack of inclusion of the sensitive pTau-217 and pTau-231 isoforms and comparative PET biomarkers.
Collapse
Affiliation(s)
- Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Jenifer Cordon
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Bennett Landman
- Department of Electrical and Computer Engineering, Department of Computer Science, Vanderbilt University, Nashville, TN
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Bethesda, MD
| |
Collapse
|
4
|
Zhang Z, Wang M, Lu T, Shi Y, Xie C, Ren Q, Wang Z. Connectome-based prediction of future episodic memory performance for individual amnestic mild cognitive impairment patients. Brain Commun 2025; 7:fcaf033. [PMID: 39963290 PMCID: PMC11831076 DOI: 10.1093/braincomms/fcaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
The amnestic mild cognitive impairment progression to probable Alzheimer's disease is a continuous phenomenon. Here we conduct a cohort study and apply machine learning to generate a model of predicting episodic memory development for individual amnestic mild cognitive impairment patient that incorporates whole-brain functional connectivity. Fifty amnestic mild cognitive impairment patients completed baseline and 3-year follow-up visits including episodic memory assessments (e.g. Rey Auditory Verbal Learning Test Delayed Recall) and resting-state functional MRI scanning. Using a multivariate analytical method known as relevance vector regression, we found that the baseline whole-brain functional connectivity features failed to predict the baseline Rey Auditory Verbal Learning Test Delayed Recall scores (r = 0.17, P = 0.082). Nonetheless, the baseline whole-brain functional connectivity pattern could predict the longitudinal Rey Auditory Verbal Learning Test Delayed Recall score with statistically significant accuracy (r = 0.50, P < 0.001). The connectivity that contributed most to the prediction (i.e. the top 1% connectivity) included within-default mode connections, within-limbic connections and the connections between default mode and limbic systems. More importantly, these connections with the highest absolute contribution weight mainly displayed long anatomical distances (i.e. Euclidean distance >75 mm). These 'neural fingerprints' may be appropriate biomarkers for amnestic mild cognitive impairment patients to optimize individual patient management and longitudinal evaluation in a timely fashion.
Collapse
Affiliation(s)
- Zhengsheng Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mengxue Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tong Lu
- Department of Radiology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yachen Shi
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Dark HE, Paterson C, Daya GN, Peng Z, Duggan MR, Bilgel M, An Y, Moghekar A, Davatzikos C, Resnick SM, Loupy K, Simpson M, Candia J, Mosley T, Coresh J, Palta P, Ferrucci L, Shapiro A, Williams SA, Walker KA. Proteomic Indicators of Health Predict Alzheimer's Disease Biomarker Levels and Dementia Risk. Ann Neurol 2024; 95:260-273. [PMID: 37801487 PMCID: PMC10842994 DOI: 10.1002/ana.26817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE Few studies have comprehensively examined how health and disease risk influence Alzheimer's disease (AD) biomarkers. The present study examined the association of 14 protein-based health indicators with plasma and neuroimaging biomarkers of AD and neurodegeneration. METHODS In 706 cognitively normal adults, we examined whether 14 protein-based health indices (ie, SomaSignal® tests) were associated with concurrently measured plasma-based biomarkers of AD pathology (amyloid-β [Aβ]42/40 , tau phosphorylated at threonine-181 [pTau-181]), neuronal injury (neurofilament light chain [NfL]), and reactive astrogliosis (glial fibrillary acidic protein [GFAP]), brain volume, and cortical Aβ and tau. In a separate cohort (n = 11,285), we examined whether protein-based health indicators associated with neurodegeneration also predict 25-year dementia risk. RESULTS Greater protein-based risk for cardiovascular disease, heart failure mortality, and kidney disease was associated with lower Aβ42/40 and higher pTau-181, NfL, and GFAP levels, even in individuals without cardiovascular or kidney disease. Proteomic indicators of body fat percentage, lean body mass, and visceral fat were associated with pTau-181, NfL, and GFAP, whereas resting energy rate was negatively associated with NfL and GFAP. Together, these health indicators predicted 12, 31, 50, and 33% of plasma Aβ42/40 , pTau-181, NfL, and GFAP levels, respectively. Only protein-based measures of cardiovascular risk were associated with reduced regional brain volumes; these measures predicted 25-year dementia risk, even among those without clinically defined cardiovascular disease. INTERPRETATION Subclinical peripheral health may influence AD and neurodegenerative disease processes and relevant biomarker levels, particularly NfL. Cardiovascular health, even in the absence of clinically defined disease, plays a central role in brain aging and dementia. ANN NEUROL 2024;95:260-273.
