1
|
Multi-Echo Investigations of Positive and Negative CBF and Concomitant BOLD Changes: Positive and negative CBF and BOLD changes. Neuroimage 2022; 263:119661. [PMID: 36198353 DOI: 10.1016/j.neuroimage.2022.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike the positive blood oxygenation level-dependent (BOLD) response (PBR), commonly taken as an indication of an 'activated' brain region, the physiological origin of negative BOLD signal changes (i.e. a negative BOLD response, NBR), also referred to as 'deactivation' is still being debated. In this work, an attempt was made to gain a better understanding of the underlying mechanism by obtaining a comprehensive measure of the contributing cerebral blood flow (CBF) and its relationship to the NBR in the human visual cortex, in comparison to a simultaneously induced PBR in surrounding visual regions. To overcome the low signal-to-noise ratio (SNR) of CBF measurements, a newly developed multi-echo version of a center-out echo planar-imaging (EPI) readout was employed with pseudo-continuous arterial spin labeling (pCASL). It achieved very short echo and inter-echo times and facilitated a simultaneous detection of functional CBF and BOLD changes at 3 T with improved sensitivity. Evaluations of the absolute and relative changes of CBF and the effective transverse relaxation rate,R2* the coupling ratios, and their dependence on CBF at rest, CBFrest indicated differences between activated and deactivated regions. Analysis of the shape of the respective functional responses also revealed faster negative responses with more pronounced post-stimulus transients. Resulting differences in the flow-metabolism coupling ratios were further examined for potential distinctions in the underlying neuronal contributions.
Collapse
|
2
|
Champagne AA, Coverdale NS, Allen MD, Tremblay JC, MacPherson REK, Pyke KE, Olver TD, Cook DJ. The physiological basis underlying functional connectivity differences in older adults: A multi-modal analysis of resting-state fMRI. Brain Imaging Behav 2022; 16:1575-1591. [PMID: 35092574 DOI: 10.1007/s11682-021-00570-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/27/2021] [Indexed: 11/02/2022]
Abstract
The purpose of this study was to determine if differences in functional connectivity strength (FCS) with age were confounded by vascular parameters including resting cerebral blood flow (CBF0), cerebrovascular reactivity (CVR), and BOLD-CBF coupling. Neuroimaging data were collected from 13 younger adults (24 ± 2 years) and 14 older adults (71 ± 4 years). A dual-echo resting state pseudo-continuous arterial spin labeling sequence was performed, as well as a BOLD breath-hold protocol. A group independent component analysis was used to identify networks, which were amalgamated into a region of interest (ROI). Within the ROI, FC strength (FCS) was computed for all voxels and compared across the groups. CBF0, CVR and BOLD-CBF coupling were examined within voxels where FCS was different between young and older adults. FCS was greater in old compared to young (P = 0.001). When the effect of CBF0, CVR and BOLD-CBF coupling on FCS was examined, BOLD-CBF coupling had a significant effect (P = 0.003) and group differences in FCS were not present once all vascular parameters were considered in the statistical model (P = 0.07). These findings indicate that future studies of FCS should consider vascular physiological markers in order to improve our understanding of aging processes on brain connectivity.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Physical Medicine and Rehabilitation, Providence Care Hospital, 752 King St., Ontario, West Kingston, Canada
| | - Joshua C Tremblay
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinarian Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada. .,Department of Surgery, Queen's University, Room 232, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
3
|
Parameter Sensitivity and Experimental Validation for Fractional-Order Dynamical Modeling of Neurovascular Coupling. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2022; 3:69-77. [DOI: 10.1109/ojemb.2022.3167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 11/06/2022] Open
|
4
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Chen JJ, Gauthier CJ. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Front Physiol 2021; 12:657362. [PMID: 33841190 PMCID: PMC8027080 DOI: 10.3389/fphys.2021.657362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Task and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI. In particular, CVR estimation is part of a family of techniques called calibrated BOLD fMRI, the purpose of which is to allow the mapping of cerebral oxidative metabolism (CMRO2) using a combination of BOLD and cerebral-blood flow (CBF) measurements. Moreover, CVR has recently been shown to be a major source of vascular bias in computing resting-state functional connectivity, in much the same way that it is used to neutralize the vascular contribution in calibrated fMRI. Furthermore, due to the obvious challenges in estimating CVR using gas challenges, a rapidly growing field of study is the estimation of CVR without any form of challenge, including the use of resting-state fMRI for that purpose. This review addresses all of these aspects in which CVR interacts with fMRI and the role of CVR in calibrated fMRI, provides an overview of the physiological biases and assumptions underlying hypercapnia-based CVR and calibrated fMRI, and provides a view into the future of non-invasive CVR measurement.
Collapse
Affiliation(s)
- J Jean Chen
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
6
|
Archila-Meléndez ME, Sorg C, Preibisch C. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest. Neuroimage 2020; 218:116871. [DOI: 10.1016/j.neuroimage.2020.116871] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
|
7
|
Bandyopadhyay A, Sharma G, Roy Chowdhury S. Computational analysis of NIRS and BOLD signal from neurovascular coupling with three neuron-system feedforward inhibition network. J Theor Biol 2020; 498:110297. [PMID: 32371007 DOI: 10.1016/j.jtbi.2020.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/29/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
Several neurological disorders occur due to hypoxic condition in brain arising from impairment of cerebral functionality, which can be controlled by neural stimulation driven vasoactive response mediated through biological response in astrocyte, a phenomenon known as neurovascular coupling. Brain can adjust with the problem of hypoxic condition by causing vasodilation with the help of this mechanism. To deduce the mechanism behind vasodilation of blood vessel caused by neuronal stimulus, current study articulates a mathematical model involving neuronal system feedforward inhibition network model (FFI) with two other functional components of neurovascular coupling, i.e. astrocyte and smooth muscle cell lining blood vessel. This study includes the neural inhibition network system where glutamatergic pyramidal neuron and GABAergic interneuron act antagonistically with each other. The proposed model successfully includes the implication of the inhibition system to design mathematical model for neurovascular coupling. Result of the proposed model shows that the increase in neuronal stimulus from 20 to 60 µA/cm2 has the ability to increase the vasodilatory activity of blood tissue vasculature. Oxygenation level and hemodynamic response due to input synaptic stimulation has been calculated by regional cerebral oxygenation level (rS02) and blood oxygen level dependent (BOLD) imaging signal which supports vasodilation of blood vessel with increase in synaptic input stimulus.
Collapse
Affiliation(s)
- Anirban Bandyopadhyay
- Biomedical Systems Laboratory, Multimedia Analytics, Networks and Systems Group, Indian Institute of Technology Mandi, India.
| | - Gaurav Sharma
- Biomedical Systems Laboratory, Multimedia Analytics, Networks and Systems Group, Indian Institute of Technology Mandi, India.
| | - Shubhajit Roy Chowdhury
- Biomedical Systems Laboratory, Multimedia Analytics, Networks and Systems Group, Indian Institute of Technology Mandi, India.
| |
Collapse
|
8
|
Hussein A, Matthews JL, Syme C, Macgowan C, MacIntosh BJ, Shirzadi Z, Pausova Z, Paus T, Chen JJ. The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults. Hum Brain Mapp 2020; 41:2121-2135. [PMID: 32034832 PMCID: PMC7268071 DOI: 10.1002/hbm.24934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Resting‐state functional magnetic resonance imaging (rs‐fMRI) is frequently used to study brain function; but, it is unclear whether BOLD‐signal fluctuation amplitude and functional connectivity are associated with vascular factors, and how vascular‐health factors are reflected in rs‐fMRI metrics in the healthy population. As arterial stiffening is a known age‐related cardiovascular risk factor, we investigated the associations between aortic stiffening (as measured using pulse‐wave velocity [PWV]) and rs‐fMRI metrics. We used cardiac MRI to measure aortic PWV (an established indicator of whole‐body vascular stiffness), as well as dual‐echo pseudo‐continuous arterial‐spin labeling to measure BOLD and CBF dynamics simultaneously in a group of generally healthy adults. We found that: (1) higher aortic PWV is associated with lower variance in the resting‐state BOLD signal; (2) higher PWV is also associated with lower BOLD‐based resting‐state functional connectivity; (3) regions showing lower connectivity do not fully overlap with those showing lower BOLD variance with higher PWV; (4) CBF signal variance is a significant mediator of the above findings, only when averaged across regions‐of‐interest. Furthermore, we found no significant association between BOLD signal variance and systolic blood pressure, which is also a known predictor of vascular stiffness. Age‐related vascular stiffness, as measured by PWV, provides a unique scenario to demonstrate the extent of vascular bias in rs‐fMRI signal fluctuations and functional connectivity. These findings suggest that a substantial portion of age‐related rs‐fMRI differences may be driven by vascular effects rather than directly by brain function.
