1
|
Margolles P, Soto D. Enhanced generalization and specialization of brain representations of semantic knowledge in healthy aging. Neuropsychologia 2024; 204:108999. [PMID: 39265653 DOI: 10.1016/j.neuropsychologia.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Aging is often associated with a decrease in cognitive capacities. However, semantic memory appears relatively well preserved in healthy aging. Both behavioral and neuroimaging studies support the view that changes in brain networks contribute to this preservation of semantic cognition. However, little is known about the role of healthy aging in the brain representation of semantic categories. Here we used pattern classification analyses and computational models to examine the neural representations of living and non-living word concepts. The results demonstrate that brain representations of animacy in healthy aging exhibit increased similarity across categories, even across different task contexts. This pattern of results aligns with the neural dedifferentiation hypothesis that proposes that aging is associated with decreased specificity in brain activity patterns and less efficient neural resource allocation. However, the loss in neural specificity for different categories was accompanied by increased dissimilarity of item-based conceptual representations within each category. Taken together, the age-related patterns of increased generalization and specialization in the brain representations of semantic knowledge may reflect a compensatory mechanism that enables a more efficient coding scheme characterized by both compression and sparsity, thereby helping to optimize the limited neural resources and maintain semantic processing in the healthy aging brain.
Collapse
Affiliation(s)
- Pedro Margolles
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - David Soto
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Huang S, De Brigard F, Cabeza R, Davis SW. Connectivity analyses for task-based fMRI. Phys Life Rev 2024; 49:139-156. [PMID: 38728902 PMCID: PMC11116041 DOI: 10.1016/j.plrev.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Functional connectivity is conventionally defined by measuring the similarity between brain signals from two regions. The technique has become widely adopted in the analysis of functional magnetic resonance imaging (fMRI) data, where it has provided cognitive neuroscientists with abundant information on how brain regions interact to support complex cognition. However, in the past decade the notion of "connectivity" has expanded in both the complexity and heterogeneity of its application to cognitive neuroscience, resulting in greater difficulty of interpretation, replication, and cross-study comparisons. In this paper, we begin with the canonical notions of functional connectivity and then introduce recent methodological developments that either estimate some alternative form of connectivity or extend the analytical framework, with the hope of bringing better clarity for cognitive neuroscience researchers.
Collapse
Affiliation(s)
- Shenyang Huang
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.
| | - Felipe De Brigard
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States; Department of Philosophy, Duke University, Durham, NC 27708, United States
| | - Roberto Cabeza
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Simon W Davis
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Department of Philosophy, Duke University, Durham, NC 27708, United States; Department of Neurology, Duke University School of Medicine, Durham, NC 27708, United States
| |
Collapse
|
3
|
Pauley C, Karlsson A, Sander MC. Early visual cortices reveal interrelated item and category representations in aging. eNeuro 2024; 11:ENEURO.0337-23.2023. [PMID: 38413198 PMCID: PMC10960632 DOI: 10.1523/eneuro.0337-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 02/29/2024] Open
Abstract
Neural dedifferentiation, the finding that neural representations tend to be less distinct in older adults compared with younger adults, has been associated with age-related declines in memory performance. Most studies assessing the relation between memory and neural dedifferentiation have evaluated how age impacts the distinctiveness of neural representations for different visual categories (e.g., scenes and objects). However, how age impacts the quality of neural representations at the level of individual items is still an open question. Here, we present data from an age-comparative fMRI study that aimed to understand how the distinctiveness of neural representations for individual stimuli differs between younger and older adults and relates to memory outcomes. Pattern similarity searchlight analyses yielded indicators of neural dedifferentiation at the level of individual items as well as at the category level in posterior occipital cortices. We asked whether age differences in neural distinctiveness at each representational level were associated with inter- and/or intraindividual variability in memory performance. While age-related dedifferentiation at both the item and category level related to between-person differences in memory, neural distinctiveness at the category level also tracked within-person variability in memory performance. Concurrently, neural distinctiveness at the item level was strongly associated with neural distinctiveness at the category level both within and across participants, elucidating a potential representational mechanism linking item- and category-level distinctiveness. In sum, we provide evidence that age-related neural dedifferentiation co-exists across multiple representational levels and is related to memory performance.Significance Statement Age-related memory decline has been associated with neural dedifferentiation, the finding that older adults have less distinctive neural representations than younger adults. This has been mostly shown for category information, while evidence for age differences in the specificity of item representations is meager. We used pattern similarity searchlight analyses to find indicators of neural dedifferentiation at both levels of representation (category and item) and linked distinctiveness to memory performance. Both item- and category-level dedifferentiation in the calcarine cortex were related to interindividual differences in memory performance, while category-level distinctiveness further tracked intraindividual variability. Crucially, neural distinctiveness was strongly tied between the item and category levels, indicating that intersecting representational properties of posterior occipital cortices reflect both individual exemplars and categories.
