1
|
Katrib C, Hladky H, Timmerman K, Durieux N, Dutheil N, Bezard E, Devos D, Laloux C, Betrouni N. Magnetic resonance imaging characterization of an α-synuclein model of Parkinson's disease. Eur J Neurosci 2024; 60:7038-7057. [PMID: 39551614 DOI: 10.1111/ejn.16610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by three histological hallmarks: dopaminergic neuronal degeneration, α-synuclein accumulation and iron deposition. Over the last years, neuroimaging, particularly magnetic resonance imaging (MRI) has provided invaluable insights into the mechanisms underlying the disease. However, no imaging method has yet been able to translate α-synuclein protein accumulation and spreading. Amongst the animal models mimicking the disease, the α-synuclein rat, generated through the injection of human α-synuclein, has been characterized in terms of behavioural and histological aspects but not thoroughly explored in MRI. The aim of this study is, therefore, to identify the radiological signature from several MRI sequences, while controlling for histological and behavioural characteristics. Rats were assessed for motor and cognitive functions over a 4-month period. During this time, three MRI sessions, including both morphological and functional sequences, were conducted. Histological studies evaluated the three main hallmarks of PD. The progressive dopaminergic neurodegeneration and the spread of human α-synuclein corresponded to the level of sensorimotor, attentional and learning deficits observed in this PD model. MRI analyses showed progressive structural abnormalities in the midbrain, diencephalon and several cortical structures, as well as a pattern of hyperconnectivity in the basal ganglia and cortical networks. The regions affected in imaging demonstrated the highest load of human α-synuclein. This model's structural and functional MRI changes could serve as indirect indicators of α-synuclein accumulation and its association with impaired non-motor functions.
Collapse
Affiliation(s)
- Chirine Katrib
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Hector Hladky
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Kelly Timmerman
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Nicolas Durieux
- US41-UAR2014 PLBS, Lille In vivo imaging and functional exploration platform, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nathalie Dutheil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Charlotte Laloux
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
- US41-UAR2014 PLBS, Lille In vivo imaging and functional exploration platform, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nacim Betrouni
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| |
Collapse
|
2
|
Tassan Mazzocco M, Serra M, Maspero M, Coliva A, Presotto L, Casu MA, Morelli M, Moresco RM, Belloli S, Pinna A. Positive relation between dopamine neuron degeneration and metabolic connectivity disruption in the MPTP plus probenecid mouse model of Parkinson's disease. Exp Neurol 2024; 374:114704. [PMID: 38281587 DOI: 10.1016/j.expneurol.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.
Collapse
Affiliation(s)
- Margherita Tassan Mazzocco
- PhD Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Monza, Italy; Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marco Maspero
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy
| | - Angela Coliva
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Luca Presotto
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; Department of Physics "G. Occhialini", University of Milano - Bicocca, Milan, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy; School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| |
Collapse
|
3
|
Clasadonte J, Deprez T, Stephens GS, Mairet-Coello G, Cortin PY, Boutier M, Frey A, Chin J, Rajman M. ΔFosB is part of a homeostatic mechanism that protects the epileptic brain from further deterioration. Front Mol Neurosci 2024; 16:1324922. [PMID: 38283700 PMCID: PMC10810990 DOI: 10.3389/fnmol.2023.1324922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Activity induced transcription factor ΔFosB plays a key role in different CNS disorders including epilepsy, Alzheimer's disease, and addiction. Recent findings suggest that ΔFosB drives cognitive deficits in epilepsy and together with the emergence of small molecule inhibitors of ΔFosB activity makes it an interesting therapeutic target. However, whether ΔFosB contributes to pathophysiology or provides protection in drug-resistant epilepsy is still unclear. In this study, ΔFosB was specifically downregulated by delivering AAV-shRNA into the hippocampus of chronically epileptic mice using the drug-resistant pilocarpine model of mesial temporal epilepsy (mTLE). Immunohistochemistry analyses showed that prolonged downregulation of ΔFosB led to exacerbation of neuroinflammatory markers of astrogliosis and microgliosis, loss of mossy fibers, and hippocampal granule cell dispersion. Furthermore, prolonged inhibition of ΔFosB using a ΔJunD construct to block ΔFosB signaling in a mouse model of Alzheimer's disease, that exhibits spontaneous recurrent seizures, led to similar findings, with increased neuroinflammation and decreased NPY expression in mossy fibers. Together, these data suggest that seizure-induced ΔFosB, regardless of seizure-etiology, is part of a homeostatic mechanism that protects the epileptic brain from further deterioration.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Tania Deprez