Collapse
Affiliation(s)
- Ahmad Hussein
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Jacob L Matthews
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Catriona Syme
- SickKids Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Christopher Macgowan
- SickKids Hospital, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Zahra Shirzadi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Zdenka Pausova
- SickKids Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Tomáš Paus
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
|
10
|
Cerebral tissue pO 2 response to stimulation is preserved with age in awake mice. Neurosci Lett 2019; 699:160-166. [PMID: 30738870 DOI: 10.1016/j.neulet.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Compromised oxygen supply to cerebral tissue could be an important mechanism contributing to age-related cognition decline. We recently showed in awake mice that resting cerebral tissue pO2 decreases with age, a phenomenon that manifests mainly after middle-age. To extend these findings, here we aimed to study how tissue pO2 response to neuronal stimulation is affected by aging. We used two-photon phosphorescence lifetime microscopy to directly measure the brain tissue pO2 response to whisker stimulation in healthy awake young, middle-aged and old mice. We show that despite a decrease in baseline tissue pO2, the amplitude of the tissue pO2 response to stimulation is well preserved with age. However, the response dynamics are altered towards a slower response with reduced post-stimulus undershoot in older ages, possibly due to stiffer vessel wall among other factors. An estimation of the net oxygen consumption rate using a modified Krogh model suggests that the O2 overshoot during stimulation may be necessary to secure a higher capillary O2 delivery to the tissue proportional to increased CMRO2 to maintain the capillary tissue pO2. It was observed that the coupling between the CMRO2 and capillary O2 delivery is preserved with age.
Collapse
|
11
|
Prokopiou PC, Pattinson KTS, Wise RG, Mitsis GD. Modeling of dynamic cerebrovascular reactivity to spontaneous and externally induced CO 2 fluctuations in the human brain using BOLD-fMRI. Neuroimage 2018; 186:533-548. [PMID: 30423427 DOI: 10.1016/j.neuroimage.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/09/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022] Open
Abstract
In this work, we investigate the regional characteristics of the dynamic interactions between arterial CO2 and BOLD (dynamic cerebrovascular reactivity - dCVR) during normal breathing and hypercapnic, externally induced step CO2 challenges. To obtain dCVR curves at each voxel, we use a custom set of basis functions based on the Laguerre and gamma basis sets. This allows us to obtain robust dCVR estimates both in larger regions of interest (ROIs), as well as in individual voxels. We also implement classification schemes to identify brain regions with similar dCVR characteristics. Our results reveal considerable variability of dCVR across different brain regions, as well as during different experimental conditions (normal breathing and hypercapnic challenges), suggesting a differential response of cerebral vasculature to spontaneous CO2 fluctuations and larger, externally induced CO2 changes that are possibly associated with the underlying differences in mean arterial CO2 levels. The clustering results suggest that anatomically distinct brain regions are characterized by different dCVR curves that in some cases do not exhibit the standard, positive valued curves that have been previously reported. They also reveal a consistent set of dCVR cluster shapes for resting and forcing conditions, which exhibit different distribution patterns across brain voxels.
Collapse
Affiliation(s)
- Prokopis C Prokopiou
- Integrated Program in Neuroscience, McGill University, Montreal Neurological Institude, H3A 2B4, QC, Canada
| | - Kyle T S Pattinson
- Nuffield Department of Anaesthetics, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Richard G Wise
- CUBRIC, School of Psychology, University of Cardiff, CF10 3AT, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill Univesity, Montreal, QC, H3A 0C3, Canada; Integrated Program in Neuroscience, McGill University, Montreal Neurological Institude, H3A 2B4, QC, Canada.
| |
Collapse
|
12
|
Dobrzeniecki M, Trofimov A, Bragin DE. Cerebral Arterial Compliance in Traumatic Brain Injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2018; 126:21-24. [PMID: 29492525 DOI: 10.1007/978-3-319-65798-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The main role of the cerebral arterial compliance (cAC) is to maintain the stiffness of vessels and protect downstream vessels when changing cerebral perfusion pressure. The aim was to examine the flexibility of the cerebral arterial bed based on the assessment of the cAC in patients with traumatic brain injury (TBI) in groups with and without intracranial hematomas (IHs). MATERIALS AND METHODS We examined 80 patients with TBI (mean age, 35.7 ± 12.8 years; 42 men, 38 women). Group 1 included 41 patients without IH and group 2 included 39 polytraumatized patients with brain compression by IH. Dynamic electrocardiography (ECG)-gated computed tomography angiography (DHCTA) was performed 1-14 days after trauma in group 1 and 2-8 days after surgical evacuation of the hematoma in group 2. Amplitude of arterial blood pressure (ABP), as well as systole and diastole duration were measured noninvasively. Transcranial Doppler was measured simultaneously with DHCTA. The cAC was calculated by the formula proposed by Avezaat. RESULTS The cAC was significantly decreased (p < 0.001) in both groups 1 and 2 compared with normal data. The cAC in group 2 was significantly decreased compared with group 1, both on the side of the former hematoma (р = 0.017). CONCLUSION The cAC in TBI gets significantly lower compared with the conditional norm (p < 0.001). After removal of the intracranial hematomas, compliance in the perifocal zone remains much lower (р = 0.017) compared with compliance of the other brain hemisphere.
Collapse
Affiliation(s)
- Michael Dobrzeniecki
- Department of Neurosurgery, Spine Surgery and Interventional Neuroradiology DONAUISAR Klinikum Deggendorf, Perlasberger Str. 41, 94469, Deggendorf, Germany
| | - Alex Trofimov
- Department of Neurosurgery, Nizhniy Novgorod State Medical Academy, 1, Minin Sq., Nizhniy Novgorod, 603126, Russia.
| | - Denis E Bragin
- Department of Neurosurgery, University of New Mexico School of Medicine, 1 University of New Mexico, MSC 10 5615 Neurosurgery, Albuquerque, NM, 87131, USA
| |
Collapse
|
13
|
Impulse response timing differences in BOLD and CBV weighted fMRI. Neuroimage 2018; 181:292-300. [PMID: 29981905 DOI: 10.1016/j.neuroimage.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022] Open
Abstract
Recent advances in BOLD fMRI scan techniques have substantially improved spatial and temporal resolution, currently reaching to sub-millimeter and sub-second levels respectively. Unfortunately, there remain physiological barriers that prevent achieving this resolution in practice. BOLD contrast relies on the hemodynamic response to neuronal activity, whose associated cerebral blood oxygenation (CBO) changes may spread over several millimeters and last several seconds. Recent reports have suggested that significant improvements may be possible with cerebral blood volume (CBV)-weighted fMRI, which highlights the CBV changes rather than the BOLD changes associated with the hemodynamic response. Nevertheless, quantitative comparisons between CBV and BOLD are sparse, in particular regarding their temporal characteristics in human brain. To address this, we studied a cohort of subjects that received injection of ferumoxytol, an intravascular iron-oxide based contrast agent that introduces strong CBV contrast. An event-related visual stimulus paradigm was used to compare the impulse response (IR) for CBV and BOLD contrast, obtained with and without ferumoxytol, respectively. Experiments performed at 7 T (n = 5) at 1.2-1.5 mm spatial and 1 s temporal resolution showed that the onset time and time-to-peak of the CBV IR averaged 0.8 and 3.5 s respectively, both 0.6 s shorter than the BOLD IR. While significant, these improvements are relatively small and not expected to lead to practical advantages for the extraction of temporal information about neural activity. Nonlinearities in the observed IR were also compared and found to be similar between the CBV and BOLD, indicating that these are likely not caused by a 'ceiling' effect in the CBO response, but rather support a previously proposed model of vascular compliance, in which changes in vascular tone elicited by a preceding stimulus affect the IR.
Collapse
|
14
|
Dagar S, Chowdhury SR, Bapi RS, Dutta A, Roy D. Near-Infrared Spectroscopy - Electroencephalography-Based Brain-State-Dependent Electrotherapy: A Computational Approach Based on Excitation-Inhibition Balance Hypothesis. Front Neurol 2016; 7:123. [PMID: 27551273 PMCID: PMC4976097 DOI: 10.3389/fneur.2016.00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/25/2016] [Indexed: 12/16/2022] Open
Abstract
Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The poststroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS) techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG) and functional-near-infrared spectroscopy (fNIRS) can be leveraged for Brain State Dependent Electrotherapy (BSDE). In this hypothesis and theory article, we propose a computational approach based on excitation–inhibition (E–I) balance hypothesis to objectively quantify the poststroke individual brain state using online fNIRS–EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local E–I (that is the ratio of Glutamate/GABA), which may be targeted with NIBS using a computational pipeline that includes individual “forward models” to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons, which can be captured with E–I-based brain models. Furthermore, E–I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing, which can then be implicated in changes in function. We first review the evidence that shows how this local imbalance between E–I leading to functional dysfunction can be restored in targeted sites with NIBS (motor cortex and somatosensory cortex) resulting in large-scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Second, we show evidence how BSDE based on E–I balance hypothesis may target a specific brain site or network as an adjuvant treatment. Hence, computational neural mass model-based integration of neurostimulation with online neuroimaging systems may provide less ambiguous, robust optimization of NIBS, and its application in neurological conditions and disorders across individual patients.
