1
|
Zhou X, Ghorbani F, Roessner V, Hommel B, Prochnow A, Beste C. Metacontrol instructions lead to adult-like event segmentation in adolescents. Dev Cogn Neurosci 2025; 72:101521. [PMID: 39892154 PMCID: PMC11833649 DOI: 10.1016/j.dcn.2025.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025] Open
Abstract
Event segmentation, which involves dividing continuous information into meaningful units, changes as children develop into adolescents. Adolescents tend to segment events more coarsely than adults. This study explores whether adolescents could adjust their segmentation style to resemble that of adults when provided with explicit metacontrol-related instructions. We compared event segmentation in two adolescent groups and one adult group, while simultaneously recording EEG data. One adolescent group was instructed to perform segmentation as finely as possible, whereas the other adolescent group and adults received no specific instructions on segmentation granularity. EEG data were analyzed using multivariate pattern analysis and source reconstruction. The findings revealed that adolescents given fine-grained instructions adjusted their segmentation probability closer to adult levels, although they did not fully match adults in processing multiple simultaneous changes. Neurophysiological results indicated that adolescents with fine-grained instructions exhibited neural decoding performance more similar to adults. Increased activity in the inferior frontal gyrus in these adolescents compared to adults related to this. The results suggest that adolescents with fine-grained instructions demonstrated more persistent cognitive control and enhanced top-down attention than their peers and adults. The study shows that adolescent cognitive processes can be shifted toward adult-like performance through instructions.
Collapse
Affiliation(s)
- Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany; German Center for Child and Adolescent Health (DZKJ), Partner site Leipzig/Dresden, Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany; School of Psychology, Shandong Normal University, Jinan, China
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany; German Center for Child and Adolescent Health (DZKJ), Partner site Leipzig/Dresden, Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
2
|
Koyun AH, Wendiggensen P, Roessner V, Beste C, Stock AK. Neurophysiological insights into catecholamine-dependent tDCS modulation of cognitive control. Commun Biol 2025; 8:375. [PMID: 40050533 PMCID: PMC11885824 DOI: 10.1038/s42003-025-07805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Goal-directed behavior requires resolving both consciously and subconsciously induced response conflicts. Neuronal gain control, which enhances processing efficacy, is crucial for conflict resolution and can be increased through pharmacological or brain stimulation interventions, though it faces inherent physical limits. This study examined the effects of anodal transcranial direct current stimulation (atDCS) and methylphenidate (MPH) on conflict processing. Healthy adults (n = 105) performed a flanker task, with electroencephalography (EEG) used to assess alpha and theta band activity (ABA, TBA). Results showed that combining atDCS with MPH enhanced cognitive control and reduced response conflicts more effectively than atDCS alone, particularly when both conflict types co-occurred. Both atDCS and atDCS + MPH exhibited similar task-induced ABA and TBA modulations in the (pre)supplementary motor area, indicating heightened gain control. Overlapping neuroanatomical effects in mid-superior frontal areas suggest that atDCS and MPH share a common neuronal mechanism of gain control, especially in high-conflict/-demand situations.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany.
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Brožová N, Vollmer L, Kampa B, Kayser C, Fels J. Cross-modal congruency modulates evidence accumulation, not decision thresholds. Front Neurosci 2025; 19:1513083. [PMID: 40052091 PMCID: PMC11882578 DOI: 10.3389/fnins.2025.1513083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
Audiovisual cross-modal correspondences (CMCs) refer to the brain's inherent ability to subconsciously connect auditory and visual information. These correspondences reveal essential aspects of multisensory perception and influence behavioral performance, enhancing reaction times and accuracy. However, the impact of different types of CMCs-arising from statistical co-occurrences or shaped by semantic associations-on information processing and decision-making remains underexplored. This study utilizes the Implicit Association Test, where unisensory stimuli are sequentially presented and linked via CMCs within an experimental block by the specific response instructions (either congruent or incongruent). Behavioral data are integrated with EEG measurements through neurally informed drift-diffusion modeling to examine how neural activity across both auditory and visual trials is modulated by CMCs. Our findings reveal distinct neural components that differentiate between congruent and incongruent stimuli regardless of modality, offering new insights into the role of congruency in shaping multisensory perceptual decision-making. Two key neural stages were identified: an Early component enhancing sensory encoding in congruent trials and a Late component affecting evidence accumulation, particularly in incongruent trials. These results suggest that cross-modal congruency primarily influences the processing and accumulation of sensory information rather than altering decision thresholds.
Collapse
Affiliation(s)
- Natálie Brožová
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| | - Lukas Vollmer
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| | - Björn Kampa
- Systems Neurophysiology Department, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Christoph Kayser
- Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany
| | - Janina Fels
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Jamous R, Mocke V, Kunde W, Pastötter B, Beste C. Neurophysiological profiles underlying action withholding and action discarding. Cereb Cortex 2025; 35:bhaf026. [PMID: 39924647 DOI: 10.1093/cercor/bhaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
Although inhibitory control is essential to goal-directed behavior, not all inhibition is the same: Previous research distinguished discarding an action plan from simply withholding it, suggesting separate neurophysiological mechanisms. This study tracks the neurophysiological signatures of both using time-frequency transformation and beamforming in n = 34 healthy individuals. We show that discarding an action plan reduces working memory load, with stronger initial theta band activity compared to withholding it. This oscillatory difference was localized in the (para-)hippocampus and anterior temporal lobe, likely reflecting the need to dissolve action plan features first to enable the following decrease of working memory load. Contrary, when exposed to the embedded stimulus, withholding was associated with higher theta, alpha, and beta band activity relative to discarding. This study advances our understanding of inhibition by revealing distinct neurophysiological mechanisms and functional neuroanatomical structures involved in withholding versus discarding an action.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01309 Dresden, Germany
| | - Viola Mocke
- Department of Psychology, University of Würzburg, Röntgenring 11, 90970 Würzburg, Germany
| | - Wilfried Kunde
- Department of Psychology, University of Würzburg, Röntgenring 11, 90970 Würzburg, Germany
| | - Bernhard Pastötter
- Department of General Psychology and Methodology, University of Trier, Universitätsring 15, 54296 Trier, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01309 Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Fetscherstrasse 74, 01309 Dresden, Germany
| |
Collapse
|
5
|
Takács Á, Vékony T, Pedraza F, Haesebaert F, Tillmann B, Beste C, Németh D. Sequence-dependent predictive coding during the learning and rewiring of skills. Cereb Cortex 2025; 35:bhaf025. [PMID: 39989199 DOI: 10.1093/cercor/bhaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
In the constantly changing environment that characterizes our daily lives, the ability to predict and adapt to new circumstances is crucial. This study examines the influence of sequence and knowledge adaptiveness on predictive coding in skill learning and rewiring. Participants were exposed to two different visuomotor sequences with overlapping probabilities. By applying temporal decomposition and multivariate pattern analysis, we dissected the neural underpinnings across different levels of signal coding. The study provides neurophysiological evidence for the influence of knowledge adaptiveness on shaping predictive coding, revealing that these are intricately linked and predominantly manifest at the abstract and motor coding levels. These findings challenge the traditional view of a competitive relationship between learning context and knowledge, suggesting instead a hierarchical integration where their properties are processed simultaneously. This integration facilitates the adaptive reuse of existing knowledge in the face of new learning. By shedding light on the mechanisms of predictive coding in visuomotor sequences, this research contributes to a deeper understanding of how the brain navigates and adapts to environmental changes, offering insights into the foundational processes that underlie learning and adaptation in dynamic contexts.
Collapse
Affiliation(s)
- Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstraße, Fetscherstrasse 74, 01309, Dresden, Germany
- University Neuropsychology Center Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01309, Dresden, Germany
| | - Teodóra Vékony
- Gran Canaria Cognitive Research Center, Department of Education and Psychology, University of Atlántico Medio, Ctra. de Quilmes, 37, 35017, Tafira Baja, Las Palmas de Gran Canaria, Spain
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1 CRNL, 95 Bd Pinel, 69500, Bron, France
| | - Felipe Pedraza
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1 CRNL, 95 Bd Pinel, 69500, Bron, France
- Laboratory EMC (EA 3082), Université de Lyon Université Lyon 2, 5 Av. Pierre Mendès France, 69500, Bron, France
| | - Frederic Haesebaert
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1 CRNL U1028 UMR5292, PSYR2 Team, 95 Bd Pinel, 69005, Bron, France
| | - Barbara Tillmann
- CNRS, UMR5022, Laboratoire d'Etude de l'Apprentissage et du Développement, Université Bourgogne Europe, 11 Esplanade Erasme, 21000, Dijon, France
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstraße, Fetscherstrasse 74, 01309, Dresden, Germany
- University Neuropsychology Center Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01309, Dresden, Germany
| | - Dezső Németh
- Gran Canaria Cognitive Research Center, Department of Education and Psychology, University of Atlántico Medio, Ctra. de Quilmes, 37, 35017, Tafira Baja, Las Palmas de Gran Canaria, Spain
- Centre de Recherche en Neurosciences de Lyon, INSERM, CNRS, Université Claude Bernard Lyon 1 CRNL, 95 Bd Pinel, 69500, Bron, France
- BML-NAP Research Group, Institute of Psychology Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, Hun-Ren Research Centre for Natural Sciences, Damjanich utca 41, 1072, Budapest, Hungary
| |
Collapse
|
6
|
Lio G, Corazzol M, Fadda R, Doneddu G, Sirigu A. A neuronal marker of eye contact spontaneously activated in neurotypical subjects but not in autistic spectrum disorders. Cortex 2025; 183:87-104. [PMID: 39626467 DOI: 10.1016/j.cortex.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 10/25/2024] [Indexed: 02/21/2025]
Abstract
Attention to faces and eye contact are key behaviors for establishing social bonds in humans. In Autism Spectrum Disorders (ASD), a disturbance in neurodevelopment, impaired face processing and gaze avoidance are key clinical features for ASD diagnosis. The biological alterations underlying these impairments are not yet clearly established. Using high-density electroencephalography coupled with multi-variate pattern classification and group blind source separation methods we searched for face- and-face components-related neural signals that could best discriminate visual processing of neurotypical subjects (N = 38) from ASD participants (N = 27). We isolated a face-specific neural signal in the superior temporal sulcus peaking at 240 msec after face-stimulus onset. A machine learning algorithm applied on the extracted neural component reached 74% decoding accuracy at the same latencies, discriminating the neurotypical population from ASD subjects in whom this signal was weak. By manipulating attention on different parts of the face, we also found that the power of the evoked signal in neurotypical subjects varied depending on the region observed: it was strong when the eye region fell on the fovea to decrease on regions further away and outside the stimulus face. Such face and face-components selective neural modulations were not found in ASD, although they did show typical early face-related P100 and N170 signals. These results show that specialized cortical mechanisms for face perception show higher responses for eyes when attention is focused on gaze and that these mechanisms may be particularly affected in autism spectrum disorders.