Collapse
Affiliation(s)
- Heather E. Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | | | - Gulzar N. Daya
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Michael R. Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | | | | | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Thomas Mosley
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Priya Palta
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Epidemiology, Columbia Mailman School of Public Health, New York, New York, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Allison Shapiro
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus
| | | | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
6
|
Ficek-Tani B, Horien C, Ju S, Xu W, Li N, Lacadie C, Shen X, Scheinost D, Constable T, Fredericks C. Sex differences in default mode network connectivity in healthy aging adults. Cereb Cortex 2023; 33:6139-6151. [PMID: 36563018 PMCID: PMC10183749 DOI: 10.1093/cercor/bhac491] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Women show an increased lifetime risk of Alzheimer's disease (AD) compared with men. Characteristic brain connectivity changes, particularly within the default mode network (DMN), have been associated with both symptomatic and preclinical AD, but the impact of sex on DMN function throughout aging is poorly understood. We investigated sex differences in DMN connectivity over the lifespan in 595 cognitively healthy participants from the Human Connectome Project-Aging cohort. We used the intrinsic connectivity distribution (a robust voxel-based metric of functional connectivity) and a seed connectivity approach to determine sex differences within the DMN and between the DMN and whole brain. Compared with men, women demonstrated higher connectivity with age in posterior DMN nodes and lower connectivity in the medial prefrontal cortex. Differences were most prominent in the decades surrounding menopause. Seed-based analysis revealed higher connectivity in women from the posterior cingulate to angular gyrus, which correlated with neuropsychological measures of declarative memory, and hippocampus. Taken together, we show significant sex differences in DMN subnetworks over the lifespan, including patterns in aging women that resemble changes previously seen in preclinical AD. These findings highlight the importance of considering sex in neuroimaging studies of aging and neurodegeneration.
Collapse
Affiliation(s)
- Bronte Ficek-Tani
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, United States
| | - Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT 06520, United States
| | - Nancy Li
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Carolyn Fredericks
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
7
|
Cacciaglia R, Operto G, Falcón C, de Echavarri-Gómez JMG, Sánchez-Benavides G, Brugulat-Serrat A, Milà-Alomà M, Blennow K, Zetterberg H, Molinuevo JL, Suárez-Calvet M, Gispert JD. Genotypic effects of APOE-ε4 on resting-state connectivity in cognitively intact individuals support functional brain compensation. Cereb Cortex 2023; 33:2748-2760. [PMID: 35753703 PMCID: PMC10016049 DOI: 10.1093/cercor/bhac239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/12/2022] Open
Abstract
The investigation of resting-state functional connectivity (rsFC) in asymptomatic individuals at genetic risk for Alzheimer's disease (AD) enables discovering the earliest brain alterations in preclinical stages of the disease. The APOE-ε4 variant is the major genetic risk factor for AD, and previous studies have reported rsFC abnormalities in carriers of the ε4 allele. Yet, no study has assessed APOE-ε4 gene-dose effects on rsFC measures, and only a few studies included measures of cognitive performance to aid a clinical interpretation. We assessed the impact of APOE-ε4 on rsFC in a sample of 429 cognitively unimpaired individuals hosting a high number of ε4 homozygotes (n = 58), which enabled testing different models of genetic penetrance. We used independent component analysis and found a reduced rsFC as a function of the APOE-ε4 allelic load in the temporal default-mode and the medial temporal networks, while recessive effects were found in the extrastriate and limbic networks. Some of these results were replicated in a subsample with negative amyloid markers. Interaction with cognitive data suggests that such a network reorganization may support cognitive performance in the ε4-homozygotes. Our data indicate that APOE-ε4 shapes the functional architecture of the resting brain and favor the idea of a network-based functional compensation.