Collapse
Affiliation(s)
- Snigdha Dagar
- Cognitive Science Lab, International Institute of Information Technology , Hyderabad , India
| | - Shubhajit Roy Chowdhury
- School of Computing and Electrical Engineering, Indian Institute of Technology , Mandi , India
| | - Raju Surampudi Bapi
- Cognitive Science Lab, International Institute of Information Technology, Hyderabad, India; School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India
| | - Anirban Dutta
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund , Dortmund , Germany
| | - Dipanjan Roy
- Centre of Behavioral and Cognitive Sciences, University of Allahabad , Allahabad , India
| |
Collapse
|
15
|
Polycarpou A, Hricisák L, Iring A, Safar D, Ruisanchez É, Horváth B, Sándor P, Benyó Z. Adaptation of the cerebrocortical circulation to carotid artery occlusion involves blood flow redistribution between cortical regions and is independent of eNOS. Am J Physiol Heart Circ Physiol 2016; 311:H972-H980. [PMID: 27496877 DOI: 10.1152/ajpheart.00197.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 01/02/2023]
Abstract
Cerebral circulation is secured by feed-forward and feed-back control pathways to maintain and eventually reestablish the optimal oxygen and nutrient supply of neurons in case of disturbances of the cardiovascular system. Using the high temporal and spatial resolution of laser-speckle imaging we aimed to analyze the pattern of cerebrocortical blood flow (CoBF) changes after unilateral (left) carotid artery occlusion (CAO) in anesthetized mice to evaluate the contribution of macrovascular (circle of Willis) vs. pial collateral vessels as well as that of endothelial nitric oxide synthase (eNOS) to the cerebrovascular adaptation to CAO. In wild-type mice CoBF reduction in the left temporal cortex started immediately after CAO, reaching its maximum (-26%) at 5-10 s. Thereafter, CoBF recovered close to the preocclusion level within 30 s indicating the activation of feed-back pathway(s). Interestingly, the frontoparietal cerebrocortical regions also showed CoBF reduction in the left (-17-19%) but not in the right hemisphere, although these brain areas receive their blood supply from the common azygos anterior cerebral artery in mice. In eNOS-deficient animals the acute CoBF reduction after CAO was unaltered, and the recovery was even accelerated compared with controls. These results indicate that 1) the Willis circle alone is not sufficient to provide an immediate compensation for the loss of one carotid artery, 2) pial collaterals attenuate the ischemia of the temporal cortex ipsilateral to CAO at the expense of the blood supply of the frontoparietal region, and 3) eNOS, surprisingly, does not play an important role in this CoBF redistribution.
Collapse
Affiliation(s)
- Andreas Polycarpou
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - László Hricisák
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - András Iring
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Daniel Safar
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Éva Ruisanchez
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Béla Horváth
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Péter Sándor
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| |
Collapse
|
16
|
Golestani AM, Kwinta JB, Strother SC, Khatamian YB, Chen JJ. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: The influence of basal carbon dioxide. Neuroimage 2016; 132:301-313. [PMID: 26908321 DOI: 10.1016/j.neuroimage.2016.02.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 12/28/2022] Open
Abstract
Although widely used in resting-state fMRI (fMRI) functional connectivity measurement (fcMRI), the BOLD signal is only an indirect measure of neuronal activity, and is inherently modulated by both neuronal activity and vascular physiology. For instance, cerebrovascular reactivity (CVR) varies widely across individuals irrespective of neuronal function, but the implications for fcMRI are currently unknown. This knowledge gap compromises our ability to correctly interpret fcMRI measurements. In this work, we investigate the relationship between CVR and resting fcMRI measurements in healthy young adults, in both the motor and the executive-control networks. We modulate CVR within each individual by subtly increasing and decreasing resting vascular tension through baseline end-tidal CO2 (PETCO2), and measure fcMRI during these hypercapnic, hypocapnic and normocapnic states. Furthermore, we assess the association between CVR and fcMRI within and across individuals. Within individuals, resting PETCO2 is found to significantly influence both CVR and resting fcMRI values. In addition, we find resting fcMRI to be significantly and positively associated with CVR across the group in both networks. This relationship is potentially mediated by concomitant alterations in BOLD signal fluctuation amplitude. This work clearly demonstrates and quantifies a major vascular modulator of resting fcMRI, one that is also subject and regional dependent. We suggest that individualized correction for CVR effects in fcMRI measurements is essential for fcMRI studies of healthy brains, and can be even more important in studying diseased brains.
Collapse
Affiliation(s)
| | - Jonathan B Kwinta
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Stephen C Strother
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | | | - J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
17
|
Huneau C, Benali H, Chabriat H. Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models. Front Neurosci 2015; 9:467. [PMID: 26733782 PMCID: PMC4683196 DOI: 10.3389/fnins.2015.00467] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/23/2015] [Indexed: 01/26/2023] Open
Abstract
The mechanisms that link a transient neural activity to the corresponding increase of cerebral blood flow (CBF) are termed neurovascular coupling (NVC). They are possibly impaired at early stages of small vessel or neurodegenerative diseases. Investigation of NVC in humans has been made possible with the development of various neuroimaging techniques based on variations of local hemodynamics during neural activity. Specific dynamic models are currently used for interpreting these data that can include biophysical parameters related to NVC. After a brief review of the current knowledge about possible mechanisms acting in NVC we selected seven models with explicit integration of NVC found in the literature. All these models were described using the same procedure. We compared their physiological assumptions, mathematical formalism, and validation. In particular, we pointed out their strong differences in terms of complexity. Finally, we discussed their validity and their potential applications. These models may provide key information to investigate various aspects of NVC in human pathology.
Collapse
Affiliation(s)
- Clément Huneau
- Laboratoire d'Imagerie Biomédicale, UPMC Paris 06, Centre National de la Recherche Scientifique U7371, Institut National de la Santé et de la Recherche Médicale U1146, Sorbonne UniversitésParis, France; Institut National de la Santé et de la Recherche Médicale U1161, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Habib Benali
- Laboratoire d'Imagerie Biomédicale, UPMC Paris 06, Centre National de la Recherche Scientifique U7371, Institut National de la Santé et de la Recherche Médicale U1146, Sorbonne Universités Paris, France
| | - Hugues Chabriat
- Institut National de la Santé et de la Recherche Médicale U1161, Université Paris Diderot, Sorbonne Paris CitéParis, France; AP-HP, Hôpital Lariboisière, Service de Neurologie and DHU NeuroVascParis, France
| |
Collapse
|
18
|
Wang J, Miao W, Li J, Li M, Zhen Z, Sabel B, Xian J, He H. Automatic segmentation of the lateral geniculate nucleus: Application to control and glaucoma patients. J Neurosci Methods 2015; 255:104-14. [PMID: 26279341 DOI: 10.1016/j.jneumeth.2015.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND The lateral geniculate nucleus (LGN) is a key relay center of the visual system. Because the LGN morphology is affected by different diseases, it is of interest to analyze its morphology by segmentation. However, existing LGN segmentation methods are non-automatic, inefficient and prone to experimenters' bias. NEW METHOD To address these problems, we proposed an automatic LGN segmentation algorithm based on T1-weighted imaging. First, the prior information of LGN was used to create a prior mask. Then region growing was applied to delineate LGN. We evaluated this automatic LGN segmentation method by (1) comparison with manually segmented LGN, (2) anatomically locating LGN in the visual system via LGN-based tractography, (3) application to control and glaucoma patients. RESULTS The similarity coefficients of automatic segmented LGN and manually segmented one are 0.72 (0.06) for the left LGN and 0.77 (0.07) for the right LGN. LGN-based tractography shows the subcortical pathway seeding from LGN passes the optic tract and also reaches V1 through the optic radiation, which is consistent with the LGN location in the visual system. In addition, LGN asymmetry as well as LGN atrophy along with age is observed in normal controls. The investigation of glaucoma effects on LGN volumes demonstrates that the bilateral LGN volumes shrink in patients. COMPARISON WITH EXISTING METHODS The automatic LGN segmentation is objective, efficient, valid and applicable. CONCLUSIONS Experiment results proved the validity and applicability of the algorithm. Our method will speed up the research on visual system and greatly enhance studies of different vision-related diseases.
Collapse
Affiliation(s)
- Jieqiong Wang
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 10090, China; Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 10090, China.
| | - Wen Miao
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 10090, China; Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 10090, China.
| | - Jing Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Meng Li
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 10090, China; Department of Neurology, Otto-von-Guericke University, Germany.
| | - Zonglei Zhen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Bernhard Sabel
- Otto-von-Guericke University of Magdeburg, Medical Faculty, Institute of Medical Psychology, Magdeburg, Germany.