Collapse
Affiliation(s)
- Guillaume Lio
- Institute of Cognitive Sciences Marc Jeannerod, CNRS, Bron, France; iMIND Center of Excellence for Autism, Le Vinatier Hospital, Bron, France
| | - Martina Corazzol
- Institute of Cognitive Sciences Marc Jeannerod, CNRS, Bron, France
| | - Roberta Fadda
- Department of Psychology, Philosophy, University of Cagliari, Italy
| | - Giuseppe Doneddu
- Centro per l'Autismo e Disturbi Correlati (CADc), Cagliari, Italy
| | - Angela Sirigu
- Institute of Cognitive Sciences Marc Jeannerod, CNRS, Bron, France; iMIND Center of Excellence for Autism, Le Vinatier Hospital, Bron, France; Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone UMR7289, Marseille, France.
| |
Collapse
|
7
|
Mayer J, Mückschel M, Talebi N, Hommel B, Beste C. Directed connectivity in theta networks supports action-effect integration. Neuroimage 2025; 305:120965. [PMID: 39645157 DOI: 10.1016/j.neuroimage.2024.120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
The ability to plan and carry out goal-directed behavior presupposes knowledge about the contingencies between movements and their effects. Ideomotor accounts of action control assume that agents integrate action-effect contingencies by creating action-effect bindings, which associate movement patterns with their sensory consequences. However, the neurophysiological underpinnings of action-effect binding are not yet well understood. Given that theta band activity has been linked to information integration, we thus studied action-effect integration in an electrophysiological study with N = 31 healthy individuals with a strong focus on theta band activity. We examined how information between functional neuroanatomical structures is exchanged to enable action planning. We show that theta band activity in a network encompassing the insular cortex (IC), the anterior temporal lobe (ATL), and the inferior frontal cortex (IFC) supports the establishment of action-effect bindings. All regions revealed bi-directional effective connectivities, indicating information transfer between these regions. The IC and ATL create a loop for information integration and the conceptual abstraction of it. The involvement of anterior regions of the IFC, particularly during the acquisition phase of the action-effect, likely reflects episodic control mechanisms in which a past event defines a "template" of what action-effect is to be expected. Taken together, the current findings connect well with major cognitive concepts. Our study suggests a functional relevance of theta band activity in an IC-ATL-IFC network, which in turn implies that basic ideomotor action-effect integration is implemented through theta band activity and effective connectivities between temporo-frontal structures.
Collapse
Affiliation(s)
- Jasmin Mayer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
8
|
Schmid P, Reichert C, Knight RT, Dürschmid S. Differential contributions of the C1 ERP and broadband high-frequency activity to visual processing. J Neurophysiol 2025; 133:78-84. [PMID: 39589840 DOI: 10.1152/jn.00292.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The high-frequency activity (HFA; 80-150 Hz) in human intracranial recordings shows a differential modulation to different degrees in contrast when stimuli are behaviorally relevant, indicating a feedforward process. However, the HFA is also significantly dominated by superficial layers and exhibits a peak before 200 ms, suggesting that it is more likely a feedback signal. Magnetoencephalographic (MEG) recordings are suited to reveal an HFA modulation similar to its modulation in intracranial recordings. This allows for noninvasive, direct comparison of HFA with the C1, an established measure for feedforward input to V1, to test whether HFA represents feedforward or rather feedback. In simultaneous recordings, we used the EEG-C1 event-related potential (ERP) component and MEG-HFA to define feedforward processing in visual cortices. C1 latency preceded the HFA peak modulation, which had a more sustained response. Furthermore, modulation parameters like onset, peak time, and peak amplitude were uncorrelated. Most importantly, the C1 but not HFA distinguished small task-irrelevant contrast differences in visual stimulation. These results highlight the differential roles for the C1 and HFA in visual processing with the C1 measuring feedforward discrimination ability and HFA indexing feedforward and feedback processing.NEW & NOTEWORTHY Whether the broadband high-frequency activity (HFA) represents exclusively feedforward or feedback processing remains unclear. In this study, we compared the response characteristics of the HFA-magnetoencephalographic (MEG) and the C1-EEG component to systematic contrast modulations of task-irrelevant visual stimulation. Our findings reveal that the more sustained HFA follows the C1 component and, unlike the C1, is not modulated by task-irrelevant contrast differences. This timing of the HFA modulation suggests that HFA encompasses both feedforward and feedback processing.
Collapse
Affiliation(s)
- Paul Schmid
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States
| | - Stefan Dürschmid
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States
| |
Collapse
|
9
|
Imhof MA, Flösch KP, Schmälzle R, Renner B, Schupp HT. Portable EEG in groups shows increased brain coupling to strong health messages. Soc Cogn Affect Neurosci 2024; 19:nsae087. [PMID: 39611493 PMCID: PMC11669318 DOI: 10.1093/scan/nsae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/05/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024] Open
Abstract
Health messages are core building blocks of public health efforts. Neuroscientific measures offer insights into how target audiences receive health messages. To move towards real-world applications, however, challenges regarding costs, lab restraints, and slow data acquisition need to be addressed. Using portable electroencephalography (EEG) and inter-subject correlation (ISC) analysis as measure of message strength, we ask whether these challenges can be met. Portable EEG was recorded while participants viewed strong and weak video health messages against risky alcohol use. Participants viewed the messages either individually or in a focus group-like setting with six participants simultaneously. For both viewing conditions, three correlated components were extracted. The topographies of these components showed a high spatial correlation with previous high-density EEG results. Moreover, ISC was strongly enhanced when viewing strong as compared to weak health messages in both the group and individual viewing conditions. The findings suggest that ISC analysis shows sensitivity to message strength, even in a group setting using low-density portable EEG. Measuring brain responses to messages in group settings is more efficient and scalable beyond the laboratory. Overall, these results support a translational perspective for the use of neuroscientific measures in health message development.
Collapse
Affiliation(s)
- Martin A Imhof
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| | - Karl-Philipp Flösch
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| | - Ralf Schmälzle
- Department of Communication, Michigan State University, East Lansing, MI 48824, United States
| | - Britta Renner
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| | - Harald T Schupp
- Department of Psychology, University of Konstanz, Konstanz 78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
10
|
Westwood S, Philiastides MG. Early Salience Signals Predict Interindividual Asymmetry in Decision Accuracy Across Rewarding and Punishing Contexts. Hum Brain Mapp 2024; 45:e70072. [PMID: 39584595 PMCID: PMC11586867 DOI: 10.1002/hbm.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Asymmetry in choice patterns across rewarding and punishing contexts has long been observed in behavioural economics. Within existing theories of reinforcement learning, the mechanistic account of these behavioural differences is still debated. We propose that motivational salience-the degree of bottom-up attention attracted by a stimulus with relation to motivational goals-offers a potential mechanism to modulate stimulus value updating and decision policy. In a probabilistic reversal learning task, we identified post-feedback signals from EEG and pupillometry that captured differential activity with respect to rewarding and punishing contexts. We show that the degree of between-context distinction in these signals predicts interindividual asymmetries in decision accuracy. Finally, we contextualise these effects in relation to the neural pathways that are currently centred in theories of reward and punishment learning, demonstrating how the motivational salience network could plausibly fit into a range of existing frameworks.
Collapse
|
11
|
Li R, Zhao G, Muir DR, Ling Y, Burelo K, Khoe M, Wang D, Xing Y, Qiao N. Real-time sub-milliwatt epilepsy detection implemented on a spiking neural network edge inference processor. Comput Biol Med 2024; 183:109225. [PMID: 39413626 DOI: 10.1016/j.compbiomed.2024.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/05/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Analyzing electroencephalogram (EEG) signals to detect the epileptic seizure status of a subject presents a challenge to existing technologies aimed at providing timely and efficient diagnosis. In this study, we aimed to detect interictal and ictal periods of epileptic seizures using a spiking neural network (SNN). Our proposed approach provides an online and real-time preliminary diagnosis of epileptic seizures and helps to detect possible pathological conditions. To validate our approach, we conducted experiments using multiple datasets. We utilized a trained SNN to identify the presence of epileptic seizures and compared our results with those of related studies. The SNN model was deployed on Xylo, a digital SNN neuromorphic processor designed to process temporal signals. Xylo efficiently simulates spiking leaky integrate-and-fire neurons with exponential input synapses. Xylo has much lower energy requirements than traditional approaches to signal processing, making it an ideal platform for developing low-power seizure detection systems. Our proposed method has a high test accuracy of 93.3% and 92.9% when classifying ictal and interictal periods. At the same time, the application has an average power consumption of 87.4 μW (IO power) + 287.9 μW (compute power) when deployed to Xylo. Our method demonstrates excellent low-latency performance when tested on multiple datasets. Our work provides a new solution for seizure detection, and it is expected to be widely used in portable and wearable devices in the future.