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28089 Madrid, Spain
| | - José Maria González de Echavarri-Gómez
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41390 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41390 Mölndal, Sweden
- UK Dementia Research Institute at UCL, WC1E 6BT London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
- Honk Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28089 Madrid, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| |
Collapse
|
8
|
The Safety and Efficacy of Psychedelic-Assisted Therapies for Older Adults: Knowns and Unknowns. Am J Geriatr Psychiatry 2023; 31:44-53. [PMID: 36184377 DOI: 10.1016/j.jagp.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023]
Abstract
Psychedelics and related compounds have shown efficacy for the treatment of a variety of conditions that are prevalent among older adults, including mood disorders, the psychological distress associated with a serious medical illness, post-traumatic stress disorder (PTSD), and prolonged grief disorder. Psychedelics also have properties that could help provide therapeutic benefits for patients with dementing disorders, as well as promoting personal growth among healthy older adults. This article focuses on psilocybin, a classic psychedelic, and MDMA, a substituted amphetamine with properties similar to classic psychedelics. Both act on the 5HT2A receptor. Psychedelics can be safely administered to healthy adults in controlled conditions. However, both psilocybin and MDMA can increase blood pressure and heart rate, which could be a concern if used in older adults with cardiovascular disease. Very few older adults or patients with serious comorbidities have been included in clinical trials of psychedelics to date, raising the question of how generalizable study results are for the patients that most geropsychiatrists will be treating. Research on the neurophysiologic and mechanistic effects of psychedelics in older adults could also provide insights into the aging brain that could have clinical applications in the future. Given the potential of psychedelic compounds to benefit older adults, more research is needed to establish safety and efficacy among older adults, particularly those with multi-morbidity.
Collapse
|
9
|
Peng Z, Duggan MR, Dark HE, Daya GN, An Y, Davatzikos C, Erus G, Lewis A, Moghekar AR, Walker KA. Association of liver disease with brain volume loss, cognitive decline, and plasma neurodegenerative disease biomarkers. Neurobiol Aging 2022; 120:34-42. [PMID: 36115133 PMCID: PMC9685609 DOI: 10.1016/j.neurobiolaging.2022.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Although liver dysfunction has been implicated in Alzheimer's disease (AD), it remains unknown how liver disease may influence the trajectory of brain and cognitive changes in older adults. We related self-reported liver disease to longitudinal measures of brain structure and cognition, as well as baseline measures of plasma AD/neurodegeneration biomarkers in the Baltimore Longitudinal Study of Aging. Liver disease was identified using ICD-9 classification codes. Brain volume and cognition were assessed serially using 3T-MRI and a cognitive battery. 1008, 2157, and 780 participants were included in the MRI, cognitive, and plasma biomarker analysis, respectively. After adjustment for confounders, liver disease was associated with accelerated decline in total brain and white matter volume, but not total gray matter or AD signature region volume. Although liver disease showed no relationship with domain-specific cognitive decline or plasma biomarkers, participants with a history of hepatitis demonstrated accelerated decline in verbal fluency and elevated neurofilament light. Results suggest all-cause liver disease may accelerate brain volume loss but does not appear to promote AD-specific neurocognitive changes.
Collapse
Affiliation(s)
- Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Heather E Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Gulzar N Daya
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Christos Davatzikos
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandria Lewis
- Deparment of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay R Moghekar
- Deparment of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
10
|
Savignac C, Villeneuve S, Badhwar A, Saltoun K, Shafighi K, Zajner C, Sharma V, Gagliano Taliun SA, Farhan S, Poirier J, Bzdok D. APOE alleles are associated with sex-specific structural differences in brain regions affected in Alzheimer's disease and related dementia. PLoS Biol 2022; 20:e3001863. [PMID: 36512526 PMCID: PMC9747055 DOI: 10.1371/journal.pbio.3001863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is marked by intracellular tau aggregates in the medial temporal lobe (MTL) and extracellular amyloid aggregates in the default network (DN). Here, we examined codependent structural variations between the MTL's most vulnerable structure, the hippocampus (HC), and the DN at subregion resolution in individuals with Alzheimer's disease and related dementia (ADRD). By leveraging the power of the approximately 40,000 participants of the UK Biobank cohort, we assessed impacts from the protective APOE ɛ2 and the deleterious APOE ɛ4 Alzheimer's disease alleles on these structural relationships. We demonstrate ɛ2 and ɛ4 genotype effects on the inter-individual expression of HC-DN co-variation structural patterns at the population level. Across these HC-DN signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix's fimbria, and their cortical partners related to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank cohort further revealed male-specific HC-DN associations with air pollution and female-specific associations with cardiovascular traits. We also showed that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in females. Our structural, genetic, and phenotypic analyses in this large epidemiological cohort reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex and link APOE alleles to inter-individual brain structural differences indicative of ADRD familial risk.