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Huiguang He
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 10090, China; Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 10090, China.
| |
Collapse
|
19
|
Dutta A. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS. Front Syst Neurosci 2015; 9:107. [PMID: 26321925 PMCID: PMC4530593 DOI: 10.3389/fnsys.2015.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/13/2015] [Indexed: 12/04/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG). Respective neural activity (energy demand) has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF) that supplies glucose (energy supply) via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS), which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU) that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU for brain-state dependent tDCS. In principal accordance, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations during tDCS.
Collapse
Affiliation(s)
- Anirban Dutta
- INRIA (Sophia Antipolis) - CNRS: UMR5506 - Université Montpellier Montpellier, France ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), CNRS: UMR5506 - Université Montpellier Montpellier, France
| |
Collapse
|
20
|
Examining the regional and cerebral depth-dependent BOLD cerebrovascular reactivity response at 7 T. Neuroimage 2015; 114:239-48. [DOI: 10.1016/j.neuroimage.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/06/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
|
21
|
Tsvetanov KA, Henson RNA, Tyler LK, Davis SW, Shafto MA, Taylor JR, Williams N, Cam-Can, Rowe JB. The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults. Hum Brain Mapp 2015; 36:2248-69. [PMID: 25727740 PMCID: PMC4730557 DOI: 10.1002/hbm.22768] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/08/2022] Open
Abstract
In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; http://www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task‐based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. Hum Brain Mapp 36:2248–2269, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kamen A Tsvetanov
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity. Neuroimage 2015; 110:110-23. [PMID: 25655446 DOI: 10.1016/j.neuroimage.2015.01.050] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 11/23/2022] Open
Abstract
Cerebrovascular reactivity (CVR) is an important metric of cerebrovascular health. While the BOLD fMRI method in conjunction with carbon-dioxide (CO2) based vascular manipulation has been the most commonly used, the BOLD signal is not a direct measure of vascular changes, and the use of arterial-spin labeling (ASL) cerebral blood flow (CBF) imaging is increasingly advocated. Nonetheless, given the differing dependencies of BOLD and CBF on vascular baseline conditions and the diverse CO2 manipulation types currently used in the literature, knowledge of potential biases introduced by each technique is critical for the interpretation of CVR measurements. In this work, we use simultaneous BOLD-CBF acquisitions during both vasodilatory (hypercapnic) and vasoconstrictive (hypocapnic) stimuli to measure CVR. We further imposed different levels of baseline vascular tension by inducing hypercapnic and hypocapnic baselines, separately from normocapnia by 4mmHg. We saw significant and diverse dependencies on vascular stimulus and baseline condition in both BOLD and CBF CVR measurements: (i) BOLD-based CVR is more sensitive to basal vascular tension than CBF-based CVR; (ii) the use of a combination of vasodilatory and vasoconstrictive stimuli maximizes the sensitivity of CBF-based CVR to vascular tension changes; (iii) the BOLD and CBF vascular response delays are both significantly lengthened at predilated baseline. As vascular tension can often be altered by potential pathology, our findings are important considerations when interpreting CVR measurements in health and disease.
Collapse
|
23
|
Jindal U, Sood M, Dutta A, Chowdhury SR. Development of Point of Care Testing Device for Neurovascular Coupling From Simultaneous Recording of EEG and NIRS During Anodal Transcranial Direct Current Stimulation. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2015; 3:2000112. [PMID: 27170897 PMCID: PMC4848058 DOI: 10.1109/jtehm.2015.2389230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/06/2014] [Accepted: 12/18/2014] [Indexed: 01/17/2023]
Abstract
This paper presents a point of care testing device for neurovascular coupling (NVC) from simultaneous recording of electroencephalogram (EEG) and near infrared spectroscopy (NIRS) during anodal transcranial direct current stimulation (tDCS). Here, anodal tDCS modulated cortical neural activity leading to hemodynamic response can be used to identify the impaired cerebral microvessels functionality. The impairments in the cerebral microvessels functionality may lead to impairments in the cerebrovascular reactivity (CVR), where severely reduced CVR predicts the chances of transient ischemic attack and ipsilateral stroke. The neural and hemodynamic responses to anodal tDCS were studied through joint imaging with EEG and NIRS, where NIRS provided optical measurement of changes in tissue oxy-([Formula: see text] and deoxy-([Formula: see text]) hemoglobin concentration and EEG captured alterations in the underlying neuronal current generators. Then, a cross-correlation method for the assessment of NVC underlying the site of anodal tDCS is presented. The feasibility studies on healthy subjects and stroke survivors showed detectable changes in the EEG and the NIRS responses to a 0.526 A/[Formula: see text] of anodal tDCS. The NIRS system was bench tested on 15 healthy subjects that showed a statistically significant (p < 0.01) difference in the signal-to-noise ratio (SNR) between the ON- and OFF-states of anodal tDCS where the mean SNR of the NIRS device was found to be 42.33 ± 1.33 dB in the ON-state and 40.67 ± 1.23 dB in the OFF-state. Moreover, the clinical study conducted on 14 stroke survivors revealed that the lesioned hemisphere with impaired circulation showed significantly (p < 0.01) less change in [Formula: see text] than the nonlesioned side in response to anodal tDCS. The EEG study on healthy subjects showed a statistically significant (p < 0.05) decrease around individual alpha frequency in the alpha band (8-13 Hz) following anodal tDCS. Moreover, the joint EEG-NIRS imaging on 4 stroke survivors showed an immediate increase in the theta band (4-8 Hz) EEG activity after the start of anodal tDCS at the nonlesioned hemisphere. Furthermore, cross-correlation function revealed a significant (95% confidence interval) negative cross correlation only at the nonlesioned hemisphere during anodal tDCS, where the log-transformed mean-power of EEG within 0.5-11.25 Hz lagged [Formula: see text] response in one of the stroke survivors with white matter lesions. Therefore, it was concluded that the anodal tDCS can perturb the local neural and the vascular activity (via NVC) which can be used for assessing regional NVC functionality where confirmatory clinical studies are required.
Collapse
Affiliation(s)
- Utkarsh Jindal
- Centre for VLSI and Embedded Systems TechnologyInternational Institute of Information Technology HyderabadHyderabad500032India
| | - Mehak Sood
- Centre for VLSI and Embedded Systems TechnologyInternational Institute of Information Technology HyderabadHyderabad500032India
| | - Anirban Dutta
- Institut national de recherche en informatique et en automatiqueMontpellier34095France
| | - Shubhajit Roy Chowdhury
- Centre for VLSI and Embedded Systems TechnologyInternational Institute of Information Technology HyderabadHyderabad500032India
| |
Collapse
|
24
|
Martin C. Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals. Front Neurosci 2014; 8:211. [PMID: 25191214 PMCID: PMC4137227 DOI: 10.3389/fnins.2014.00211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/01/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologs within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges.
Collapse
Affiliation(s)
- Chris Martin
- Department of Psychology, The University of Sheffield Sheffield, UK
| |
Collapse
|
25
|
Desjardins M, Berti R, Pouliot P, Dubeau S, Lesage F. Multimodal study of the hemodynamic response to hypercapnia in anesthetized aged rats. Neurosci Lett 2014; 563:33-7. [PMID: 24480251 DOI: 10.1016/j.neulet.2014.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
With aging, the brain undergoes changes in metabolism and perfusion, both of which influence the widely used blood-oxygenation-level-dependent (BOLD) MRI signal. To isolate the vascular effects associated with age, this study measured the response to a hypercapnic challenge using different imaging modalities in 19 young (3 months-old) and 13 old (24 months-old) Long-Evans rats. Intrinsic optical imaging was used to measure oxy (HbO), deoxy (HbR) and total (HbT) hemoglobin concentration changes, laser speckle for cerebral blood flow (CBF) changes, and MRI for the BOLD signal. Older rats had smaller HbO (41% smaller), HbT (50%) and CBF (34%) responses, but the temporal dynamics did not exhibit significant age differences. The ratio of CBV to CBF responses was also smaller in older adults, potentially indicating a change in the compliance of vessels.