Collapse
Affiliation(s)
- Ruixin Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China; Chengdu SynSense Tech. Co. Ltd., 1577 Tianfu Road, Chengdu, 610041, Sichuan, China
| | - Guoxu Zhao
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China
| | | | - Yuya Ling
- Chengdu SynSense Tech. Co. Ltd., 1577 Tianfu Road, Chengdu, 610041, Sichuan, China
| | - Karla Burelo
- Synsense, Thurgauerstrasse 60, Zürich, 8050, Switzerland
| | - Mina Khoe
- Synsense, Thurgauerstrasse 60, Zürich, 8050, Switzerland
| | - Dong Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
| | - Yannan Xing
- Chengdu SynSense Tech. Co. Ltd., 1577 Tianfu Road, Chengdu, 610041, Sichuan, China.
| | - Ning Qiao
- Chengdu SynSense Tech. Co. Ltd., 1577 Tianfu Road, Chengdu, 610041, Sichuan, China; Synsense, Thurgauerstrasse 60, Zürich, 8050, Switzerland
| |
Collapse
|
12
|
Wang X, Talebi N, Zhou X, Hommel B, Beste C. Neurophysiological dynamics of metacontrol states: EEG insights into conflict regulation. Neuroimage 2024; 302:120915. [PMID: 39489408 DOI: 10.1016/j.neuroimage.2024.120915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Understanding the neural mechanisms underlying metacontrol and conflict regulation is crucial for insights into cognitive flexibility and persistence. This study employed electroencephalography (EEG), EEG-beamforming and directed connectivity analyses to explore how varying metacontrol states influence conflict regulation at a neurophysiological level. Metacontrol states were manipulated by altering the frequency of congruent and incongruent trials across experimental blocks in a modified flanker task, and both behavioral and electrophysiological measures were analyzed. Behavioral data confirmed the experimental manipulation's efficacy, showing an increase in persistence bias and a reduction in flexibility bias during increased conflict regulation. Electrophysiologically, theta band activity paralleled the behavioral data, suggesting that theta oscillations reflect the mismatch between expected metacontrol bias and actual task demands. Alpha and beta band dynamics differed across experimental blocks, though these changes did not directly mirror behavioral effects. Post-response alpha and beta activity were more pronounced in persistence-biased states, indicating a neural reset mechanism preparing for future cognitive demands. By using a novel artificial neural networks method, directed connectivity analyses revealed enhanced inter-regional communication during persistence states, suggesting stronger top-down control and sensorimotor integration. Overall, theta band activity was closely tied to metacontrol processes, while alpha and beta bands played a role in resetting the neural system for upcoming tasks. These findings provide a deeper understanding of the neural substrates involved in metacontrol and conflict monitoring, emphasizing the distinct roles of different frequency bands in these cognitive processes.
Collapse
Affiliation(s)
- Xi Wang
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| |
Collapse
|
13
|
Jamous R, Ghorbani F, Mükschel M, Münchau A, Frings C, Beste C. Neurophysiological principles underlying predictive coding during dynamic perception-action integration. Neuroimage 2024; 301:120891. [PMID: 39419422 DOI: 10.1016/j.neuroimage.2024.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
A major concept in cognitive neuroscience is that brains are "prediction machines". Yet, conceptual frameworks on how perception and action become integrated still lack the concept of predictability and it is unclear how neural processes may implement predictive coding during dynamic perception-action integration. We show that distinct neurophysiological mechanisms of nonlinearly directed connectivities in the theta and alpha band between cortical structures underlie these processes. During the integration of perception and motor codes, especially theta band activity in the insular cortex and temporo-hippocampal structures is modulated by the predictability of upcoming information. Here, the insular cortex seems to guide processes. Conversely, the retrieval of such integrated perception-action codes during actions heavily relies on alpha band activity. Here, directed top-down influence of alpha band activity from inferior frontal structures on insular and temporo-hippocampal structures is key. This suggests that these top-down effects reflect attentional shielding of retrieval processes operating in the same neuroanatomical structures previously involved in the integration of perceptual and motor codes. Through neurophysiology, the present study connects predictive coding mechanisms with frameworks specifying the dynamic integration of perception and action.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Moritz Mükschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | | | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| |
Collapse
|
14
|
Talebi N, Prochnow A, Frings C, Münchau A, Mückschel M, Beste C. Neural mechanisms of adaptive behavior: Dissociating local cortical modulations and interregional communication patterns. iScience 2024; 27:110995. [PMID: 39635122 PMCID: PMC11615187 DOI: 10.1016/j.isci.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/20/2024] [Accepted: 09/17/2024] [Indexed: 12/07/2024] Open
Abstract
Adaptive behavior is based on flexibly managing and integrating perceptual and motor processes, and the reconfiguration thereof. Such adaptive behavior is also relevant during inhibitory control. Although research has demonstrated local activity modulations in theta and alpha frequency bands during behavioral adaptation, the communication of brain regions is insufficiently studied. Examining directed connectivity between brain regions using a machine learning approach, a generally increased activity, but decreased connectivity within a temporo-occipital theta band network was revealed during the reconfiguration of perception-action associations during inhibitory control. Additionally, a fronto-occipital alpha-theta interplay yielded a decrease in directed connectivity during reconfiguration processes, which was associated with lower error rates in behavior. Thus, adaptive behavior relies on both local increases and decreases of activity depending on the frequency band, and concomitant decreases in communication between frontal and sensory cortices. The findings reframe common conceptualizations about how adaptive behavior is supported by neural processes.
Collapse
Affiliation(s)
- Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01309 Dresden, Germany
| |
Collapse
|
15
|
Nierula B, Stephani T, Bailey E, Kaptan M, Pohle LMG, Horn U, Mouraux A, Maess B, Villringer A, Curio G, Nikulin VV, Eippert F. A multichannel electrophysiological approach to noninvasively and precisely record human spinal cord activity. PLoS Biol 2024; 22:e3002828. [PMID: 39480757 PMCID: PMC11527246 DOI: 10.1371/journal.pbio.3002828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024] Open
Abstract
The spinal cord is of fundamental importance for integrative processing in brain-body communication, yet routine noninvasive recordings in humans are hindered by vast methodological challenges. Here, we overcome these challenges by developing an easy-to-use electrophysiological approach based on high-density multichannel spinal recordings combined with multivariate spatial-filtering analyses. These advances enable a spatiotemporal characterization of spinal cord responses and demonstrate a sensitivity that permits assessing even single-trial responses. To furthermore enable the study of integrative processing along the neural processing hierarchy in somatosensation, we expand this approach by simultaneous peripheral, spinal, and cortical recordings and provide direct evidence that bottom-up integrative processing occurs already within the spinal cord and thus after the first synaptic relay in the central nervous system. Finally, we demonstrate the versatility of this approach by providing noninvasive recordings of nociceptive spinal cord responses during heat-pain stimulation. Beyond establishing a new window on human spinal cord function at millisecond timescale, this work provides the foundation to study brain-body communication in its entirety in health and disease.
