1
|
Handen BL, Mapstone M, Hartley S, Andrews H, Christian B, Lee JH, Tudorascu D, Hom C, Ances BM, Zaman S, Krinsky‐McHale S, Brickman AM, Rosas HD, Cohen A, Petersen M, O'Bryant S, Harp JP, Schmitt F, Ptomey L, Burns J, Lott IT, Lai F, Silverman W, Laymon C, Head E. The Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS): A 10-year report. Alzheimers Dement 2025; 21:e70294. [PMID: 40371686 PMCID: PMC12079517 DOI: 10.1002/alz.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Virtually all adults with Down syndrome (DS) will accumulate the neuropathologies associated with Alzheimer's disease (AD) by age 40, with the majority having a clinical dementia diagnosis by their middle 50s. METHODS This paper complements a 2020 publication describing the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) methodology by highlighting protocol changes since initial funding in 2015. It describes available clinical, neuropsychological, neuroimaging, and biofluid data and bio-specimen repository. Ten years of accomplishments are summarized. RESULTS Over 500 adults with DS and 59 sibling controls have been enrolled since 2015 with nearly 800 follow-up visits. More than 900 magnetic resonance imaging (MRI), 800 amyloid positron emission tomography (PET), and 600 tau PET scans have been conducted; multiple omics data have been generated using over 1100 blood and 100 cerebrospinal fluid (CSF) samples. DISCUSSION ABC-DS is the largest U.S.-based, multi-site (including the United Kingdom and Puerto Rico), longitudinal biomarker initiative to target adults with DS at risk for AD. HIGHLIGHTS The Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) is entering its 10th year. Over 500 adults with Down syndrome (DS) and 59 sibling controls have been enrolled. More than 900 magnetic resonance imaging (MRI), 800 amyloid positron emission tomography (PET), and 600 tau PET scans have been conducted. Multiple omics data have been generated using over 1100 blood and 100 cerebrospinal fluid (CSF) samples. It is positioned to continue to make substantial contributions to the DS field.
Collapse
Affiliation(s)
- Benjamin L. Handen
- University of PittsburghDepartment of PsychiatryPittsburghPennsylvaniaUSA
| | - Mark Mapstone
- University of CaliforniaIrvineDepartment of NeurologyIrvineCaliforniaUSA
| | - Sigan Hartley
- University of Wisconsin MadisonWaisman CenterMadisonWisconsinUSA
| | - Howard Andrews
- Columbia University Irving Medical CenterTaub Institute for Research on Alzheimer's Disease and the Aging BrainNew YorkNew YorkUSA
| | - Brad Christian
- University of Wisconsin MadisonWaisman CenterMadisonWisconsinUSA
| | - Joseph H. Lee
- Columbia UniversityVagelos College of Physicians and SurgeonsTaub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of NeurologyNew YorkNew YorkUSA
| | - Dana Tudorascu
- University of PittsburghDepartment of PsychiatryPittsburghPennsylvaniaUSA
| | - Christy Hom
- IrvineUniversity School of Medicine, of CaliforniaDepartment of Psychiatry and Human BehaviorOrangeCaliforniaUSA
| | - Beau M. Ances
- Washington University School of Medicine in St. Louis, Box 8111St. LouisMissouriUSA
| | - Shahid Zaman
- University of CambridgeSchool of Clinical MedicineDepartment of PsychiatryForvie Site, Robinson WayCambridgeUK
| | - Sharon Krinsky‐McHale
- NYS Institute for Basic Research in Developmental DisabilitiesDepartment of PsychologyStaten IslandNew YorkUSA
| | - Adam M. Brickman
- Columbia UniversityVagelos College of Physicians and SurgeonsTaub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of NeurologyNew YorkNew YorkUSA
| | - H. Diana Rosas
- Massachusetts General HospitalDepartments of Neurology and RadiologyHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Annie Cohen
- University of PittsburghDepartment of PsychiatryPittsburghPennsylvaniaUSA
| | - Melissa Petersen
- University of North Texas Health Science CenterDepartment of Family MedicineFort WorthTexasUSA
| | - Sid O'Bryant
- University of North Texas Health Science CenterDepartment of Family MedicineFort WorthTexasUSA
| | - Jordan P. Harp
- University of Kentucky College of MedicineKentucky Neuroscience Institute & Sanders‐Brown Center on AgingLexingtonKentuckyUSA
| | - Frederick Schmitt
- University of Kentucky College of MedicineKentucky Neuroscience Institute & Sanders‐Brown Center on AgingLexingtonKentuckyUSA
| | - Lauren Ptomey
- University of Kansas Medical CenterKansas cityKansasUSA
| | - Jeffrey Burns
- University of Kansas Medical CenterKansas cityKansasUSA
| | - Ira T. Lott
- University of CaliforniaIrvineSchool of MedicineDepartment of PediatricsOrangeCaliforniaUSA
| | - Florence Lai