Collapse
Affiliation(s)
- Michèle Desjardins
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada.
| | - Romain Berti
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Philippe Pouliot
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Simon Dubeau
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Frédéric Lesage
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| |
Collapse
|
26
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
27
|
Mayer AR, Toulouse T, Klimaj S, Ling JM, Pena A, Bellgowan PSF. Investigating the properties of the hemodynamic response function after mild traumatic brain injury. J Neurotrauma 2013; 31:189-97. [PMID: 23965000 DOI: 10.1089/neu.2013.3069] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract Although several functional magnetic resonance imaging (fMRI) studies have been conducted in human models of mild traumatic brain injury (mTBI), to date no studies have explicitly examined how injury may differentially affect both the positive phase of the hemodynamic response function (HRF) as well as the post-stimulus undershoot (PSU). Animal models suggest that the acute and semi-acute stages of mTBI are associated with significant disruptions in metabolism and to the microvasculature, both of which could impact on the HRF. Therefore, fMRI data were collected on a cohort of 30 semi-acute patients with mTBI (16 males; 27.83±9.97 years old; 13.00±2.18 years of education) and 30 carefully matched healthy controls (HC; 16 males; 27.17±10.08 years old; 13.37±2.31 years of education) during a simple sensory-motor task. Patients reported increased cognitive, somatic, and emotional symptoms relative to controls, although no group differences were detected on traditional neuropsychological examination. There were also no differences between patients with mTBI and controls on fMRI data using standard analytic techniques, although mTBI exhibited a greater volume of activation during the task qualitatively. A significant Group×Time interaction was observed in the right supramarginal gyrus, bilateral primary and secondary visual cortex, and the right parahippocampal gyrus. The interaction was the result of an earlier time-to-peak and positive magnitude shift throughout the estimated HRF in patients with mTBI relative to HC. This difference in HRF shape combined with the greater volume of activated tissue may be indicative of a potential compensatory mechanism to injury. The current study demonstrates that direct examination and modeling of HRF characteristics beyond magnitude may provide additional information about underlying neuropathology that is not available with more standard fMRI analyses.
Collapse
Affiliation(s)
- Andrew R Mayer
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | | | | | | | | | | |
Collapse
|
28
|
Mazzetto-Betti KC, Leoni RF, Pontes-Neto OM, Sturzbecher MJ, Santos AC, Leite JP, Silva AC, de Araujo DB. Quantification of BOLD fMRI parameters to infer cerebrovascular reactivity of the middle cerebral artery. J Magn Reson Imaging 2013; 38:1203-9. [PMID: 23188762 PMCID: PMC3586985 DOI: 10.1002/jmri.23943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/09/2012] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To quantify the amplitude and temporal aspects of the blood oxygenation level-dependent (BOLD) response to an auditory stimulus during normocapnia and hypercapnia in healthy subjects in order to establish which BOLD parameters are best suited to infer the cerebrovascular reactivity (CVR) in the middle cerebral artery (MCA) territory. MATERIALS AND METHODS Twenty healthy volunteers (mean age: 23.6 ± 3.7 years, 11 women) were subjected to a functional paradigm composed of five epochs of auditory stimulus (3 sec) intercalated by six intervals of rest (21 sec). Two levels of hypercapnia were achieved by a combination of air and CO2 while the end-tidal CO2 (ETCO2 ) was continually measured. An autoregressive method was applied to analyze four parameters of the BOLD signal: onset-time, time-to-peak, full-width-at-half-maximum (FWHM), and amplitude. RESULTS BOLD onset time (P < 0.001) and full-width at half-maximum (FWHM) (P < 0.05) increased linearly, while BOLD amplitude decreased (P < 0.001) linearly with increasing levels of hypercapnia. Test-retest for reproducibility in five subjects revealed excellent concordance for onset time and amplitude. CONCLUSION The robust linear dependence of BOLD onset time, FWHM, and amplitude to hypercapnia suggest future application of this protocol in clinical studies aimed at evaluating CVR of the MCA territory.
Collapse
Affiliation(s)
- Kelley C Mazzetto-Betti
- Department of Neuroscience and Behavioural Sciences, FMRP, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Buxton RB. The physics of functional magnetic resonance imaging (fMRI). REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:096601. [PMID: 24006360 PMCID: PMC4376284 DOI: 10.1088/0034-4885/76/9/096601] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, University of California, San Diego, USA
| |
Collapse
|
30
|
Huang L, Liu Y, Li M, Hu D. Hemodynamic and electrophysiological spontaneous low-frequency oscillations in the cortex: directional influences revealed by Granger causality. Neuroimage 2013; 85 Pt 2:810-22. [PMID: 23911674 DOI: 10.1016/j.neuroimage.2013.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/27/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022] Open
Abstract
We used a combined electrophysiological/hemodynamic system to examine low-frequency oscillations (LFOs) in spontaneous neuronal activities (spike trains and local field potentials) and hemodynamic signals (cerebral blood flow) recorded from the anesthetized rat somatosensory and visual cortices. The laser Doppler flowmetry (LDF) probe was tilted slightly to approach the area in which a microelectrode array (MEA) was implanted for simultaneous recordings. Spike trains (STs) were converted into continuous-time rate functions (CRFs) using the ST instantaneous firing rates. LFOs were detected for all three of the components using the multi-taper method (MTM). The frequencies of these LFOs ranged from 0.052 to 0.167 Hz (mean±SD, 0.10±0.026 Hz) for cerebral blood flow (CBF), from 0.027 to 0.26 Hz (mean±SD, 0.12±0.041 Hz) for the CRFs of the STs and from 0.04 to 0.19 Hz (mean±SD, 0.11±0.035 Hz) for local field potentials (LFPs). We evaluated the Granger causal relationships of spontaneous LFOs among CBF, LFPs and CRFs using Granger causality (GC) analysis. Significant Granger causal relationships were observed from LFPs to CBF, from STs to CBF and from LFPs to STs at approximately 0.1 Hz. The present results indicate that spontaneous LFOs exist not only in hemodynamic components but also in neuronal activities of the rat cortex. To the best of our knowledge, the present study is the first to identify Granger causal influences among CBF, LFPs and STs and show that spontaneous LFOs carry important Granger causal influences from neural activities to hemodynamic signals.
Collapse
Affiliation(s)
- Liangming Huang
- College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan, PR China
| | | | | | | |
Collapse
|
31
|
Liu TT. Neurovascular factors in resting-state functional MRI. Neuroimage 2013; 80:339-48. [PMID: 23644003 DOI: 10.1016/j.neuroimage.2013.04.071] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022] Open
Abstract
There has been growing interest in the use of resting-state functional magnetic resonance imaging (rsfMRI) for the assessment of disease and treatment, and a number of studies have reported significant disease-related changes in resting-state blood oxygenation level dependent (BOLD) signal amplitude and functional connectivity. rsfMRI is particularly suitable for clinical applications because the approach does not require the patient to perform a task and scans can be obtained in a relatively short amount of time. However, the mechanisms underlying resting-state BOLD activity are not well understood and thus the interpretation of changes in resting state activity is not always straightforward. The BOLD signal represents the hemodynamic response to neural activity, and changes in resting-state activity can reflect a complex combination of neural, vascular, and metabolic factors. This paper examines the role of neurovascular factors in rsfMRI and reviews approaches for the interpretation and analysis of resting state measures in the presence of confounding factors.
Collapse
Affiliation(s)
- Thomas T Liu
- Center for Functional Magnetic Resonance Imaging, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA 92093-0677, USA.
| |
Collapse
|
32
|
Fantini S. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS). Neuroimage 2013; 85 Pt 1:202-21. [PMID: 23583744 DOI: 10.1016/j.neuroimage.2013.03.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/13/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022] Open
Abstract
This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers.
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
33
|
Liu TT, Glover GH, Mueller BA, Greve DN, Brown GG. An introduction to normalization and calibration methods in functional MRI. PSYCHOMETRIKA 2013; 78:308-21. [PMID: 25107618 DOI: 10.1007/s11336-012-9309-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 02/15/2012] [Indexed: 05/26/2023]
Abstract
In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes in the baseline neurovascular state can result in significant modulations of the BOLD signal that are independent of changes in neural activity. This paper introduces some of the normalization and calibration methods that have been proposed for making the BOLD signal a more accurate reflection of underlying brain activity for human fMRI studies.
Collapse
Affiliation(s)
- Thomas T Liu
- Center for Functional MRI, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA, 92093, USA,
| | | | | | | | | |
Collapse
|
34
|
Tal O, Diwakar M, Wong CW, Olafsson V, Lee R, Huang MX, Liu TT. Caffeine-Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread Decreases in MEG Connectivity. Front Hum Neurosci 2013; 7:63. [PMID: 23459778 PMCID: PMC3586678 DOI: 10.3389/fnhum.2013.00063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/16/2013] [Indexed: 01/22/2023] Open
Abstract
In resting-state functional magnetic resonance imaging (fMRI), the temporal correlation between spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal from different brain regions is used to assess functional connectivity. However, because the BOLD signal is an indirect measure of neuronal activity, its complex hemodynamic nature can complicate the interpretation of differences in connectivity that are observed across conditions or subjects. For example, prior studies have shown that caffeine leads to widespread reductions in BOLD connectivity but were not able to determine if neural or vascular factors were primarily responsible for the observed decrease. In this study, we used source-localized magnetoencephalography (MEG) in conjunction with fMRI to further examine the origins of the caffeine-induced changes in BOLD connectivity. We observed widespread and significant (p < 0.01) reductions in both MEG and fMRI connectivity measures, suggesting that decreases in the connectivity of resting-state neuro-electric power fluctuations were primarily responsible for the observed BOLD connectivity changes. The MEG connectivity decreases were most pronounced in the beta band. By demonstrating the similarity in MEG and fMRI based connectivity changes, these results provide evidence for the neural basis of resting-state fMRI networks and further support the potential of MEG as a tool to characterize resting-state connectivity.