Collapse
Affiliation(s)
- Birgit Nierula
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tilman Stephani
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Emma Bailey
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Lisa-Marie Geertje Pohle
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Burkhard Maess
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Curio
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Vadim V. Nikulin
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
Ronca V, Flumeri GD, Giorgi A, Vozzi A, Capotorto R, Germano D, Sciaraffa N, Borghini G, Babiloni F, Aricò P. o-CLEAN: a novel multi-stage algorithm for the ocular artifacts' correction from EEG data in out-of-the-lab applications. J Neural Eng 2024; 21:056023. [PMID: 39284360 DOI: 10.1088/1741-2552/ad7b78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
In the context of electroencephalographic (EEG) signal processing, artifacts generated by ocular movements, such as blinks, are significant confounding factors. These artifacts overwhelm informative EEG features and may occur too frequently to simply remove affected epochs without losing valuable data. Correcting these artifacts remains a challenge, particularly in out-of-lab and online applications using wearable EEG systems (i.e. with low number of EEG channels, without any additional channels to track EOG).Objective.The main objective of the present work consisted in validating a novel ocular blinks artefacts correction method, named multi-stage OCuLar artEfActs deNoising algorithm (o-CLEAN), suitable for online processing with minimal EEG channels.Approach.The research was conducted considering one EEG dataset collected in highly controlled environment, and a second one collected in real environment. The analysis was performed by comparing the o-CLEAN method with previously validated state-of-art techniques, and by evaluating its performance along two dimensions: (a) the ocular artefacts correction performance (IN-Blink), and (b) the EEG signal preservation when the method was applied without any ocular artefacts occurrence (OUT-Blink).Main results.Results highlighted that (i) o-CLEAN algorithm resulted to be, at least, significantly reliable as the most validated approaches identified in scientific literature in terms of ocular blink artifacts correction, (ii) o-CLEAN showed the best performances in terms of EEG signal preservation especially with a low number of EEG channels.Significance.The testing and validation of the o-CLEAN addresses a relevant open issue in bioengineering EEG processing, especially within out-of-the-lab application. In fact, the method offers an effective solution for correcting ocular artifacts in EEG signals with a low number of available channels, for online processing, and without any specific template of the EOG. It was demonstrated to be particularly effective for EEG data gathered in real environments using wearable systems, a rapidly expanding area within applied neuroscience.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy
- BrainSigns Srl, Industrial Neurosciences Lab, 00198 Rome, Italy
| | - Gianluca Di Flumeri
- BrainSigns Srl, Industrial Neurosciences Lab, 00198 Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Andrea Giorgi
- BrainSigns Srl, Industrial Neurosciences Lab, 00198 Rome, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Alessia Vozzi
- BrainSigns Srl, Industrial Neurosciences Lab, 00198 Rome, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Rossella Capotorto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Daniele Germano
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy
- BrainSigns Srl, Industrial Neurosciences Lab, 00198 Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | | | - Gianluca Borghini
- BrainSigns Srl, Industrial Neurosciences Lab, 00198 Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Fabio Babiloni
- Department of Physiology and Pharmacology 'Vittorio Erspamer', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310005, People's Republic of China
| | - Pietro Aricò
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, 00185 Roma, Italy
- BrainSigns Srl, Industrial Neurosciences Lab, 00198 Rome, Italy
| |
Collapse
|
17
|
Steinhauser K, Steinhauser R, Ernst B, Maier ME, Steinhauser M. The neural signature of an erroneous thought. Cereb Cortex 2024; 34:bhae390. [PMID: 39329359 DOI: 10.1093/cercor/bhae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The human brain detects errors in overt behavior fast and efficiently. However, little is known about how errors are monitored that emerge on a mental level. We investigate whether neural correlates of error monitoring can be found during inner speech and whether the involved neural processes differ between these non-motor responses and behavioral motor responses. Therefore, electroencephalographic data were collected while participants performed two versions of a decision task that only differed between these response modalities. Erroneous responses were identified based on participants' metacognitive judgments. Correlates of error monitoring in event-related potentials were analyzed by applying residue iteration decomposition on stimulus-locked activity. Non-motor responses elicited the same cascade of early error-related negativity and late error positivity as motor responses. An analysis of oscillatory brain activity showed a similar theta response for both error types. A multivariate pattern classifier trained on theta from the motor condition could decode theta from the non-motor condition, demonstrating the similarity of both neural responses. These results show that errors in inner speech are monitored and detected utilizing the same neural processes as behavioral errors, suggesting that goal-directed cognition and behavior are supported by a generic error-monitoring system.
Collapse
Affiliation(s)
- Klara Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| | - Robert Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| | - Benjamin Ernst
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| | - Martin E Maier
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| | - Marco Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| |
Collapse
|
18
|
Nunez MD, Fernandez K, Srinivasan R, Vandekerckhove J. A tutorial on fitting joint models of M/EEG and behavior to understand cognition. Behav Res Methods 2024; 56:6020-6050. [PMID: 38409458 PMCID: PMC11335833 DOI: 10.3758/s13428-023-02331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically those researchers who seek to understand human cognition. Although these techniques could easily be applied to animal models, the focus of this tutorial is on human participants. Joint modeling of M/EEG and behavior requires some knowledge of existing computational and cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive modeling, and programming for statistical modeling implementation. This paper seeks to give an introduction to these techniques as they apply to estimating parameters from neurocognitive models of M/EEG and human behavior, and to evaluate model results and compare models. Due to our research and knowledge on the subject matter, our examples in this paper will focus on testing specific hypotheses in human decision-making theory. However, most of the motivation and discussion of this paper applies across many modeling procedures and applications. We provide Python (and linked R) code examples in the tutorial and appendix. Readers are encouraged to try the exercises at the end of the document.
Collapse
Affiliation(s)
- Michael D Nunez
- Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands.
| | - Kianté Fernandez
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Institute of Mathematical Behavioral Sciences, University of California, Irvine, CA, USA
| | - Joachim Vandekerckhove
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
- Institute of Mathematical Behavioral Sciences, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
| |
Collapse
|
19
|
Zhou X, Ghorbani F, Roessner V, Hommel B, Prochnow A, Beste C. The metacontrol of event segmentation-A neurophysiological and behavioral perspective. Hum Brain Mapp 2024; 45:e26727. [PMID: 39081074 PMCID: PMC11289429 DOI: 10.1002/hbm.26727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 08/03/2024] Open
Abstract
During our everyday life, the constant flow of information is divided into discrete events, a process conceptualized in Event Segmentation Theory (EST). How people perform event segmentation and the resulting granularity of encapsulated segments likely depends on their metacontrol style. Yet, the underlying neural mechanisms remain undetermined. The current study examines how the metacontrol style affects event segmentation through the analysis of EEG data using multivariate pattern analysis (MVPA) and source localization analysis. We instructed two groups of healthy participants to either segment a movie as fine-grained as possible (fine-grain group) or provided no such instruction (free-segmentation group). The fine-grain group showed more segments and a higher likelihood to set event boundaries upon scene changes, which supports the notion that cognitive control influences segmentation granularity. On a neural level, representational dynamics were decodable 400 ms prior to the decision to close a segment and open a new one, and especially fronto-polar regions (BA10) were associated with this representational dynamic. Groups differed in their use of this representational dynamics to guide behavior and there was a higher sensitivity to incoming information in the Fine-grain group. Moreover, a higher likelihood to set event boundaries was reflected by activity increases in the insular cortex suggesting an increased monitoring of potentially relevant upcoming events. The study connects the EST with the metacontrol framework and relates these to overarching neural concepts of prefrontal cortex function.
Collapse
Affiliation(s)
- Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
| | | | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
- School of PsychologyShandong Normal UniversityJinanChina
| |
Collapse
|
20
|
Xue C, Chen Y, Thompson WF, Liu F, Jiang C. Time-varying similarity of neural responses to musical tension is shaped by physical features and musical themes. Int J Psychophysiol 2024; 202:112387. [PMID: 38909958 DOI: 10.1016/j.ijpsycho.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The similarity of understanding is important for music experience and communication, but little is understood about the sources of this common knowledge. Although neural responses to the same piece of music are known to be similar across listeners, it remains unclear whether this neural response similarity is linked to musical understanding and the role of dynamic musical attributes in shaping it. Our study addresses this gap by investigating the relationship between neural response similarity, musical tension, and dynamic musical attributes. Using electroencephalography-based inter-subject correlation (EEG-ISC), we examined how the neural response similarity among listeners varies throughout the evaluation of musical tension in the first movement of Beethoven's Piano Sonata No. 8. Participants continuously rated the degree of alignment between musical events and their expectations, while neural activity was recorded using electroencephalography (EEG). The results showed that neural response similarity fluctuated in tandem with musical tension, with increased similarity observed during moments of heightened tension. This time-varying neural response similarity was influenced by two dynamic attributes contributing to musical tension: physical features and musical themes. Specifically, its fluctuation was driven by physical features, and the patterns of its variation were modulated by musical themes, with similar time-varying patterns observed across similar thematic materials. These findings offer valuable insight into the role of dynamic musical attributes in shaping neural response similarity, and reveal an important source and mechanism of shared musical understandings.
Collapse
Affiliation(s)
- Chao Xue
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yiran Chen
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
21
|
Gholamipourbarogh N, Eggert E, Münchau A, Frings C, Beste C. EEG tensor decomposition delineates neurophysiological principles underlying conflict-modulated action restraint and action cancellation. Neuroimage 2024; 295:120667. [PMID: 38825216 DOI: 10.1016/j.neuroimage.2024.120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024] Open
Abstract
Executive functions are essential for adaptive behavior. One executive function is the so-called 'interference control' or conflict monitoring another one is inhibitory control (i.e., action restraint and action cancelation). Recent evidence suggests an interplay of these processes, which is conceptually relevant given that newer conceptual frameworks imply that nominally different action/response control processes are explainable by a small set of cognitive and neurophysiological processes. The existence of such overarching neural principles has as yet not directly been examined. In the current study, we therefore use EEG tensor decomposition methods, to look into possible common neurophysiological signatures underlying conflict-modulated action restraint and action cancelation as mechanism underlying response inhibition. We show how conflicts differentially modulate action restraint and action cancelation processes and delineate common and distinct neural processes underlying this interplay. Concerning the spatial information modulations are similar in terms of an importance of processes reflected by parieto-occipital electrodes, suggesting that attentional selection processes play a role. Especially theta and alpha activity seem to play important roles. The data also show that tensor decomposition is sensitive to the manner of task implementation, thereby suggesting that switch probability/transitional probabilities should be taken into consideration when choosing tensor decomposition as analysis method. The study provides a blueprint of how to use tensor decomposition methods to delineate common and distinct neural mechanisms underlying action control functions using EEG data.
