1
|
Thomson D, Rosenich E, Maruff P, Lim YY. BDNF Val66Met moderates episodic memory decline and tau biomarker increases in early sporadic Alzheimer's disease. Arch Clin Neuropsychol 2024; 39:683-691. [PMID: 38454193 PMCID: PMC11345111 DOI: 10.1093/arclin/acae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE Allelic variation in the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been shown to moderate rates of cognitive decline in preclinical sporadic Alzheimer's disease (AD; i.e., Aβ + older adults), and pre-symptomatic autosomal dominant Alzheimer's disease (ADAD). In ADAD, Met66 was also associated with greater increases in CSF levels of total-tau (t-tau) and phosphorylated tau (p-tau181). This study sought to determine the extent to which BDNF Val66Met is associated with changes in episodic memory and CSF t-tau and p-tau181 in Aβ + older adults in early-stage sporadic AD. METHOD Aβ + Met66 carriers (n = 94) and Val66 homozygotes (n = 192) enrolled in the Alzheimer's Disease Neuroimaging Initiative who did not meet criteria for AD dementia, and with at least one follow-up neuropsychological and CSF assessment, were included. A series of linear mixed models were conducted to investigate changes in each outcome over an average of 2.8 years, covarying for CSF Aβ42, APOE ε4 status, sex, age, baseline diagnosis, and years of education. RESULTS Aβ + Met66 carriers demonstrated significantly faster memory decline (d = 0.33) and significantly greater increases in CSF t-tau (d = 0.30) and p-tau181 (d = 0.29) compared to Val66 homozygotes, despite showing equivalent changes in CSF Aβ42. CONCLUSIONS These findings suggest that reduced neurotrophic support, which is associated with Met66 carriage, may increase vulnerability to Aβ-related tau hyperphosphorylation, neuronal dysfunction, and cognitive decline even prior to the emergence of dementia. Additionally, these findings highlight the need for neuropsychological and clinicopathological models of AD to account for neurotrophic factors and the genes which moderate their expression.
Collapse
Affiliation(s)
- Diny Thomson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
| | | | - Paul Maruff
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
- Cogstate Ltd, Melbourne, VIC 3000, Australia
| | - Yen Ying Lim
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
| | | |
Collapse
|
2
|
Ai Y, Liu Y, Yin M, Zhang L, Luo J, Zhang S, Huang L, Zhang C, Liu G, Fang J, Zheng H, Li L, Hu X. Interactions between tDCS treatment and COMT Val158Met in poststroke cognitive impairment. Clin Neurophysiol 2024; 158:43-55. [PMID: 38176157 DOI: 10.1016/j.clinph.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE This study aimed to explore the effect of catechol-O-methyltransferase (COMT) Val158Met and brain-derived neurotrophic factor (BDNF) Val66Met to post-stroke cognitive impairment (PSCI) and the interaction with transcranial direct current stimulation (tDCS). METHODS Seventy-six patients with PSCI were randomly assigned to Group (1) (n = 38) to receive anodal tDCS of left dorsolateral prefrontal cortex or Group (2) (n = 38) to receive sham stimulation. The intensity of the tDCS was 2 mA, and the stimulations were applied over the left DLPFC for 10 sessions. The Montreal Cognitive Assessment (MoCA) and backward digit span test (BDST) were assessed before, immediately after, and one month after stimulation. RESULTS After stimulation, patients in the tDCS group showed better improvement in both MoCA and BDST than those in the sham group. The results of GLMs also supported the main effects of tDCS on general cognitive function and working memory. Then we found that COMT genotype may have a main effect on the improvement of MoCA and BDST, and there may be an interaction between COMT genotype and tDCS in enhancing BDST. In contrast, BDNF genotype showed no significant main or interaction effects on any scales. CONCLUSIONS These findings demonstrate that tDCS can improve cognition after stroke. Gene polymorphisms of COMT can affect the efficacy of tDCS on PSCI, but BDNF may not. SIGNIFICANCE This study found that COMT Val158Met has an interaction on the efficacy of prefrontal tDCS in cognitive function, which provides reference for future tDCS research and clinical application.