Collapse
Affiliation(s)
- Claire Pauley
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Anna Karlsson
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Myriam C. Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| |
Collapse
|
4
|
Srokova S, Aktas ANZ, Koen JD, Rugg MD. Dissociative Effects of Age on Neural Differentiation at the Category and Item Levels. J Neurosci 2024; 44:e0959232023. [PMID: 38050137 PMCID: PMC10860568 DOI: 10.1523/jneurosci.0959-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Increasing age is associated with age-related neural dedifferentiation, a reduction in the selectivity of neural representations, which has been proposed to contribute to cognitive decline in older age. Recent findings indicate that when operationalized in terms of selectivity for different perceptual categories, age-related neural dedifferentiation and the apparent age-invariant association of neural selectivity with cognitive performance are largely restricted to the cortical regions typically recruited during scene processing. It is currently unknown whether this category-level dissociation extends to metrics of neural selectivity defined at the level of individual stimulus items. Here, we examined neural selectivity at the category and item levels using multivoxel pattern similarity analysis (PSA) of fMRI data. Healthy young and older male and female adults viewed images of objects and scenes. Some items were presented singly, while others were either repeated or followed by a "similar lure." In agreement with recent findings, category-level PSA revealed robustly lower differentiation in older than in younger adults in scene-selective, but not object-selective, cortical regions. By contrast, at the item level, robust age-related declines in neural differentiation were evident for both stimulus categories. Additionally, we identified an age-invariant association between category-level scene selectivity in the parahippocampal place area and subsequent memory performance, but no such association was evident for item-level metrics. Lastly, category- and item-level neural metrics were uncorrelated. Thus, the present findings suggest that age-related category- and item-level dedifferentiation depend on distinct neural mechanisms.
Collapse
Affiliation(s)
- Sabina Srokova
- Center for Vital Longevity, University of Texas at Dallas, Dallas, Texas 75235
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Ayse N Z Aktas
- Center for Vital Longevity, University of Texas at Dallas, Dallas, Texas 75235
| | - Joshua D Koen
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana 46556
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, Dallas, Texas 75235
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
5
|
Naspi L, Stensholt C, Karlsson AE, Monge ZA, Cabeza R. Effects of Aging on Successful Object Encoding: Enhanced Semantic Representations Compensate for Impaired Visual Representations. J Neurosci 2023; 43:7337-7350. [PMID: 37673674 PMCID: PMC10621770 DOI: 10.1523/jneurosci.2265-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/08/2023] Open
Abstract
Although episodic memory and visual processing decline substantially with healthy aging, semantic knowledge is generally spared. There is evidence that older adults' spared semantic knowledge can support episodic memory. Here, we used functional magnetic resonance imaging (fMRI) combined with representational similarity analyses (RSAs) to examine how novel visual and preexisting semantic representations at encoding predict subjective memory vividness at retrieval. Eighteen young and seventeen older adults (female and male participants) encoded images of objects during fMRI scanning and recalled these images while rating the vividness of their memories. After scanning, participants discriminated between studied images and similar lures. RSA based on a deep convolutional neural network and normative concept feature data were used to link patterns of neural activity during encoding to visual and semantic representations. Relative to young adults, the specificity of activation patterns for visual features was reduced in older adults, consistent with dedifferentiation. However, the specificity of activation patterns for semantic features was enhanced in older adults, consistent with hyperdifferentiation. Despite dedifferentiation, visual representations in early visual cortex (EVC) predicted high memory vividness in both age groups. In contrast, semantic representations in lingual gyrus (LG) and fusiform gyrus (FG) were associated with high memory vividness only in the older adults. Intriguingly, data suggests that older adults with lower specificity of visual representations in combination with higher specificity of semantic representations tended to rate their memories as more vivid. Our findings suggest that memory vividness in aging relies more on semantic representations over anterior regions, potentially compensating for age-related dedifferentiation of visual information in posterior regions.SIGNIFICANCE STATEMENT Normal aging is associated with impaired memory for events while semantic knowledge might even improve. We investigated the effects of aging on the specificity of visual and semantic information in the brain when viewing common objects and how this information enables subsequent memory vividness for these objects. Using functional magnetic resonance imaging (fMRI) combined with modeling of the stimuli we found that visual information was represented with less specificity in older than young adults while still supporting memory vividness. In contrast semantic information supported memory vividness only in older adults and especially in those individuals that had the lowest specificity of visual information. These findings provide evidence for a spared semantic memory system increasingly recruited to compensate for degraded visual representations in older age.