Collapse
Affiliation(s)
- Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | | | - Christian Frings
- Cognitive Psychology, University of Trier, Germany; Institute for Cognitive and Affective Neuroscience (ICAN), University of Trier, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
22
|
Galvan CM, Spies RD, Milone DH, Peterson V. Neurophysiologically Meaningful Motor Imagery EEG Simulation With Applications to Data Augmentation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2346-2355. [PMID: 38900612 DOI: 10.1109/tnsre.2024.3417311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Motor imagery-based Brain-Computer Interfaces (MI-BCIs) have gained a lot of attention due to their potential usability in neurorehabilitation and neuroprosthetics. However, the accurate recognition of MI patterns in electroencephalography signals (EEG) is hindered by several data-related limitations, which restrict the practical utilization of these systems. Moreover, leveraging deep learning (DL) models for MI decoding is challenged by the difficulty of accessing user-specific MI-EEG data on large scales. Simulated MI-EEG signals can be useful to address these issues, providing well-defined data for the validation of decoding models and serving as a data augmentation approach to improve the training of DL models. While substantial efforts have been dedicated to implementing effective data augmentation strategies and model-based EEG signal generation, the simulation of neurophysiologically plausible EEG-like signals has not yet been exploited in the context of data augmentation. Furthermore, none of the existing approaches have integrated user-specific neurophysiological information during the data generation process. Here, we present PySimMIBCI, a framework for generating realistic MI-EEG signals by integrating neurophysiologically meaningful activity into biophysical forward models. By means of PySimMIBCI, different user capabilities to control an MI-BCI can be simulated and fatigue effects can be included in the generated EEG. Results show that our simulated data closely resemble real data. Moreover, a proposed data augmentation strategy based on our simulated user-specific data significantly outperforms other state-of-the-art augmentation approaches, enhancing DL models performance by up to 15%.
Collapse
|
23
|
Balsdon T, Pisauro MA, Philiastides MG. Distinct basal ganglia contributions to learning from implicit and explicit value signals in perceptual decision-making. Nat Commun 2024; 15:5317. [PMID: 38909014 PMCID: PMC11193814 DOI: 10.1038/s41467-024-49538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
Metacognitive evaluations of confidence provide an estimate of decision accuracy that could guide learning in the absence of explicit feedback. We examine how humans might learn from this implicit feedback in direct comparison with that of explicit feedback, using simultaneous EEG-fMRI. Participants performed a motion direction discrimination task where stimulus difficulty was increased to maintain performance, with intermixed explicit- and no-feedback trials. We isolate single-trial estimates of post-decision confidence using EEG decoding, and find these neural signatures re-emerge at the time of feedback together with separable signatures of explicit feedback. We identified these signatures of implicit versus explicit feedback along a dorsal-ventral gradient in the striatum, a finding uniquely enabled by an EEG-fMRI fusion. These two signals appear to integrate into an aggregate representation in the external globus pallidus, which could broadcast updates to improve cortical decision processing via the thalamus and insular cortex, irrespective of the source of feedback.
Collapse
Affiliation(s)
- Tarryn Balsdon
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
- Laboratory of Perceptual Systems, DEC, ENS, PSL University, CNRS UMR 8248, Paris, France.
| | - M Andrea Pisauro
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Marios G Philiastides
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
Ghorbani F, Zhou X, Talebi N, Roessner V, Hommel B, Prochnow A, Beste C. Neural connectivity patterns explain why adolescents perceive the world as moving slow. Commun Biol 2024; 7:759. [PMID: 38909084 PMCID: PMC11193795 DOI: 10.1038/s42003-024-06439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
That younger individuals perceive the world as moving slower than adults is a familiar phenomenon. Yet, it remains an open question why that is. Using event segmentation theory, electroencephalogram (EEG) beamforming and nonlinear causal relationship estimation using artificial neural network methods, we studied neural activity while adolescent and adult participants segmented a movie. We show when participants were instructed to segment a movie into meaningful units, adolescents partitioned incoming information into fewer encapsulated segments or episodes of longer duration than adults. Importantly, directed communication between medial frontal and lower-level perceptual areas and between occipito-temporal regions in specific neural oscillation spectrums explained behavioral differences between groups. Overall, the study reveals that a different organization of directed communication between brain regions and inefficient transmission of information between brain regions are key to understand why younger people perceive the world as moving slow.
Collapse
Affiliation(s)
- Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
- School of Psychology, Shandong Normal University, Jinan, China
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany.
- School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
25
|
Takacs A, Toth‐Faber E, Schubert L, Tarnok Z, Ghorbani F, Trelenberg M, Nemeth D, Münchau A, Beste C. Neural representations of statistical and rule-based predictions in Gilles de la Tourette syndrome. Hum Brain Mapp 2024; 45:e26719. [PMID: 38826009 PMCID: PMC11144952 DOI: 10.1002/hbm.26719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a disorder characterised by motor and vocal tics, which may represent habitual actions as a result of enhanced learning of associations between stimuli and responses (S-R). In this study, we investigated how adults with GTS and healthy controls (HC) learn two types of regularities in a sequence: statistics (non-adjacent probabilities) and rules (predefined order). Participants completed a visuomotor sequence learning task while EEG was recorded. To understand the neurophysiological underpinnings of these regularities in GTS, multivariate pattern analyses on the temporally decomposed EEG signal as well as sLORETA source localisation method were conducted. We found that people with GTS showed superior statistical learning but comparable rule-based learning compared to HC participants. Adults with GTS had different neural representations for both statistics and rules than HC adults; specifically, adults with GTS maintained the regularity representations longer and had more overlap between them than HCs. Moreover, over different time scales, distinct fronto-parietal structures contribute to statistical learning in the GTS and HC groups. We propose that hyper-learning in GTS is a consequence of the altered sensitivity to encode complex statistics, which might lead to habitual actions.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Eszter Toth‐Faber
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Lina Schubert
- Institute of Systems Motor ScienceUniversity of LübeckLübeckGermany
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient ClinicBudapestHungary
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Madita Trelenberg
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Dezso Nemeth
- INSERMUniversité Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292BronFrance
- NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Department of Education and Psychology, Faculty of Social SciencesUniversity of Atlántico MedioLas Palmas de Gran CanariaSpain
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| |
Collapse
|
26
|
Koyun AH, Talebi N, Werner A, Wendiggensen P, Kuntke P, Roessner V, Beste C, Stock AK. Interactions of catecholamines and GABA+ in cognitive control: Insights from EEG and 1H-MRS. Neuroimage 2024; 293:120619. [PMID: 38679186 DOI: 10.1016/j.neuroimage.2024.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Catecholamines and amino acid transmitter systems are known to interact, the exact links and their impact on cognitive control functions have however remained unclear. Using a multi-modal imaging approach combining EEG and proton-magnetic resonance spectroscopy (1H-MRS), we investigated the effect of different degrees of pharmacological catecholaminergic enhancement onto theta band activity (TBA) as a measure of interference control during response inhibition and execution. It was central to our study to evaluate the predictive impact of in-vivo baseline GABA+ concentrations in the striatum, the anterior cingulate cortex (ACC) and the supplemental motor area (SMA) of healthy adults under varying degrees of methylphenidate (MPH) stimulation. We provide evidence for a predictive interrelation of baseline GABA+ concentrations in cognitive control relevant brain areas onto task-induced TBA during response control stimulated with MPH. Baseline GABA+ concentrations in the ACC, the striatum, and the SMA had a differential impact on predicting interference control-related TBA in response execution trials. GABA+ concentrations in the ACC appeared to be specifically important for TBA modulations when the cognitive effort needed for interference control was high - that is when no prior task experience exists, or in the absence of catecholaminergic enhancement with MPH. The study highlights the predictive role of baseline GABA+ concentrations in key brain areas influencing cognitive control and responsiveness to catecholaminergic enhancement, particularly in high-effort scenarios.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Annett Werner
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany.
| |
Collapse
|
27
|
Kaneshiro B, Nguyen DT, Norcia AM, Dmochowski JP, Berger J. Inter-subject correlation of electroencephalographic and behavioural responses reflects time-varying engagement with natural music. Eur J Neurosci 2024; 59:3162-3183. [PMID: 38626924 DOI: 10.1111/ejn.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 06/15/2024]
Abstract
Musical engagement can be conceptualized through various activities, modes of listening and listener states. Recent research has reported that a state of focused engagement can be indexed by the inter-subject correlation (ISC) of audience responses to a shared naturalistic stimulus. While statistically significant ISC has been reported during music listening, we lack insight into the temporal dynamics of engagement over the course of musical works-such as those composed in the Western classical style-which involve the formulation of expectations that are realized or derailed at subsequent points of arrival. Here, we use the ISC of electroencephalographic (EEG) and continuous behavioural (CB) responses to investigate the time-varying dynamics of engagement with functional tonal music. From a sample of adult musicians who listened to a complete cello concerto movement, we found that ISC varied throughout the excerpt for both measures. In particular, significant EEG ISC was observed during periods of musical tension that built to climactic highpoints, while significant CB ISC corresponded more to declarative entrances and points of arrival. Moreover, we found that a control stimulus retaining envelope characteristics of the intact music, but little other temporal structure, also elicited significantly correlated EEG and CB responses, though to lesser extents than the original version. In sum, these findings shed light on the temporal dynamics of engagement during music listening and clarify specific aspects of musical engagement that may be indexed by each measure.