Collapse
Affiliation(s)
- Omer Tal
- Center for Functional MRI, University of California San Diego La Jolla, CA, USA ; Department of Bioengineering, University of California San Diego La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Martin C, Zheng Y, Sibson NR, Mayhew JEW, Berwick J. Complex spatiotemporal haemodynamic response following sensory stimulation in the awake rat. Neuroimage 2012; 66:1-8. [PMID: 23063446 PMCID: PMC3556776 DOI: 10.1016/j.neuroimage.2012.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/12/2012] [Accepted: 10/03/2012] [Indexed: 11/24/2022] Open
Abstract
Detailed understanding of the haemodynamic changes that underlie non-invasive neuroimaging techniques such as blood oxygen level dependent functional magnetic resonance imaging is essential if we are to continue to extend the use of these methods for understanding brain function and dysfunction. The use of animal and in particular rodent research models has been central to these endeavours as they allow in-vivo experimental techniques that provide measurements of the haemodynamic response function at high temporal and spatial resolution. A limitation of most of this research is the use of anaesthetic agents which may disrupt or mask important features of neurovascular coupling or the haemodynamic response function. In this study we therefore measured spatiotemporal cortical haemodynamic responses to somatosensory stimulation in awake rats using optical imaging spectroscopy. Trained, restrained animals received non-noxious stimulation of the whisker pad via chronically implanted stimulating microwires whilst optical recordings were made from the contralateral somatosensory cortex through a thin cranial window. The responses we measure from un-anaesthetised animals are substantially different from those reported in previous studies which have used anaesthetised animals. These differences include biphasic response regions (initial increases in blood volume and oxygenation followed by subsequent decreases) as well as oscillations in the response time series of awake animals. These haemodynamic response features do not reflect concomitant changes in the underlying neuronal activity and therefore reflect neurovascular or cerebrovascular processes. These hitherto unreported hyperemic response dynamics may have important implications for the use of anaesthetised animal models for research into the haemodynamic response function.
Collapse
Affiliation(s)
- Chris Martin
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP, UK.
| | - Ying Zheng
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP, UK
| | - Nicola R Sibson
- Radiobiology Research Institute, Department of Oncology, University of Oxford, Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - John E W Mayhew
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP, UK
| |
Collapse
|
36
|
Dubeau S, Havlicek M, Beaumont E, Ferland G, Lesage F, Pouliot P. Neurovascular deconvolution of optical signals as a proxy for the true neuronal inputs. J Neurosci Methods 2012; 210:247-58. [PMID: 22841631 DOI: 10.1016/j.jneumeth.2012.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Since the Kalman filter and Monte Carlo techniques, much theoretical work has been put into the development of signal deconvolution tools. Among recent developments taking place in neuroscience are Dynamic Expectation Maximization, Generalized Filtering and the Cubature Kalman Filter. While there are exciting prospects to use these tools for Dynamic Causal Modeling and other analyses of networks, there has been comparatively little work to validate the algorithms on controlled experimental data. In this work, the latest evolution of these tools, the square-root cubature Kalman smoother (SCKS), is tested for its effectiveness on multimodal neurovascular data. Multispectral intrinsic optical imaging and electrophysiological measurements of Wistar rats are used in combination with somatosensory stimulation. The Buxton-Friston (B-F) balloon model is then deconvolved with the SCKS algorithm to obtain the estimated neuronal inputs u(t) from the hemodynamic measurements (flow, oxy- and deoxygenated hemoglobin). RESULTS The estimated neuronal inputs are compared to the stimulation protocol and a sensitivity and specificity analysis is carried out. SCKS succeeds in recovering most of the stimulations. Next, the estimated inputs are compared to actual measures of neuronal activity: local field potentials (LFPs) and multiunit activity (MUA). Good sensitivity of the technique is obtained with both LFPs and MUA over the whole recordings, with the area of the ROC curves favoring LFPs. A weak correlation between SCKS estimated inputs and LFPs is found outside stimulation periods, significant at one standard deviation. Finally, the accuracy of state reconstructions is studied and SCKS reconstructed states are highly concordant with measured states.
Collapse
Affiliation(s)
- S Dubeau
- Dept. of Electrical Engineering, Ecole Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, QC H3C 3A7, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits 2012; 6:51. [PMID: 22907993 PMCID: PMC3414732 DOI: 10.3389/fncir.2012.00051] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/19/2012] [Indexed: 12/23/2022] Open
Abstract
Following the discovery of the vasorelaxant properties of nitric oxide (NO) by Furchgott and Ignarro, the finding by Bredt and coll. of a constitutively expressed NO synthase in neurons (nNOS) led to the presumption that neuronal NO may control cerebrovascular functions. Consequently, numerous studies have sought to determine whether neuraly-derived NO is involved in the regulation of cerebral blood flow (CBF). Anatomically, axons, dendrites, or somata of NO neurons have been found to contact the basement membrane of blood vessels or perivascular astrocytes in all segments of the cortical microcirculation. Functionally, various experimental approaches support a role of neuronal NO in the maintenance of resting CBF as well as in the vascular response to neuronal activity. Since decades, it has been assumed that neuronal NO simply diffuses to the local blood vessels and produce vasodilation through a cGMP-PKG dependent mechanism. However, NO is not the sole mediator of vasodilation in the cerebral microcirculation and is known to interact with a myriad of signaling pathways also involved in vascular control. In addition, cerebrovascular regulation is the result of a complex orchestration between all components of the neurovascular unit (i.e., neuronal, glial, and vascular cells) also known to produce NO. In this review article, the role of NO interneuron in the regulation of cortical microcirculation will be discussed in the context of the neurovascular unit.
Collapse
Affiliation(s)
- Sonia Duchemin
- Department of Pharmacology, Université de Montréal Montreal, QC, Canada
| | | | | | | |
Collapse
|
38
|
Addicott MA, Peiffer AM, Laurienti PJ. The Effects of Dietary Caffeine Use and Abstention on Blood Oxygen Level-Dependent Activation and Cerebral Blood Flow. JOURNAL OF CAFFEINE RESEARCH 2012; 2:15-22. [PMID: 24761265 DOI: 10.1089/jcr.2011.0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Caffeine is a known vasoconstrictor that reduces resting cerebral blood flow (CBF) throughout the brain. This effect may be problematic in functional magnetic resonance imaging (fMRI) research, as the blood oxygen level-dependent (BOLD) signal is a complex interaction of CBF and other factors that are dependent on changes in neural activity. It is unknown whether changes in the BOLD signal during an fMRI experiment could be affected by subjects' recent use or abstinence from dietary caffeine. METHODS Here, we report two similar studies (n=45 and 17) that measure the effects of caffeine on BOLD activation, BOLD time course parameters, and CBF. Using a factorial design, low, moderate, and high caffeine consumers received either caffeine (250 mg) or placebo during normal caffeine use (satiated state) or after 30 hours of abstention (abstinent state). The fMRI of a reaction time task and resting-state CBF were collected. RESULTS In general, acute caffeine administration reduced the time to peak and full width at half maximum of the BOLD time course, and CBF across both studies. Caffeine also produced a small reduction in BOLD activation. The majority of these reductions across measures were moderated by neither the level of caffeine use, nor the abstinent or satiated state. CONCLUSIONS These results suggest that dietary caffeine use does not produce a significant effect on task-related BOLD activation.
Collapse
Affiliation(s)
- Merideth A Addicott
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center , Durham, North Carolina
| | - Ann M Peiffer
- Department of Radiation Oncology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Paul J Laurienti
- Department of Radiology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
39
|
Li M, He HG, Shi W, Li J, Lv B, Wang CH, Miao QW, Wang ZC, Wang NL, Walter M, Sabel BA. Quantification of the human lateral geniculate nucleus in vivo using MR imaging based on morphometry: volume loss with age. AJNR Am J Neuroradiol 2012; 33:915-21. [PMID: 22245591 DOI: 10.3174/ajnr.a2884] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Because it is a small subcortical structure, the precise measurement of the human LGN is still a technical challenge. In this article, we identify the LGN in vivo, measure its volume based on high-resolution MR imaging, and then relate its volume to subject age to evaluate the potential clinical application. MATERIALS AND METHODS A semiautomatic LGN isolation method was developed on scans obtained with 1.5T MR imaging, which involves highlighting the surrounding landmarks, obtaining candidate LGN voxels with a region-growing algorithm, and isolating the LGN from the ventral diencephalon. The method was accessed with a test-retest reliability on the results from 55 healthy subjects at different ages. RESULTS This method showed high test-retest within-subject reliability (ICC, 0.950 and 0.948 in left and right hemispheres, respectively) among 3 independent measurements in each subject. The unilateral volume was highly variable, ranging from 52 to 102 mm(3) in the left and 66 to 105 mm(3) in the right hemisphere, with significantly larger volumes on the right (86 mm(3)) than on the left (77 mm(3)). The combined bilateral volumes (controlled for ICV) significantly decreased in size with progressing age from 20 to 65 years (r = -0.512, P = .000). There was no sex difference in bilateral LGN volumes (male/female: 163.1 ± 18.2/162.2 ± 21.4 mm(3)). CONCLUSIONS Using our new technique, we were able to reliably determine the human LGN volume in vivo, which was found to decline with age. The volumes obtained by our method corresponded well with previously reported postmortem values, so our method may be considered to be superior for investigating the pathology of LGN.