Collapse
Affiliation(s)
- Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Yuanwen Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Shuxian Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Li Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Chanjuan Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Guirong Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Jie Fang
- Xiamen Humanity Rehabilitation Hospital, Xiamen 361009, Fujian Province, PR China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, PR China.
| |
Collapse
|
3
|
Ciampa CJ, Morin TM, Murphy A, Joie RL, Landau SM, Berry AS. DAT1 and BDNF polymorphisms interact to predict Aβ and tau pathology. Neurobiol Aging 2024; 133:115-124. [PMID: 37948982 PMCID: PMC10872994 DOI: 10.1016/j.neurobiolaging.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Previous work has associated polymorphisms in the dopamine transporter gene (rs6347 in DAT1/SLC6A3) and brain derived neurotrophic factor gene (Val66Met in BDNF) with atrophy and memory decline. However, it is unclear whether these polymorphisms relate to atrophy and cognition through associations with Alzheimer's disease pathology. We tested for effects of DAT1 and BDNF polymorphisms on cross-sectional and longitudinal β-amyloid (Aβ) and tau pathology (measured with positron emission tomography (PET)), hippocampal volume, and cognition. We analyzed a sample of cognitively normal older adults (cross-sectional n = 321) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). DAT1 and BDNF interacted to predict Aβ-PET, tau-PET, and hippocampal atrophy. Carriers of both "non-boptimal" DAT1 C and BDNF Met alleles demonstrated greater pathology and atrophy. Our findings provide novel links between dopamine and neurotrophic factor genes and AD pathology, consistent with previous research implicating these variants in greater risk for developing AD.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| | - Thomas M Morin
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02155, USA
| | - Alice Murphy
- Hellen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Susan M Landau
- Hellen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
4
|
Xu C, Zhao L, Dong C. A Review of Application of Aβ42/40 Ratio in Diagnosis and Prognosis of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:495-512. [DOI: 10.3233/jad-220673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of patients with Alzheimer’s disease (AD) and non-Alzheimer’s disease (non-AD) has drastically increased over recent decades. The amyloid cascade hypothesis attributes a vital role to amyloid-β protein (Aβ) in the pathogenesis of AD. As the main pathological hallmark of AD, amyloid plaques consist of merely the 42 and 40 amino acid variants of Aβ (Aβ 42 and Aβ 40). The cerebrospinal fluid (CSF) biomarker Aβ 42/40 has been extensively investigated and eventually integrated into important diagnostic tools to support the clinical diagnosis of AD. With the development of highly sensitive assays and technologies, blood-based Aβ 42/40, which was obtained using a minimally invasive and cost-effective method, has been proven to be abnormal in synchrony with CSF biomarker values. This paper presents the recent progress of the CSF Aβ 42/40 ratio and plasma Aβ 42/40 for AD as well as their potential clinical application as diagnostic markers or screening tools for dementia.
Collapse
Affiliation(s)
- Chang Xu
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Li Zhao
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunbo Dong
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Riphagen JM, van Hooren RWE, Kenis G, Verhey FRJ, Jacobs HIL. Distinct Patterns Link the BDNF Val66Met Polymorphism to Alzheimer's Disease Pathology. J Alzheimers Dis 2022; 88:447-453. [PMID: 35662115 DOI: 10.3233/jad-215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The brain-derived neurotropic growth factor (BDNF) gene has been linked to dementia, inflammation, and Apolipoprotein E (APOE) ɛ4 status. We used cerebrospinal fluid (CSF) amyloid-β (Aβ)42 and phosphorylated tau (p-tau) to investigate associations with BDNF polymorphisms and modifications by APOE ɛ4 or inflammation in a memory clinic population (n = 114; subjective cognitive decline, mild cognitive impairment, Alzheimer's disease). We found distinct pathways to Alzheimer's disease pathology: Val-Met displayed lower CSF-Aβ 42 in APOE ɛ4+ carriers, independent of p-tau, while Val-Val displayed greater p-tau at higher IL-6 and sub-threshold Aβ 42. This may contribute to resolving some inconsistencies in the BDNF literature and provide possible inroads to specific Aβ and tau interventions depending on BDNF polymorphism.
Collapse
Affiliation(s)
- Joost M Riphagen
- Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, USA.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.,Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Roy W E van Hooren
- Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Frans R J Verhey
- Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.,Faculty of Health, Medicine and Life Sciences; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|