4
|
Badja C, Momen S, Koh GCC, Boushaki S, Roumeliotis TI, Kozik Z, Jones I, Bousgouni V, Dias JML, Krokidis MG, Young J, Chen H, Yang M, Docquier F, Memari Y, Valcarcel-Zimenez L, Gupta K, Kong LR, Fawcett H, Robert F, Zhao S, Degasperi A, Kumar Y, Davies H, Harris R, Frezza C, Chatgilialoglu C, Sarkany R, Lehmann A, Bakal C, Choudhary J, Fassihi H, Nik-Zainal S. Insights from multi-omic modeling of neurodegeneration in xeroderma pigmentosum using an induced pluripotent stem cell system. Cell Rep 2024; 43:114243. [PMID: 38805398 DOI: 10.1016/j.celrep.2024.114243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.
Collapse
Affiliation(s)
- Cherif Badja
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK.
| | - Sophie Momen
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Gene Ching Chiek Koh
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Soraya Boushaki
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Zuza Kozik
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Vicky Bousgouni
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - João M L Dias
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece; Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
| | - Jamie Young
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Hongwei Chen
- Wellcome Sanger Institute, Hinxton CB10 1RQ, UK; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - France Docquier
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| | - Yasin Memari
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Lorea Valcarcel-Zimenez
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Komal Gupta
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Li Ren Kong
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; NUS Centre for Cancer Research, N2CR, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Florian Robert
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Salome Zhao
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Andrea Degasperi
- Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Yogesh Kumar
- Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Helen Davies
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Rebecca Harris
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Robert Sarkany
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, UK
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Chris Bakal
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jyoti Choudhary
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
6
|
Abondio P, Bruno F, Passarino G, Montesanto A, Luiselli D. Pangenomics: A new era in the field of neurodegenerative diseases. Ageing Res Rev 2024; 94:102180. [PMID: 38163518 DOI: 10.1016/j.arr.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
A pangenome is composed of all the genetic variability of a group of individuals, and its application to the study of neurodegenerative diseases may provide valuable insights into the underlying aspects of genetic heterogenetiy for these complex ailments, including gene expression, epigenetics, and translation mechanisms. Furthermore, a reference pangenome allows for the identification of previously undetected structural commonalities and differences among individuals, which may help in the diagnosis of a disease, support the prediction of what will happen over time (prognosis) and aid in developing novel treatments in the perspective of personalized medicine. Therefore, in the present review, the application of the pangenome concept to the study of neurodegenerative diseases will be discussed and analyzed for its potential to enable an improvement in diagnosis and prognosis for these illnesses, leading to the development of tailored treatments for individual patients from the knowledge of the genomic composition of a whole population.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Francesco Bruno
- Academy of Cognitive Behavioral Sciences of Calabria (ASCoC), Lamezia Terme, Italy; Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|