Collapse
Affiliation(s)
- M Li
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
van Zijl PCM, Hua J, Lu H. The BOLD post-stimulus undershoot, one of the most debated issues in fMRI. Neuroimage 2012; 62:1092-102. [PMID: 22248572 DOI: 10.1016/j.neuroimage.2012.01.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/29/2011] [Accepted: 01/01/2012] [Indexed: 11/15/2022] Open
Abstract
This paper provides a brief overview of how we got involved in fMRI work and of our efforts to elucidate the mechanisms underlying BOLD signal changes. The phenomenon discussed here in particular is the post-stimulus undershoot (PSU), the interpretation of which has captivated many fMRI scientists and is still under debate to date. This controversy is caused both by the convoluted physiological origin of the BOLD effect, which allows many possible explanations, and the lack of comprehensive data in the early years. BOLD effects reflect changes in cerebral blood flow (CBF), volume (CBV), metabolic rate of oxygen (CMRO(2)), and hematocrit fraction (Hct). However, the size of such effects is modulated by vascular origin such as intravascular, extravascular, macro and microvascular, venular and capillary, the relative contributions of which depend not only on the spatial resolution of the measurements, but also on stimulus duration, on magnetic field strength and on whether spin echo (SE) or gradient echo (GRE) detection is used. The two most dominant explanations of the PSU have been delayed vascular compliance (first venular, later arteriolar, and recently capillary) and sustained increases in CMRO(2), while post-activation reduction in CBF is a distant third. MRI has the capability to independently measure CBF and arteriolar, venous, and total CBV contributions in humans and animals, which has been of great assistance in improving the understanding of BOLD phenomena. Using currently available MRI and optical data, we conclude that the predominant PSU origin is a sustained increase in CMRO(2). However, some contributions from delayed vascular compliance are likely, and small CBF undershoot contributions that are difficult to detect with current arterial spin labeling technology can also not be excluded. The relative contribution of these different processes, which are not mutually exclusive and can act together, is likely to vary with stimulus duration and type.
Collapse
Affiliation(s)
- Peter C M van Zijl
- The Russell H Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
41
|
Dynamic models of BOLD contrast. Neuroimage 2012; 62:953-61. [PMID: 22245339 DOI: 10.1016/j.neuroimage.2012.01.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/29/2011] [Accepted: 01/01/2012] [Indexed: 12/30/2022] Open
Abstract
This personal recollection looks at the evolution of ideas about the dynamics of the blood oxygenation level dependent (BOLD) signal, with an emphasis on the balloon model. From the first detection of the BOLD response it has been clear that the signal exhibits interesting dynamics, such as a pronounced and long-lasting post-stimulus undershoot. The BOLD response, reflecting a change in local deoxyhemoglobin, is a combination of a hemodynamic response, related to changes in blood flow and venous blood volume, and a metabolic response related to oxygen metabolism. Modeling is potentially a way to understand the complex path from changes in neural activity to the BOLD signal. In the early days of fMRI it was hoped that the hemodynamic/metabolic response could be modeled in a unitary way, with blood flow, oxygen metabolism, and venous blood volume-the physiological factors that affect local deoxyhemoglobin-all tightly linked. The balloon model was an attempt to do this, based on the physiological ideas of limited oxygen delivery at baseline and a slow recovery of venous blood volume after the stimulus (the balloon effect), and this simple model of the physiology worked well to simulate the BOLD response. However, subsequent experiments suggest a more complicated picture of the underlying physiology, with blood flow and oxygen metabolism driven in parallel, possibly by different aspects of neural activity. In addition, it is still not clear whether the post-stimulus undershoot is a hemodynamic or a metabolic phenomenon, although the original venous balloon effect is unlikely to be the full explanation, and a flow undershoot is likely to be important. Although our understanding of the physics of the BOLD response is now reasonably solid, our understanding of the underlying physiological relationships is still relatively poor, and this is the primary hurdle for future models of BOLD dynamics.
Collapse
|
42
|
Dubeau S, Desjardins M, Pouliot P, Beaumont E, Gaudreau P, Ferland G, Lesage F. Biophysical model estimation of neurovascular parameters in a rat model of healthy aging. Neuroimage 2011; 57:1480-91. [PMID: 21549843 DOI: 10.1016/j.neuroimage.2011.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/27/2022] Open
Abstract
Neuronal, vascular and metabolic factors result in a deterioration of the cerebral hemodynamic response with age. The interpretation of neuroimaging studies in the context of aging is rendered difficult due to the challenge in untangling the composite effect of these modifications. In this work we integrate multimodal optical imaging in biophysical models to investigate vascular and metabolic changes occurring in aging. Multispectral intrinsic optical imaging of an animal model of healthy aging, the LOU/c rat, is used in combination with somatosensory stimulation to study the modifications of the hemodynamic response with increasing age. Results are fitted with three macroscopic biophysical models to extract parameters, providing a phenomenological description of vascular and metabolic changes. Our results show that 1) biophysical parameters are estimable from multimodal data and 2) parameter estimates in this population change with aging.
Collapse
Affiliation(s)
- S Dubeau
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Poser BA, van Mierlo E, Norris DG. Exploring the post-stimulus undershoot with spin-echo fMRI: implications for models of neurovascular response. Hum Brain Mapp 2011; 32:141-53. [PMID: 20623748 DOI: 10.1002/hbm.21003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
As a consequence of neural stimulation the blood oxygenation-level dependent (BOLD) contrast in gradient-echo echo-planar imaging (GE-EPI) based functional MRI (fMRI) leads to an increased MR signal in activated brain regions. Following this, a BOLD signal undershoot below baseline is generally observed with GE-EPI. The origin of this undershoot has been the focus of many investigations using fMRI and optical modalities, but the underlying mechanisms remain disputed. Here, we investigate the BOLD undershoot following visual stimulation by using a purely T₂-weighted fMRI sequence at 1.5 and 3 T. By taking advantage of the field strength dependency of the T₂ BOLD contrast and complete absence of static dephasing effects due to the pure spin echoes, one can draw conclusions about the origin of the BOLD undershoot and test the hypotheses in the literature. We observe a significant undershoot at both field strengths, with constant undershoot-to-main response ratio. This provides strong evidence that the undershoot is caused by BOLD changes due to elevated post-stimulus deoxyhaemoglobin concentration in the small vessels. 'Delayed vascular compliance' as suggested by the well-known Balloon and Windkessel models does not appear capable of explaining the undershoot. Our results also suggest that blood volume changes in arterioles and capillaries, for which there is consistent evidence from optical imaging studies, cannot alone cause the undershoot. This has important implications for models of neurovascular response and provides further support for the decoupling of changes in the rate of oxygen metabolism and blood flow. In addition, we found that an 'arteriolar balloon' (delayed arterial compliance) may provide a plausible explanation for the temporal characteristics of the BOLD undershoot.
Collapse
Affiliation(s)
- Benedikt A Poser
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.
| | | | | |
Collapse
|
44
|
Ances BM, Greenberg JH, Detre JA. Interaction between nitric oxide synthase inhibitor induced oscillations and the activation flow coupling response. Brain Res 2009; 1309:19-28. [PMID: 19900416 DOI: 10.1016/j.brainres.2009.09.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 02/03/2023]
Abstract
The role of nitric oxide (NO) in the activation-flow coupling (AFC) response to periodic electrical forepaw stimulation was investigated using signal averaged laser Doppler (LD) flowmetry. LD measures of calculated cerebral blood flow (CBF) were obtained both prior and after intra-peritoneal administration of the non-selective nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine (L-NNA) (40 mg/kg). Characteristic baseline low frequency vasomotion oscillations (0.17 Hz) were observed after L-NNA administration. These LD(CBF) oscillations were synchronous within but not between hemispheres. L-NNA reduced the magnitude of the AFC response (p<0.05) for longer stimuli (1 min) with longer inter-stimulus intervals (2 min). In contrast, the magnitude of the AFC response for short duration stimuli (4 s) with short inter-stimulus intervals (20 s) was augmented (p<0.05) after L-NNA. An interaction occurred between L-NNA induced vasomotion oscillations and the AFC response with the greatest increase occurring at the stimulus harmonic closest to the oscillatory frequency. Nitric oxide may therefore modulate the effects of other vasodilators involved in vasomotion oscillations and the AFC response.