Collapse
Affiliation(s)
- Loris Naspi
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Charlotte Stensholt
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Anna E Karlsson
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Zachary A Monge
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| | - Roberto Cabeza
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| |
Collapse
|
6
|
Pauley C, Kobelt M, Werkle-Bergner M, Sander MC. Age differences in neural distinctiveness during memory encoding, retrieval, and reinstatement. Cereb Cortex 2023; 33:9489-9503. [PMID: 37365853 PMCID: PMC10431749 DOI: 10.1093/cercor/bhad219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Robust evidence points to mnemonic deficits in older adults related to dedifferentiated, i.e. less distinct, neural responses during memory encoding. However, less is known about retrieval-related dedifferentiation and its role in age-related memory decline. In this study, younger and older adults were scanned both while incidentally learning face and house stimuli and while completing a surprise recognition memory test. Using pattern similarity searchlight analyses, we looked for indicators of neural dedifferentiation during encoding, retrieval, and encoding-retrieval reinstatement. Our findings revealed age-related reductions in neural distinctiveness during all memory phases in visual processing regions. Interindividual differences in retrieval- and reinstatement-related distinctiveness were strongly associated with distinctiveness during memory encoding. Both item- and category-level distinctiveness predicted trial-wise mnemonic outcomes. We further demonstrated that the degree of neural distinctiveness during encoding tracked interindividual variability in memory performance better than both retrieval- and reinstatement-related distinctiveness. All in all, we contribute to meager existing evidence for age-related neural dedifferentiation during memory retrieval. We show that neural distinctiveness during retrieval is likely tied to recapitulation of encoding-related perceptual and mnemonic processes.
Collapse
Affiliation(s)
- Claire Pauley
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - Malte Kobelt
- Department of Neuropsychology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
7
|
Grilli MD, Sheldon S. Autobiographical event memory and aging: older adults get the gist. Trends Cogn Sci 2022; 26:1079-1089. [PMID: 36195539 PMCID: PMC9669242 DOI: 10.1016/j.tics.2022.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
We propose that older adults' ability to retrieve episodic autobiographical events, although often viewed through a lens of decline, reveals much about what is preserved and prioritized in cognitive aging. Central to our proposal is the idea that the so-called gist of an autobiographical event is not only spared with normal aging but also well adapted to serve memory-guided behavior in older age. To support our proposal, we review cognitive and brain evidence indicating an age-related shift toward gist memory. We then discuss why this shift likely arises from more than age-related decline and instead partly reflects a natural, arguably adaptive, outcome of experience, motivation, and mode-of-thinking factors. Our proposal reveals an upside of age-related memory changes and identifies important research questions.
Collapse
Affiliation(s)
- Matthew D Grilli
- Department of Psychology, The University of Arizona, Tucson, AZ 85721, USA.
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
8
|
Folville A, Bahri MA, Delhaye E, Salmon E, Bastin C. Shared vivid remembering: age-related differences in across-participants similarity of neural representations during encoding and retrieval. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:526-551. [PMID: 35168499 DOI: 10.1080/13825585.2022.2036683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Recent advances in multivariate neuroimaging analyses have made possible the examination of the similarity of the neural patterns of activations measured across participants, but it has not been investigated yet whether such measure is age-sensitive. Here, in the scanner, young and older participants viewed scene pictures associated with labels. At test, participants were presented with the labels and were asked to recollect the associated picture. We used Pattern Similarity Analyses by which we compared patterns of neural activation during the encoding or the remembering of each picture of one participant with the averaged pattern of activation across the remaining participants. Results revealed that across-participants neural similarity was higher in young than in older adults in distributed occipital, temporal and parietal areas during encoding and retrieval. These findings demonstrate that an age-related reduction in specificity of neural activation is also evident when the similarity of neural representations is examined across participants.
Collapse
Affiliation(s)
- Adrien Folville
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | | | - Emma Delhaye
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
- Faculdade de Psicologia, CICPSI, Universidade de Lisboa, Lisbon, Portugal
| | - Eric Salmon
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
9
|
Dennis NA, Overman AA, Carpenter CM, Gerver CR. Understanding associative false memories in aging using multivariate analyses. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:500-525. [PMID: 35147489 PMCID: PMC9162130 DOI: 10.1080/13825585.2022.2037500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Age-related declines in associative memory are ubiquitous, with decreases in behavioral discriminability largely arising from increases in false memories for recombined lures. Using representational similarity analyses to examine the neural basis of associative false memories in aging, the current study found that neural pattern similarity between Hits and FAs and Hits and CRs differed as a function of age in occipital ROIs, such that older adults exhibited a smaller difference between the two similarity metrics than did younger adults. Additionally, greater Hit-FA representational similarity correlated with increases in associative FAs across several ROIs. Results suggest that while neural representations underlying targets may not differ across ages, greater pattern similarity between the neural representation of targets and lures may reflect reduced distinctiveness of the information encoded in memory, such that old and new items are more difficult to discriminate, leading to more false alarms.