- Massachusetts General HospitalDepartment of NeurologyHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Wayne Silverman
- University of CaliforniaIrvineSchool of MedicineDepartment of PediatricsOrangeCaliforniaUSA
| | - Charles Laymon
- University of PittsburghDepartment of PsychiatryPittsburghPennsylvaniaUSA
| | - Elizabeth Head
- University of CaliforniaIrvineDepartment of Pathology, 1261 Gillespie Neuroscience FacilityIrvineCaliforniaUSA
| | | |
Collapse
|
2
|
Wagemann O, Brendel M, Franzmeier N, Nübling G, Gnörich J, Zaganjori M, Prix C, Stockbauer A, Wlasich E, Loosli SV, Sandkühler K, Frontzkowski L, Höglinger G, Levin J. Feasibility and potential diagnostic value of [ 18F]PI-2620 PET in patients with down syndrome and Alzheimer's disease: a case series. Front Neurosci 2025; 18:1505999. [PMID: 39834700 PMCID: PMC11744071 DOI: 10.3389/fnins.2024.1505999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose of the report Adults with Down Syndrome (DS) have a substantially increased risk for Alzheimer's disease (AD) due to the triplicated amyloid-precursor-protein gene on chromosome 21, resulting in amyloid and tau accumulation. However, tau PET assessments are not sufficiently implemented in DS-AD research or clinical work-up, and second-generation tau tracers such as [18F]PI-2620 have not been thoroughly characterized in adults with DS. We aim at illustrating feasibility and potential diagnostic value of tau PET imaging with [18F]PI-2620 for the diagnosis of DS-AD. Materials and methods Five adults with DS (40% female, aged 43-62) and cognitive decline underwent clinical assessments, neuropsychological testing, lumbar puncture and multimodal neuroimaging. All underwent [18F]PI-2620 tau PET. Visual read of tau PET scans was performed by three blinded raters, assessing increased tracer uptake in brain areas corresponding to the six Braak stage regions and basal ganglia. Results Visual read of tau burden revealed three tau-positive individuals which corresponded to their clinical decline while two cognitively stable individuals were rated as negative. Rating showed high inter-rater reliability for all Braak stages. Conclusion Tau PET imaging is a feasible and important biomarker assessment in the differential diagnosis of cognitive decline in adults with DS at risk of developing AD.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal and Gothenburg, Sweden
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Georg Nübling
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Catharina Prix
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
| | - Elisabeth Wlasich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sandra V. Loosli
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Katja Sandkühler
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Lukas Frontzkowski
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Günter Höglinger
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
4
|
Zammit MD, Betthauser TJ, McVea AK, Laymon CM, Tudorascu DL, Johnson SC, Hartley SL, Converse AK, Minhas DS, Zaman SH, Ances BM, Stone CK, Mathis CA, Cohen AD, Klunk WE, Handen BL, Christian BT. Characterizing the emergence of amyloid and tau burden in Down syndrome. Alzheimers Dement 2024; 20:388-398. [PMID: 37641577 PMCID: PMC10843570 DOI: 10.1002/alz.13444] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Almost all individuals with Down syndrome (DS) will develop neuropathological features of Alzheimer's disease (AD). Understanding AD biomarker trajectories is necessary for DS-specific clinical interventions and interpretation of drug-related changes in the disease trajectory. METHODS A total of 177 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) underwent positron emission tomography (PET) and MR imaging. Amyloid-beta (Aβ) trajectories were modeled to provide individual-level estimates of Aβ-positive (A+) chronicity, which were compared against longitudinal tau change. RESULTS Elevated tau was observed in all NFT regions following A+ and longitudinal tau increased with respect to A+ chronicity. Tau increases in NFT regions I-III was observed 0-2.5 years following A+. Nearly all A+ individuals had tau increases in the medial temporal lobe. DISCUSSION These findings highlight the rapid accumulation of amyloid and early onset of tau relative to amyloid in DS and provide a strategy for temporally characterizing AD neuropathology progression that is specific to the DS population and independent of chronological age. HIGHLIGHTS Longitudinal amyloid trajectories reveal rapid Aβ accumulation in Down syndrome NFT stage tau was strongly associated with A+ chronicity Early longitudinal tau increases were observed 2.5-5 years after reaching A.