Collapse
Affiliation(s)
- Blair Kaneshiro
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California, USA
- Center for the Study of Language and Information, Stanford University, Stanford, California, USA
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Duc T Nguyen
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California, USA
- Center for the Study of Language and Information, Stanford University, Stanford, California, USA
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | - Jacek P Dmochowski
- Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Jonathan Berger
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California, USA
| |
Collapse
|
28
|
Li J, Hua L, Deng SW. Modality-specific impacts of distractors on visual and auditory categorical decision-making: an evidence accumulation perspective. Front Psychol 2024; 15:1380196. [PMID: 38765839 PMCID: PMC11099231 DOI: 10.3389/fpsyg.2024.1380196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Our brain constantly processes multisensory inputs to make decisions and guide behaviors, but how goal-relevant processes are influenced by irrelevant information is unclear. Here, we investigated the effects of intermodal and intramodal task-irrelevant information on visual and auditory categorical decision-making. In both visual and auditory tasks, we manipulated the modality of irrelevant inputs (visual vs. auditory vs. none) and used linear discrimination analysis of EEG and hierarchical drift-diffusion modeling (HDDM) to identify when and how task-irrelevant information affected decision-relevant processing. The results revealed modality-specific impacts of irrelevant inputs on visual and auditory categorical decision-making. The distinct effects on the visual task were shown on the neural components, with auditory distractors amplifying the sensory processing whereas visual distractors amplifying the post-sensory process. Conversely, the distinct effects on the auditory task were shown in behavioral performance and underlying cognitive processes. Visual distractors facilitate behavioral performance and affect both stages, but auditory distractors interfere with behavioral performance and impact on the sensory processing rather than the post-sensory decision stage. Overall, these findings suggested that auditory distractors affect the sensory processing stage of both tasks while visual distractors affect the post-sensory decision stage of visual categorical decision-making and both stages of auditory categorical decision-making. This study provides insights into how humans process information from multiple sensory modalities during decision-making by leveraging modality-specific impacts.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Psychology, University of Macau, Macau, China
- Center for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Lin Hua
- Center for Cognitive and Brain Sciences, University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Sophia W. Deng
- Department of Psychology, University of Macau, Macau, China
- Center for Cognitive and Brain Sciences, University of Macau, Macau, China
| |
Collapse
|
29
|
Ghin F, Eggert E, Gholamipourbarogh N, Talebi N, Beste C. Response stopping under conflict: The integrative role of representational dynamics associated with the insular cortex. Hum Brain Mapp 2024; 45:e26643. [PMID: 38664992 PMCID: PMC11046082 DOI: 10.1002/hbm.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 04/29/2024] Open
Abstract
Coping with distracting inputs during goal-directed behavior is a common challenge, especially when stopping ongoing responses. The neural basis for this remains debated. Our study explores this using a conflict-modulation Stop Signal task, integrating group independent component analysis (group-ICA), multivariate pattern analysis (MVPA), and EEG source localization analysis. Consistent with previous findings, we show that stopping performance is better in congruent (nonconflicting) trials than in incongruent (conflicting) trials. Conflict effects in incongruent trials compromise stopping more due to the need for the reconfiguration of stimulus-response (S-R) mappings. These cognitive dynamics are reflected by four independent neural activity patterns (ICA), each coding representational content (MVPA). It is shown that each component was equally important in predicting behavioral outcomes. The data support an emerging idea that perception-action integration in action-stopping involves multiple independent neural activity patterns. One pattern relates to the precuneus (BA 7) and is involved in attention and early S-R processes. Of note, three other independent neural activity patterns were associated with the insular cortex (BA13) in distinct time windows. These patterns reflect a role in early attentional selection but also show the reiterated processing of representational content relevant for stopping in different S-R mapping contexts. Moreover, the insular cortex's role in automatic versus complex response selection in relation to stopping processes is shown. Overall, the insular cortex is depicted as a brain hub, crucial for response selection and cancellation across both straightforward (automatic) and complex (conditional) S-R mappings, providing a neural basis for general cognitive accounts on action control.
Collapse
Affiliation(s)
- Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| |
Collapse
|
30
|
Takacs A, Toth-Faber E, Schubert L, Tárnok Z, Ghorbani F, Trelenberg M, Nemeth D, Münchau A, Beste C. Resting network architecture of theta oscillations reflects hyper-learning of sensorimotor information in Gilles de la Tourette syndrome. Brain Commun 2024; 6:fcae092. [PMID: 38562308 PMCID: PMC10984574 DOI: 10.1093/braincomms/fcae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by motor and vocal tics. It is associated with enhanced processing of stimulus-response associations, including a higher propensity to learn probabilistic stimulus-response contingencies (i.e. statistical learning), the nature of which is still elusive. In this study, we investigated the hypothesis that resting-state theta network organization is a key for the understanding of superior statistical learning in these patients. We investigated the graph-theoretical network architecture of theta oscillations in adult patients with Gilles de la Tourette syndrome and healthy controls during a statistical learning task and in resting states both before and after learning. We found that patients with Gilles de la Tourette syndrome showed a higher statistical learning score than healthy controls, as well as a more optimal (small-world-like) theta network before the task. Thus, patients with Gilles de la Tourette syndrome had a superior facility to integrate and evaluate novel information as a trait-like characteristic. Additionally, the theta network architecture in Gilles de la Tourette syndrome adapted more to the statistical information during the task than in HC. We suggest that hyper-learning in patients with Gilles de la Tourette syndrome is likely a consequence of increased sensitivity to perceive and integrate sensorimotor information leveraged through theta oscillation-based resting-state dynamics. The study delineates the neural basis of a higher propensity in patients with Gilles de la Tourette syndrome to pick up statistical contingencies in their environment. Moreover, the study emphasizes pathophysiologically endowed abilities in patients with Gilles de la Tourette syndrome, which are often not taken into account in the perception of this common disorder but could play an important role in destigmatization.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| | - Eszter Toth-Faber
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest 1064, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lina Schubert
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient Clinic, Budapest 1021, Hungary
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| | - Madita Trelenberg
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
| | - Dezso Nemeth
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron 69500, France
- NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1071, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria 35017, Spain
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| |
Collapse
|
31
|
Wang F, Kaneshiro B, Toomarian EY, Gosavi RS, Hasak LR, Moron S, Nguyen QTH, Norcia AM, McCandliss BD. Progress in elementary school reading linked to growth of cortical responses to familiar letter combinations within visual word forms. Dev Sci 2024; 27:e13435. [PMID: 37465984 DOI: 10.1111/desc.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Learning to read depends on the ability to extract precise details of letter combinations, which convey critical information that distinguishes tens of thousands of visual word forms. To support fluent reading skill, one crucial neural developmental process is one's brain sensitivity to statistical constraints inherent in combining letters into visual word forms. To test this idea in early readers, we tracked the impact of two years of schooling on within-subject longitudinal changes in cortical responses to three different properties of words: coarse tuning for print, and fine tuning to either familiar letter combinations within visual word forms or whole word representations. We then examined how each related to growth in reading skill. Three stimulus contrasts-words versus pseudofonts, words versus pseudowords, pseudowords versus nonwords-were presented while high-density EEG Steady-State Visual Evoked Potentials (SSVEPs, n = 31) were recorded. Internalization of abstract visual word form structures over two years of reading experience resulted in a near doubling of SSVEP amplitude, with increasing left lateralization. Longitudinal changes (decreases) in brain responses to such word form structural information were linked to the growth in reading skills, especially in rapid automatic naming of letters. No such changes were observed for whole word representation processing and coarse tuning for print. Collectively, these findings indicate that sensitivity to visual word form structure develops rapidly through exposure to print and is linked to growth in reading skill. RESEARCH HIGHLIGHTS: Longitudinal changes in cognitive responses to coarse print tuning, visual word from structure, and whole word representation were examined in early readers. Visual word form structure processing demonstrated striking patterns of growth with nearly doubled in EEG amplitude and increased left lateralization. Longitudinal changes (decreases) in brain responses to visual word form structural information were linked to the growth in rapid automatic naming for letters. No longitudinal changes were observed for whole word representation processing and coarse tuning for print.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Radhika S Gosavi
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Lindsey R Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Suanna Moron
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Rotaru I, Geirnaert S, Heintz N, Van de Ryck I, Bertrand A, Francart T. What are we reallydecoding? Unveiling biases in EEG-based decoding of the spatial focus of auditory attention. J Neural Eng 2024; 21:016017. [PMID: 38266281 DOI: 10.1088/1741-2552/ad2214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Objective.Spatial auditory attention decoding (Sp-AAD) refers to the task of identifying the direction of the speaker to which a person is attending in a multi-talker setting, based on the listener's neural recordings, e.g. electroencephalography (EEG). The goal of this study is to thoroughly investigate potential biases when training such Sp-AAD decoders on EEG data, particularly eye-gaze biases and latent trial-dependent confounds, which may result in Sp-AAD models that decode eye-gaze or trial-specific fingerprints rather than spatial auditory attention.Approach.We designed a two-speaker audiovisual Sp-AAD protocol in which the spatial auditory and visual attention were enforced to be either congruent or incongruent, and we recorded EEG data from sixteen participants undergoing several trials recorded at distinct timepoints. We trained a simple linear model for Sp-AAD based on common spatial patterns filters in combination with either linear discriminant analysis (LDA) or k-means clustering, and evaluated them both across- and within-trial.Main results.We found that even a simple linear Sp-AAD model is susceptible to overfitting to confounding signal patterns such as eye-gaze and trial fingerprints (e.g. due to feature shifts across trials), resulting in artificially high decoding accuracies. Furthermore, we found that changes in the EEG signal statistics across trials deteriorate the trial generalization of the classifier, even when the latter is retrained on the test trial with an unsupervised algorithm.Significance.Collectively, our findings confirm that there exist subtle biases and confounds that can strongly interfere with the decoding of spatial auditory attention from EEG. It is expected that more complicated non-linear models based on deep neural networks, which are often used for Sp-AAD, are even more vulnerable to such biases. Future work should perform experiments and model evaluations that avoid and/or control for such biases in Sp-AAD tasks.