Collapse
Affiliation(s)
- Chloé Savignac
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | - Karin Saltoun
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kimia Shafighi
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chris Zajner
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Sharma
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah A. Gagliano Taliun
- Department of Neurosciences & Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Du Y, Yan F, Zhao L, Fang Y, Qiu Q, Wei W, Wang J, Tang Y, Lin X, Li X. Depression symptoms moderate the relationship between gray matter volumes and cognitive function in patients with mild cognitive impairment. J Psychiatr Res 2022; 151:516-522. [PMID: 35636026 DOI: 10.1016/j.jpsychires.2022.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated that decreased gray matter volume (GMV) correlates with cognitive function in elderly patients with mild cognitive impairment (MCI). However, it is unclear whether those correlations are present in MCI patients with depressive symptoms (MCID). This study investigated the association among depressive symptoms, GMV and cognitive function. We included 210 participants, namely, 70 elderly MCID patients, 70 MCI patients without depressive symptoms (MCIND) and 70 healthy controls (HCs). Voxel-based morphometry (VBM) was used to investigate the structural disruptions among the patients in the three groups, and correlation analysis was performed between the GMV of regions showing group differences and cognitive function. Moderation analyses were conducted to verify the conditional effect of depressive symptoms on the relationship between structural changes and cognitive function. We found decreased GMV in the bilateral fusiform gyrus, inferior temporal gyrus, parahippocampal gyrus, and hippocampus in the MCIND group compared to the HC group. Moreover, we identified decreased GMV in the bilateral fusiform gyrus in the elderly MCID patients compared with the elderly MCIND patients, which provides further insights into the neural mechanisms of depressive symptoms in patients with MCID. Most importantly, the severity of depressive symptoms moderated the positive correlation between the GMV of abnormal brain regions and cognitive function. Furthermore, this study is the first report of the moderating effect of depressive symptoms on the GMV of abnormal brain areas and cognitive function in patients with MCID, indicating the significance of clinical intervention in elderly MCI patients with depressive symptoms.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Wei
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lin
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Shafer AT, Williams OA, Perez E, An Y, Landman BA, Ferrucci L, Resnick SM. Accelerated decline in white matter microstructure in subsequently impaired older adults and its relationship with cognitive decline. Brain Commun 2022; 4:fcac051. [PMID: 35356033 PMCID: PMC8963308 DOI: 10.1093/braincomms/fcac051] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 11/12/2022] Open
Abstract
Little is known about a longitudinal decline in white matter microstructure and its associations with cognition in preclinical dementia. Longitudinal diffusion tensor imaging and neuropsychological testing were performed in 50 older adults who subsequently developed mild cognitive impairment or dementia (subsequently impaired) and 200 cognitively normal controls. Rates of white matter microstructural decline were compared between groups using voxel-wise linear mixed-effects models. Associations between change in white matter microstructure and cognition were examined. Subsequently impaired individuals had a faster decline in fractional anisotropy in the right inferior fronto-occipital fasciculus and bilateral splenium of the corpus callosum. A decline in right inferior fronto-occipital fasciculus fractional anisotropy was related to a decline in verbal memory, visuospatial ability, processing speed and mini-mental state examination. A decline in bilateral splenium fractional anisotropy was related to a decline in verbal fluency, processing speed and mini-mental state examination. Accelerated regional white matter microstructural decline is evident during the preclinical phase of mild cognitive impairment/dementia and is related to domain-specific cognitive decline.
Collapse
Affiliation(s)
- Andrea T. Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Correspondence to: Andrea T. Shafer 251 Bayview Blvd., Baltimore MD 21224, USA E-mail:
| | - Owen A. Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Evian Perez
- San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Correspondence may also be addressed to: Susan M. Resnick E-mail:
| |
Collapse
|