Collapse
Affiliation(s)
| | - Tobey J. Betthauser
- University of Wisconsin‐Madison Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Andrew K. McVea
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
| | - Charles M. Laymon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dana L. Tudorascu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sterling C. Johnson
- University of Wisconsin‐Madison Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sigan L. Hartley
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
| | | | - Davneet S. Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shahid H. Zaman
- Cambridge Intellectual Disability Research GroupUniversity of CambridgeCambridgeUK
| | - Beau M. Ances
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Charles K. Stone
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Chester A. Mathis
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Annie D. Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T. Christian
- University of Wisconsin‐Madison Waisman CenterMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | |
Collapse
|
5
|
Hartley SL, Handen B, Tudorascu D, Lee L, Cohen A, Schworer EK, Peven JC, Zammit M, Klunk W, Laymon C, Minhas D, Luo W, Zaman S, Ances B, Preboske G, Christian BT. AT(N) biomarker profiles and Alzheimer's disease symptomology in Down syndrome. Alzheimers Dement 2024; 20:366-375. [PMID: 37641428 PMCID: PMC10840615 DOI: 10.1002/alz.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Down syndrome (DS) is a genetic cause of early-onset Alzheimer's disease (AD). The National Institute on Aging-Alzheimer's Association AT(N) Research Framework is a staging model for AD biomarkers but has not been assessed in DS. METHOD Data are from the Alzheimer's Biomarker Consortium-Down Syndrome. Positron emission tomography (PET) amyloid beta (Aβ; 15 mCi of [11 C]Pittsburgh compound B) and tau (10 mCi of [18 F]AV-1451) were used to classify amyloid (A) -/+ and tau (T) +/-. Hippocampal volume classified neurodegeneration (N) -/+. The modified Cued Recall Test assessed episodic memory. RESULTS Analyses included 162 adults with DS (aged M = 38.84 years, standard deviation = 8.41). Overall, 69.8% of participants were classified as A-/T-/(N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. Participants deemed cognitively stable were most likely to be A-T-(N)- and A+T-(N)-. Tau PET (T+) most closely aligning with memory impairment and AD clinical status. DISCUSSION Findings add to understanding of AT(N) biomarker profiles in DS. HIGHLIGHTS Overall, 69.8% of adults with Down syndrome (DS) aged 25 to 61 years were classified as amyloid (A)-/tau (T)-/neurodegeneration (N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. The AT(N) profiles were associated with clinical Alzheimer's disease (AD) status and with memory performance, with the presence of T+ aligned with AD clinical symptomology. Findings inform models for predicting the transition to the prodromal stage of AD in DS.