Collapse
Affiliation(s)
- Nancy A. Dennis
- Department of Psychology, The Pennsylvania State University, University Park, PA
| | | | | | - Courtney R. Gerver
- Department of Psychology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
10
|
Sommer VR, Sander MC. Contributions of representational distinctiveness and stability to memory performance and age differences. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:443-462. [PMID: 34939904 DOI: 10.1080/13825585.2021.2019184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Long-standing theories of cognitive aging suggest that memory decline is associated with age-related differences in the way information is neurally represented. Multivariate pattern similarity analyses enabled researchers to take a representational perspective on brain and cognition, and allowed them to study the properties of neural representations that support successful episodic memory. Two representational properties have been identified as crucial for memory performance, namely the distinctiveness and the stability of neural representations. Here, we review studies that used multivariate analysis tools for different neuroimaging techniques to clarify how these representational properties relate to memory performance across adulthood. While most evidence on age differences in neural representations involved stimulus category information , recent studies demonstrated that particularly item-level stability and specificity of activity patterns are linked to memory success and decline during aging. Overall, multivariate methods offer a versatile tool for our understanding of age differences in the neural representations underlying memory.
Collapse
Affiliation(s)
- Verena R Sommer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
11
|
Izumika R, Cabeza R, Tsukiura T. Neural Mechanisms of Perceiving and Subsequently Recollecting Emotional Facial Expressions in Young and Older Adults. J Cogn Neurosci 2022; 34:1183-1204. [PMID: 35468212 DOI: 10.1162/jocn_a_01851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is known that emotional facial expressions modulate the perception and subsequent recollection of faces and that aging alters these modulatory effects. Yet, the underlying neural mechanisms are not well understood, and they were the focus of the current fMRI study. We scanned healthy young and older adults while perceiving happy, neutral, or angry faces paired with names. Participants were then provided with the names of the faces and asked to recall the facial expression of each face. fMRI analyses focused on the fusiform face area (FFA), the posterior superior temporal sulcus (pSTS), the OFC, the amygdala, and the hippocampus (HC). Univariate activity, multivariate pattern (MVPA), and functional connectivity analyses were performed. The study yielded two main sets of findings. First, in pSTS and the amygdala, univariate activity and MVPA discrimination during the processing of facial expressions were similar in young and older adults, whereas in FFA and OFC, MVPA discriminated facial expressions less accurately in older than young adults. These findings suggest that facial expression representations in FFA and OFC reflect age-related dedifferentiation and positivity effect. Second, HC-OFC connectivity showed subsequent memory effects (SMEs) for happy expressions in both age groups, HC-FFA connectivity exhibited SMEs for happy and neutral expressions in young adults, and HC-pSTS interactions displayed SMEs for happy expressions in older adults. These results could be related to compensatory mechanisms and positivity effects in older adults. Taken together, the results clarify the effects of aging on the neural mechanisms in perceiving and encoding facial expressions.
Collapse
|
12
|
Age-related differences in encoding-retrieval similarity and their relationship to false memory. Neurobiol Aging 2022; 113:15-27. [DOI: 10.1016/j.neurobiolaging.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/26/2022]
|
13
|
Mille J, Brambati SM, Izaute M, Vallet GT. Low-Resolution Neurocognitive Aging and Cognition: An Embodied Perspective. Front Syst Neurosci 2021; 15:687393. [PMID: 34385911 PMCID: PMC8353153 DOI: 10.3389/fnsys.2021.687393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Consistent with embodied cognition, a growing evidence in young adults show that sensorimotor processing is at the core of cognition. Considering that this approach predicts direct interaction between sensorimotor processing and cognition, embodied cognition may thus be particularly relevant to study aging, since this population is characterized by concomitant changes in sensorimotor and cognitive processing. The present perspective aims at showing the value and interest to explore normal aging throughout embodiment by focusing on the neurophysiological and cognitive changes occurring in aging. To this end, we report some of the neurophysiological substrates underpinning the perceptual and memory interactions in older adults, from the low and high perceptual processing to the conjunction in the medial temporal lobe. We then explore how these changes could explain more broadly the cognitive changes associated with aging in terms of losses and gains.
Collapse
Affiliation(s)
- Jordan Mille
- CNRS, LAPSCO (UMR CNRS 6024), Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Marie Izaute
- CNRS, LAPSCO (UMR CNRS 6024), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Guillaume T Vallet
- CNRS, LAPSCO (UMR CNRS 6024), Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|