Collapse
Affiliation(s)
- Beau M Ances
- Department of Neurology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
45
|
Liu TT, Liau J. Caffeine increases the linearity of the visual BOLD response. Neuroimage 2009; 49:2311-7. [PMID: 19854278 DOI: 10.1016/j.neuroimage.2009.10.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022] Open
Abstract
Although the blood oxygenation level dependent (BOLD) signal used in most functional magnetic resonance imaging (fMRI) studies has been shown to exhibit nonlinear characteristics, most analyses assume that the BOLD signal responds in a linear fashion to stimulus. This assumption of linearity can lead to errors in the estimation of the BOLD response, especially for rapid event-related fMRI studies. In this study, we used a rapid event-related design and Volterra kernel analysis to assess the effect of a 200 mg oral dose of caffeine on the linearity of the visual BOLD response. The caffeine dose significantly (p<0.02) increased the linearity of the BOLD response in a sample of 11 healthy volunteers studied on a 3 T MRI system. In addition, the agreement between nonlinear and linear estimates of the hemodynamic response function was significantly increased (p=0.013) with the caffeine dose. These findings indicate that differences in caffeine usage should be considered as a potential source of bias in the analysis of rapid event-related fMRI studies.
Collapse
Affiliation(s)
- Thomas T Liu
- Departments of Radiology and Bioengineering, Center for Functional Magnetic Resonance Imaging, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA 92093-0677, USA.
| | | |
Collapse
|
46
|
Blockley NP, Francis ST, Gowland PA. Perturbation of the BOLD response by a contrast agent and interpretation through a modified balloon model. Neuroimage 2009; 48:84-93. [PMID: 19559799 DOI: 10.1016/j.neuroimage.2009.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/20/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022] Open
Abstract
This study used an infusion of a paramagnetic contrast agent to perturb intravascular blood susceptibility and investigate its effect on the BOLD hemodynamic response. A three compartment BOLD signal model combined with a modified balloon model was developed to interpret the MR signal. This model incorporated arterial blood volume in order to simulate signal changes resulting from the contrast agent. The BOLD signal model was fitted to the experimental data to test the hypothesis that arterial blood volume changes during activation. It was found that allowing arterial blood volume to change, rather than assuming this change is negligible as often assumed in the literature, provides a better fit to the experimental data, particularly during the BOLD overshoot. The post-stimulus undershoot was fitted well, regardless of whether the arterial blood volume was allowed to change, by assuming that this feature is due to delayed venous compliance. However the resultant elevation in post-stimulus blood volume decays with an extremely long time constant, taking more than 55 s to recover to baseline following a 4.8 s stimulus. The post-stimulus signal changes measured here could alternatively be described by a post-stimulus elevation in metabolism. An alternative model of oxygen extraction, in place of the Oxygen Limitation model, would be required to test this hypothesis.
Collapse
Affiliation(s)
- N P Blockley
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | | |
Collapse
|
47
|
de Zwart JA, van Gelderen P, Jansma JM, Fukunaga M, Bianciardi M, Duyn JH. Hemodynamic nonlinearities affect BOLD fMRI response timing and amplitude. Neuroimage 2009; 47:1649-58. [PMID: 19520175 PMCID: PMC2731556 DOI: 10.1016/j.neuroimage.2009.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 11/16/2022] Open
Abstract
The interpretation of functional magnetic resonance imaging (fMRI) studies based on blood oxygen-level dependent (BOLD) contrast generally relies on the assumption of a linear relationship between evoked neuronal activity and fMRI response. While nonlinearities in this relationship have been suggested by a number of studies, it remains unclear to what extent they relate to the neurovascular response and are therefore inherent to BOLD fMRI. Full characterization of potential vascular nonlinearities is required for accurate inferences about the neuronal system under study. To investigate the extent of vascular nonlinearities, evoked activity was studied in humans with BOLD fMRI (n=28) and magnetoencephalography (MEG) (n=5). Brief (600-800 ms) rapidly repeated (1 Hz) visual stimuli were delivered using a stimulation paradigm that minimized neuronal nonlinearities. Nevertheless, BOLD fMRI experiments showed substantial remaining nonlinearities. The smallest stimulus separation (200-400 ms) resulted in significant response broadening (15-20% amplitude decrease; 10-12% latency increase; 6-14% duration increase) with respect to a linear prediction. The substantial slowing and widening of the response in the presence of preceding stimuli suggest a vascular rather than neuronal origin to the observed nonlinearity. This was confirmed by the MEG data, which showed no significant neuro-electric nonlinear interactions between stimuli as little as 200 ms apart. The presence of substantial vascular nonlinearities has important implications for rapid event-related studies by fMRI and other imaging modalities that infer neuronal activity from hemodynamic parameters.
Collapse
Affiliation(s)
- Jacco A de Zwart
- Advanced MRI Section, LFMI, NINDS, NIH National Institutes of Health, Bethesda, MD 20892-1065, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Reichold J, Stampanoni M, Lena Keller A, Buck A, Jenny P, Weber B. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J Cereb Blood Flow Metab 2009; 29:1429-43. [PMID: 19436317 DOI: 10.1038/jcbfm.2009.58] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At its most fundamental level, cerebral blood flow (CBF) may be modeled as fluid flow driven through a network of resistors by pressure gradients. The composition of the blood as well as the cross-sectional area and length of a vessel are the major determinants of its resistance to flow. Here, we introduce a vascular graph modeling framework based on these principles that can compute blood pressure, flow and scalar transport in realistic vascular networks. By embedding the network in a computational grid representative of brain tissue, the interaction between the two compartments can be captured in a truly three-dimensional manner and may be applied, among others, to simulate oxygen extraction from the vessels. Moreover, we have devised an upscaling algorithm that significantly reduces the computational expense and eliminates the need for detailed knowledge on the topology of the capillary bed. The vascular graph framework has been applied to investigate the effect of local vascular dilation and occlusion on the flow in the surrounding network.
Collapse
|
49
|
Diamond SG, Perdue KL, Boas DA. A cerebrovascular response model for functional neuroimaging including dynamic cerebral autoregulation. Math Biosci 2009; 220:102-17. [PMID: 19442671 PMCID: PMC2720139 DOI: 10.1016/j.mbs.2009.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/25/2009] [Accepted: 05/01/2009] [Indexed: 11/23/2022]
Abstract
Functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) can be used to isolate an evoked response to a stimulus from significant background physiological fluctuations. Data analysis approaches typically use averaging or linear regression to remove this physiological baseline with varying degrees of success. Biophysical model-based analysis of the functional hemodynamic response has also been advanced previously with the Balloon and Windkessel models. In the present work, a biophysical model of systemic and cerebral circulation and gas exchange is applied to resting state NIRS neuroimaging data from 10 human subjects. The model further includes dynamic cerebral autoregulation, which modulates the cerebral arteriole compliance to control cerebral blood flow. This biophysical model allows for prediction, from noninvasive blood pressure measurements, of the background hemodynamic fluctuations in the systemic and cerebral circulations. Significantly higher correlations with the NIRS data were found using the biophysical model predictions compared to blood pressure regression and compared to transfer function analysis (multifactor ANOVA, p<0.0001). This finding supports the further development and use of biophysical models for removing baseline activity in functional neuroimaging analysis. Future extensions of this work could model changes in cerebrovascular physiology that occur during development, aging, and disease.
Collapse
|
50
|
Chen Y, Parrish TB. Caffeine dose effect on activation-induced BOLD and CBF responses. Neuroimage 2009; 46:577-83. [PMID: 19289172 PMCID: PMC2694217 DOI: 10.1016/j.neuroimage.2009.03.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/30/2009] [Accepted: 03/04/2009] [Indexed: 11/21/2022] Open
Abstract
Caffeine is a popular psychostimulant, typically found in beverages. While low to intermediate doses of caffeine are associated with positive feelings and increased mental performance and alertness, high doses induce negative feelings such as insomnia, anxiety and nervousness. We investigate if this nonlinear dose-response is present for caffeine's effects on functional activation. Twenty-seven healthy subjects were assigned randomly to four different groups: saline, 1 mg/kg, 2.5 mg/kg and 5 mg/kg doses of caffeine. Simultaneous ASL/BOLD timeseries were collected both before and after an intravenous infusion of saline or caffeine and the task-induced CBF and BOLD percent changes were compared. The maximum increase in BOLD response was associated with the intermediate caffeine dose of 2.5 mg/kg, which increased BOLD response by 32.2% and 32.5% in motor and visual areas respectively. The maximum increase in CBF response was associated with the highest caffeine dose of 5 mg/kg. This difference could be related to a different density of A(1) and A(2A) adenosine receptors in the brain.
Collapse
Affiliation(s)
- Yufen Chen
- Department of Biomedical Engineering, Northwestern University, Chicago, IL USA
- Department of Radiology, Northwestern University, Chicago, IL USA
| | - Todd B. Parrish
- Department of Biomedical Engineering, Northwestern University, Chicago, IL USA
- Department of Radiology, Northwestern University, Chicago, IL USA
| |
Collapse
|