Collapse
Affiliation(s)
- Sigan L. Hartley
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- School of Human EcologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Benjamin Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dana Tudorascu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Laisze Lee
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Annie Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Jamie C. Peven
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Matthew Zammit
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Charles Laymon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Davneet Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Weiquan Luo
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shahid Zaman
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Beau Ances
- Department of NeurologyWashington University at St. LouisSt. Louis, MissouriUSA
| | | | - Bradley T. Christian
- Waisman CenterUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | | |
Collapse
|
6
|
Ichimata S, Martinez-Valbuena I, Lee S, Li J, Karakani AM, Kovacs GG. Distinct Molecular Signatures of Amyloid-Beta and Tau in Alzheimer's Disease Associated with Down Syndrome. Int J Mol Sci 2023; 24:11596. [PMID: 37511361 PMCID: PMC10380583 DOI: 10.3390/ijms241411596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Limited comparative data exist on the molecular spectrum of amyloid-beta (Aβ) and tau deposition in individuals with Down syndrome (DS) and sporadic Alzheimer's disease (sAD). We assessed Aβ and tau deposition severity in the temporal lobe and cerebellum of ten DS and ten sAD cases. Immunohistochemistry was performed using antibodies against eight different Aβ epitopes (6F/3D, Aβ38, Aβ39, Aβ40, Aβ42, Aβ43, pyroglutamate Aβ at third glutamic acid (AβNp3E), phosphorylated- (p-)Aβ at 8th serine (AβpSer8)), and six different pathological tau epitopes (p-Ser202/Thr205, p-Thr231, p-Ser396, Alz50, MC1, GT38). Findings were evaluated semi-quantitatively and quantitatively using digital pathology. DS cases had significantly higher neocortical parenchymal deposition (Aβ38, Aβ42, and AβpSer8), and cerebellar parenchymal deposition (Aβ40, Aβ42, AβNp3E, and AβpSer8) than sAD cases. Furthermore, DS cases had a significantly larger mean plaque size (6F/3D, Aβ42, AβNp3E) in the temporal lobe, and significantly greater deposition of cerebral and cerebellar Aβ42 than sAD cases in the quantitative analysis. Western blotting corroborated these findings. Regarding tau pathology, DS cases had significantly more severe cerebral tau deposition than sAD cases, especially in the white matter (p-Ser202/Thr205, p-Thr231, Alz50, and MC1). Greater total tau deposition in the white matter (p-Ser202/Thr205, p-Thr231, and Alz50) of DS cases was confirmed by quantitative analysis. Our data suggest that the Aβ and tau molecular signatures in DS are distinct from those in sAD.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Ali M. Karakani
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
- Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
7
|
Nadeau PA, Jobin B, Boller B. Diagnostic Sensitivity and Specificity of Cognitive Tests for Mild Cognitive Impairment and Alzheimer's Disease in Patients with Down Syndrome: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2023; 95:13-51. [PMID: 37522203 DOI: 10.3233/jad-220991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Improved health care for people with Down syndrome (DS) has resulted in an increase in their life expectancy therefore increasing comorbidities associated with age-related problems in this population, the most frequent being Alzheimer's disease (AD). To date, several cognitive tests have been developed to evaluate cognitive changes related to the development of mild cognitive impairment (MCI) and AD in people with DS. OBJECTIVE Identify and evaluate available cognitive tests for the diagnosis of MCI and AD in people with DS. METHODS A systematic search of the Pubmed and PsycInfo databases was performed to identify articles published from January 1, 2000 and July 1, 2022. Keysearch terms were DS, AD or MCI, cognition, and assessment. Relevant studies assessing the diagnostic accuracy of cognitive tests for AD or MCI with standard clinical evaluation were extracted. Risk of bias was assessed using the QUADAS 2. RESULTS We identified 15 batteries, 2 intelligence scales, 14 memory tests, 11 executive, functioning tests, 11 motor and visuospatial functioning tests, 5 language tests, 3 attention tests, and 2 orientation tests. Analysis showed that the CAMCOG-DS present a fair to excellent diagnostic accuracy for detecting AD in patients with DS. However, for the diagnosis of MCI, this battery showed poor to good diagnostic accuracy. CONCLUSION The findings highlight important limitations of the current assessment available for the screening of mild cognitive impairment and AD in patients with DS and support the need for more clinical trials to ensure better screening for this highly at-risk population.
Collapse
Affiliation(s)
| | - Benoît Jobin
- Université du Québec à Trois-Rivière, Quebec, Canada
| | - Benjamin Boller
- Univerisité de Montréal, Quebec, Canada
- Université du Québec à Trois-Rivière, Quebec, Canada
| |
Collapse
|