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | | | | | - Pierre-Yves Cortin
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Maxime Boutier
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Aurore Frey
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Jeannie Chin
- Baylor College of Medicine, Houston, TX, United States
| | - Marek Rajman
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| |
Collapse
|
4
|
Ni R. PET imaging in animal models of Parkinson's disease. Behav Brain Res 2023; 438:114174. [PMID: 36283568 DOI: 10.1016/j.bbr.2022.114174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
Alpha-synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, are characterized by aberrant accumulation of alpha-synuclein and synaptic dysfunction leading to motor and cognitive deficits. Animal models of alpha-synucleinopathy have greatly facilitated the mechanistic understanding of the disease and the development of therapeutics. Various transgenic, alpha-synuclein fibril-injected, and toxin-injected animal models of Parkinson's disease and multiple system atrophy that recapitulate the disease pathology have been developed and widely used. Recent advances in positron emission tomography have allowed the noninvasive visualization of molecular alterations, underpinning behavioral dysfunctions in the brains of animal models and the longitudinal monitoring of treatment effects. Imaging studies in these disease animal models have employed multi-tracer PET designs to reveal dopaminergic deficits together with other molecular alterations. This review focuses on the development of new positron emission tomography tracers and studies of alpha-synuclein, synaptic vesicle glycoprotein 2A neurotransmitter receptor deficits such as dopaminergic receptor, dopaminergic transporter, serotonergic receptor, vesicular monoamine transporter 2, hypometabolism, neuroinflammation, mitochondrial dysfunction and leucine rich repeat kinase 2 in animal models of Parkinson's disease. The outstanding challenges and emerging applications are outlined, such as investigating the gut-brain-axis by using positron emission tomography in animal models, and provide a future outlook.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Zhang J, Zhao M, Yan R, Liu J, Maddila S, Junn E, Mouradian MM. MicroRNA-7 Protects Against Neurodegeneration Induced by α-Synuclein Preformed Fibrils in the Mouse Brain. Neurotherapeutics 2021; 18:2529-2540. [PMID: 34697773 PMCID: PMC8804150 DOI: 10.1007/s13311-021-01130-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
α-Synuclein is a key protein in the pathogenesis of Parkinson's disease as it accumulates in fibrillar form in affected brain regions. Misfolded α-synuclein seeds recruit monomeric α-synuclein to form aggregates, which can spread to anatomically connected brain regions, a phenomenon that correlates with clinical disease progression. Thus, downregulating α-synuclein levels could reduce seeding and inhibit aggregate formation and propagation. We previously reported that microRNA-7 (miR-7) protects neuronal cells by downregulating α-synuclein expression through its effect on the 3'-untranslated region of SNCA mRNA; however, whether miR-7 blocks α-synuclein seeding and propagation in vivo remains unknown. Here, we induced miR-7 overexpression in the mouse striatum unilaterally by infusing adeno-associated virus 1 (AAV-miR-7) followed by inoculation with recombinant α-synuclein preformed fibrils (PFF) a month later. Compared with control mice injected with non-targeting AAV-miR-NT followed by PFF, AAV-miR-7 pre-injected mice exhibited lower levels of monomeric and high-molecular-weight α-synuclein species in the striatum, and reduced amount of phosphorylated α-synuclein in the striatum and in nigral dopamine neurons. Accordingly, AAV-miR-7-injected mice had less pronounced degeneration of the nigrostriatal pathway and better behavioral performance. The neuroinflammatory reaction to α-synuclein PFF inoculation was also significantly attenuated. These data suggest that miR-7 inhibits the formation and propagation of pathological α-synuclein and protects against neurodegeneration induced by PFF. Collectively, these findings support the potential of miR-7 as a disease modifying biologic agent for Parkinson's disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Jie Zhang
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Mengyuan Zhao
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Run Yan
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
- Current address: Sanyou Biopharmaceuticals Co., Ltd., 3rd Floor, Building 6B-C, No. 188 Xinjunhuan Road, Minhang District, Shanghai, 201114, China
| | - Jun Liu
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Santhosh Maddila
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - Eunsung Junn
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA
| | - M Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers - Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ, 08854, USA.
| |
Collapse
|