Collapse
Affiliation(s)
- Iustina Rotaru
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49 bus 721, B-3000 Leuven, Belgium
- Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Simon Geirnaert
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49 bus 721, B-3000 Leuven, Belgium
- Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
- Leuven.AI-KU Leuven Institute for AI, Leuven, Belgium
| | - Nicolas Heintz
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49 bus 721, B-3000 Leuven, Belgium
- Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
- Leuven.AI-KU Leuven Institute for AI, Leuven, Belgium
| | - Iris Van de Ryck
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49 bus 721, B-3000 Leuven, Belgium
| | - Alexander Bertrand
- Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
- Leuven.AI-KU Leuven Institute for AI, Leuven, Belgium
| | - Tom Francart
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49 bus 721, B-3000 Leuven, Belgium
- Leuven.AI-KU Leuven Institute for AI, Leuven, Belgium
| |
Collapse
|
33
|
Prochnow A, Zhou X, Ghorbani F, Wendiggensen P, Roessner V, Hommel B, Beste C. The temporal dynamics of how the brain structures natural scenes. Cortex 2024; 171:26-39. [PMID: 37977111 DOI: 10.1016/j.cortex.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Individuals organize the evolving stream of events in their environment by partitioning it into discrete units. Event segmentation theory (EST) provides a cognitive explanation for the process of this partitioning. Critically, the underlying time-resolved neural mechanisms are not understood, and thus a central conceptual aspect of how humans implement this central ability is missing. To gain better insight into the fundamental temporal dynamics of event segmentation, EEG oscillatory activity was measured while participants watched a narrative video and partitioned the movie into meaningful segments. Using EEG beamforming methods, we show that theta, alpha, and beta band activity in frontal, parietal, and occipital areas, as well as their interactions, reflect critical elements of the event segmentation process established by EST. In sum, we see a mechanistic temporal chain of processes that provides the neurophysiological basis for how the brain partitions and structures continuously evolving scenes and points to an integrated system that organizes the various subprocesses of event segmentation. This study thus integrates neurophysiology and cognitive theory to better understand how the human brain operates in rather variable and unpredictable situations. Therefore, it represents an important step toward studying neurophysiological dynamics in ecologically valid and naturalistic settings and, in doing so, addresses a critical gap in knowledge regarding the temporal dynamics of how the brain structures natural scenes.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany.
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
34
|
Xiong W, Ma L, Li H. A general dual-pathway network for EEG denoising. Front Neurosci 2024; 17:1258024. [PMID: 38328554 PMCID: PMC10847297 DOI: 10.3389/fnins.2023.1258024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Scalp electroencephalogram (EEG) analysis and interpretation are crucial for tracking and analyzing brain activity. The collected scalp EEG signals, however, are weak and frequently tainted with various sorts of artifacts. The models based on deep learning provide comparable performance with that of traditional techniques. However, current deep learning networks applied to scalp EEG noise reduction are large in scale and suffer from overfitting. Methods Here, we propose a dual-pathway autoencoder modeling framework named DPAE for scalp EEG signal denoising and demonstrate the superiority of the model on multi-layer perceptron (MLP), convolutional neural network (CNN) and recurrent neural network (RNN), respectively. We validate the denoising performance on benchmark scalp EEG artifact datasets. Results The experimental results show that our model architecture not only significantly reduces the computational effort but also outperforms existing deep learning denoising algorithms in root relative mean square error (RRMSE)metrics, both in the time and frequency domains. Discussion The DPAE architecture does not require a priori knowledge of the noise distribution nor is it limited by the network layer structure, which is a general network model oriented toward blind source separation.
Collapse
Affiliation(s)
| | | | - Haifeng Li
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
35
|
Carvalheiro J, Philiastides MG. Distinct spatiotemporal brainstem pathways of outcome valence during reward- and punishment-based learning. Cell Rep 2023; 42:113589. [PMID: 38100353 DOI: 10.1016/j.celrep.2023.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Learning to seek rewards and avoid punishments, based on positive and negative choice outcomes, is essential for human survival. Yet, the neural underpinnings of outcome valence in the human brainstem and the extent to which they differ in reward and punishment learning contexts remain largely elusive. Here, using simultaneously acquired electroencephalography and functional magnetic resonance imaging data, we show that during reward learning the substantia nigra (SN)/ventral tegmental area (VTA) and locus coeruleus are initially activated following negative outcomes, while the VTA subsequently re-engages exhibiting greater responses for positive than negative outcomes, consistent with an early arousal/avoidance response and a later value-updating process, respectively. During punishment learning, we show that distinct raphe nucleus and SN subregions are activated only by negative outcomes with a sustained post-outcome activity across time, supporting the involvement of these brainstem subregions in avoidance behavior. Finally, we demonstrate that the coupling of these brainstem structures with other subcortical and cortical areas helps to shape participants' serial choice behavior in each context.
Collapse
Affiliation(s)
- Joana Carvalheiro
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
36
|
Ueno F, Shimada S. Inter-subject correlations of EEG reflect subjective arousal and acoustic features of music. Front Hum Neurosci 2023; 17:1225377. [PMID: 37671247 PMCID: PMC10475548 DOI: 10.3389/fnhum.2023.1225377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Background Research on music-induced emotion and brain activity is constantly expanding. Although studies using inter-subject correlation (ISC), a collectively shared brain activity analysis method, have been conducted, whether ISC during music listening represents the music preferences of a large population remains uncertain; additionally, it remains unclear which factors influence ISC during music listening. Therefore, here, we aimed to investigate whether the ISCs of electroencephalography (EEG) during music listening represent a preference for music reflecting engagement or interest of a large population in music. Methods First, we selected 21 pieces of music from the Billboard Japan Hot 100 chart of 2017, which served as an indicator of preference reflecting the engagement and interest of a large population. To ensure even representation, we chose one piece for every fifth song on the chart, spanning from highly popular music to less popular ones. Next, we recorded EEG signals while the subjects listened to the selected music, and they were asked to evaluate four aspects (preference, enjoyment, frequency of listening, and arousal) for each song. Subsequently, we conducted ISC analysis by utilizing the first three principal components of EEG, which were highly correlated across subjects and extracted through correlated component analysis (CorrCA). We then explored whether music with high preferences that reflected the engagement and interest of large population had high ISC values. Additionally, we employed cluster analysis on all 21 pieces of music, utilizing the first three principal components of EEG, to investigate the impact of emotions and musical characteristics on EEG ISC during music listening. Results A significant distinction was noted between the mean ISC values of the 10 higher-ranked pieces of music compared to the 10 lower-ranked pieces of music [t(542) = -1.97, p = 0.0025]. This finding suggests that ISC values may correspond preferences reflecting engagement or interest of a large population. Furthermore, we found that significant variations were observed in the first three principal component values among the three clusters identified through cluster analysis, along with significant differences in arousal levels. Moreover, the characteristics of the music (tonality and tempo) differed among the three clusters. This indicates that the principal components, which exhibit high correlation among subjects and were employed in calculating ISC values, represent both subjects' arousal levels and specific characteristics of the music. Conclusion Subjects' arousal values during music listening and music characteristics (tonality and tempo) affect ISC values, which represent the interest of a large population in music.
Collapse
Affiliation(s)
- Fuyu Ueno
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sotaro Shimada
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
| |
Collapse
|
37
|
Vidaurre C, Gurunandan K, Idaji MJ, Nolte G, Gómez M, Villringer A, Müller KR, Nikulin VV. Novel multivariate methods to track frequency shifts of neural oscillations in EEG/MEG recordings. Neuroimage 2023; 276:120178. [PMID: 37236554 DOI: 10.1016/j.neuroimage.2023.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Instantaneous and peak frequency changes in neural oscillations have been linked to many perceptual, motor, and cognitive processes. Yet, the majority of such studies have been performed in sensor space and only occasionally in source space. Furthermore, both terms have been used interchangeably in the literature, although they do not reflect the same aspect of neural oscillations. In this paper, we discuss the relation between instantaneous frequency, peak frequency, and local frequency, the latter also known as spectral centroid. Furthermore, we propose and validate three different methods to extract source signals from multichannel data whose (instantaneous, local, or peak) frequency estimate is maximally correlated to an experimental variable of interest. Results show that the local frequency might be a better estimate of frequency variability than instantaneous frequency under conditions with low signal-to-noise ratio. Additionally, the source separation methods based on local and peak frequency estimates, called LFD and PFD respectively, provide more stable estimates than the decomposition based on instantaneous frequency. In particular, LFD and PFD are able to recover the sources of interest in simulations performed with a realistic head model, providing higher correlations with an experimental variable than multiple linear regression. Finally, we also tested all decomposition methods on real EEG data from a steady-state visual evoked potential paradigm and show that the recovered sources are located in areas similar to those previously reported in other studies, thus providing further validation of the proposed methods.
Collapse
Affiliation(s)
- C Vidaurre
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Tecnalia Research and Innovation, Neuroengineering Group, Health Unit, Donostia, Spain; Dept. of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain.
| | - K Gurunandan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; BCBL. Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
| | - M Jamshidi Idaji
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany; BIFOLD-Berlin Institute for the Foundations of Learning and Data, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - G Nolte
- Dept. of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Gómez
- Dept. of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - K-R Müller
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany; BIFOLD-Berlin Institute for the Foundations of Learning and Data, Germany; Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, South Korea; Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany
| | - V V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
38
|
Koyun AH, Stock AK, Beste C. Neurophysiological mechanisms underlying the differential effect of reward prospect on response selection and inhibition. Sci Rep 2023; 13:10903. [PMID: 37407656 DOI: 10.1038/s41598-023-37524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Reward and cognitive control play crucial roles in shaping goal-directed behavior. Yet, the behavioral and neural underpinnings of interactive effects of both processes in driving our actions towards a particular goal have remained rather unclear. Given the importance of inhibitory control, we investigated the effect of reward prospect on the modulatory influence of automatic versus controlled processes during response inhibition. For this, a performance-contingent monetary reward for both correct response selection and response inhibition was added to a Simon NoGo task, which manipulates the relationship of automatic and controlled processes in Go and NoGo trials. A neurophysiological approach was used by combining EEG temporal signal decomposition and source localization methods. Compared to a non-rewarded control group, rewarded participants showed faster response execution, as well as overall lower response selection and inhibition accuracy (shifted speed-accuracy tradeoff). Interestingly, the reward group displayed a larger interference of the interactive effects of automatic versus controlled processes during response inhibition (i.e., a larger Simon NoGo effect), but not during response selection. The reward-specific behavioral effect was mirrored by the P3 amplitude, underlining the importance of stimulus-response association processes in explaining variability in response inhibition performance. The selective reward-induced neurophysiological modulation was associated with lower activation differences in relevant structures spanning the inferior frontal and parietal cortex, as well as higher activation differences in the somatosensory cortex. Taken together, this study highlights relevant neuroanatomical structures underlying selective reward effects on response inhibition and extends previous reports on the possible detrimental effect of reward-triggered performance trade-offs on cognitive control processes.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany.
- Biopsychology, Faculty of Psychology, School of Science, TU Dresden, Dresden, Germany.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany
| |
Collapse
|
39
|
Wang F, Nguyen QTH, Kaneshiro B, Hasak L, Wang AM, Toomarian EY, Norcia AM, McCandliss BD. Lexical and sublexical cortical tuning for print revealed by Steady-State Visual Evoked Potentials (SSVEPs) in early readers. Dev Sci 2023; 26:e13352. [PMID: 36413170 PMCID: PMC10881121 DOI: 10.1111/desc.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
There are multiple levels of processing relevant to reading that vary in their visual, sublexical, and lexical orthographic processing demands. Segregating distinct cortical sources for each of these levels has been challenging in EEG studies of early readers. To address this challenge, we applied recent advances in analyzing high-density EEG using Steady-State Visual Evoked Potentials (SSVEPs) via data-driven Reliable Components Analysis (RCA) in a group of early readers spanning from kindergarten to second grade. Three controlled stimulus contrasts-familiar words versus unfamiliar pseudofonts, familiar words versus pseudowords, and pseudowords versus nonwords-were used to isolate coarse print tuning, lexical processing, and sublexical orthography-related processing, respectively. First, three overlapping yet distinct neural sources-left vOT, dorsal parietal, and primary visual cortex were revealed underlying coarse print tuning. Second, we segregated distinct cortical sources for the other two levels of processing: lexical fine tuning over occipito-temporal/parietal regions; sublexical orthographic fine tuning over left occipital regions. Finally, exploratory group analyses based on children's reading fluency suggested that coarse print tuning emerges early even in children with limited reading knowledge, while sublexical and higher-level lexical processing emerge only in children with sufficient reading knowledge. RESEARCH HIGHLIGHTS: Cognitive processes underlying coarse print tuning, sublexical, and lexical fine tuning were examined in beginning readers. Three overlapping yet distinct neural sources-left ventral occipito-temporal (vOT), left temporo-parietal, and primary visual cortex-were revealed underlying coarse print tuning. Responses to sublexical orthographic fine tuning were found over left occipital regions, while responses to higher-level linguistic fine tuning were found over occipito-temporal/parietal regions. Exploratory group analyses suggested that coarse print tuning emerges in children with limited reading knowledge, while sublexical and higher-level linguistic fine tuning effects emerge in children with sufficient reading knowledge.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Lindsey Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Angie M. Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y. Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Anthony M. Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D. McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
40
|
Balsdon T, Verdonck S, Loossens T, Philiastides MG. Secondary motor integration as a final arbiter in sensorimotor decision-making. PLoS Biol 2023; 21:e3002200. [PMID: 37459392 PMCID: PMC10393169 DOI: 10.1371/journal.pbio.3002200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/01/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
Sensorimotor decision-making is believed to involve a process of accumulating sensory evidence over time. While current theories posit a single accumulation process prior to planning an overt motor response, here, we propose an active role of motor processes in decision formation via a secondary leaky motor accumulation stage. The motor leak adapts the "memory" with which this secondary accumulator reintegrates the primary accumulated sensory evidence, thus adjusting the temporal smoothing in the motor evidence and, correspondingly, the lag between the primary and motor accumulators. We compare this framework against different single accumulator variants using formal model comparison, fitting choice, and response times in a task where human observers made categorical decisions about a noisy sequence of images, under different speed-accuracy trade-off instructions. We show that, rather than boundary adjustments (controlling the amount of evidence accumulated for decision commitment), adjustment of the leak in the secondary motor accumulator provides the better description of behavior across conditions. Importantly, we derive neural correlates of these 2 integration processes from electroencephalography data recorded during the same task and show that these neural correlates adhere to the neural response profiles predicted by the model. This framework thus provides a neurobiologically plausible description of sensorimotor decision-making that captures emerging evidence of the active role of motor processes in choice behavior.
Collapse
Affiliation(s)
- Tarryn Balsdon
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Stijn Verdonck
- Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Tim Loossens
- Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
41
|
Ruggeri P, Miehlbradt J, Kabbara A, Hassan M. Dynamic rewiring of electrophysiological brain networks during learning. Netw Neurosci 2023; 7:578-603. [PMID: 37397886 PMCID: PMC10312289 DOI: 10.1162/netn_a_00289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2024] Open
Abstract
Human learning is an active and complex process. However, the brain mechanisms underlying human skill learning and the effect of learning on the communication between brain regions, at different frequency bands, are still largely unknown. Here, we tracked changes in large-scale electrophysiological networks over a 6-week training period during which participants practiced a series of motor sequences during 30 home training sessions. Our findings showed that brain networks become more flexible with learning in all the frequency bands from theta to gamma ranges. We found consistent increase of flexibility in the prefrontal and limbic areas in the theta and alpha band, and over somatomotor and visual areas in the alpha band. Specific to the beta rhythm, we revealed that higher flexibility of prefrontal regions during the early stage of learning strongly correlated with better performance measured during home training sessions. Our findings provide novel evidence that prolonged motor skill practice results in higher, frequency-specific, temporal variability in brain network structure.
Collapse
Affiliation(s)
- Paolo Ruggeri
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Switzerland
| | - Jenifer Miehlbradt
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Switzerland
| | - Aya Kabbara
- Lebanese Association for Scientific Research, Tripoli, Lebanon
- MINDig, F-35000 Rennes, France
| | - Mahmoud Hassan
- School of Engineering, University of Reykjavik, Reykjavik, Iceland
- MINDig, F-35000 Rennes, France
| |
Collapse
|
42
|
Konjusha A, Yu S, Mückschel M, Colzato L, Ziemssen T, Beste C. Auricular Transcutaneous Vagus Nerve Stimulation Specifically Enhances Working Memory Gate Closing Mechanism: A System Neurophysiological Study. J Neurosci 2023; 43:4709-4724. [PMID: 37221097 PMCID: PMC10286950 DOI: 10.1523/jneurosci.2004-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023] Open
Abstract
Everyday tasks and goal-directed behavior involve the maintenance and continuous updating of information in working memory (WM). WM gating reflects switches between these two core states. Neurobiological considerations suggest that the catecholaminergic and the GABAergic are likely involved in these dynamics. Both of these neurotransmitter systems likely underlie the effects to auricular transcutaneous vagus nerve stimulation (atVNS). We examine the effects of atVNS on WM gating dynamics and their underlying neurophysiological and neurobiological processes in a randomized crossover study design in healthy humans of both sexes. We show that atVNS specifically modulates WM gate closing and thus specifically modulates neural mechanisms enabling the maintenance of information in WM. WM gate opening processes were not affected. atVNS modulates WM gate closing processes through the modulation of EEG alpha band activity. This was the case for clusters of activity in the EEG signal referring to stimulus information, motor response information, and fractions of information carrying stimulus-response mapping rules during WM gate closing. EEG-beamforming shows that modulations of activity in fronto-polar, orbital, and inferior parietal regions are associated with these effects. The data suggest that these effects are not because of modulations of the catecholaminergic (noradrenaline) system as indicated by lack of modulatory effects in pupil diameter dynamics, in the inter-relation of EEG and pupil diameter dynamics and saliva markers of noradrenaline activity. Considering other findings, it appears that a central effect of atVNS during cognitive processing refers to the stabilization of information in neural circuits, putatively mediated via the GABAergic system.SIGNIFICANCE STATEMENT Goal-directed behavior depends on how well information in short-term memory can be flexibly updated but also on how well it can be shielded from distraction. These two functions were guarded by a working memory gate. We show how an increasingly popular brain stimulation techniques specifically enhances the ability to close the working memory gate to shield information from distraction. We show what physiological and anatomic aspects underlie these effects.
Collapse
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Lorenza Colzato
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre, TU Dresden, Dresden 01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
43
|
He H, Hong L, Sajda P. Pupillary response is associated with the reset and switching of functional brain networks during salience processing. PLoS Comput Biol 2023; 19:e1011081. [PMID: 37172067 DOI: 10.1371/journal.pcbi.1011081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/24/2023] [Accepted: 04/06/2023] [Indexed: 05/14/2023] Open
Abstract
The interface between processing internal goals and salient events in the environment involves various top-down processes. Previous studies have identified multiple brain areas for salience processing, including the salience network (SN), dorsal attention network, and the locus coeruleus-norepinephrine (LC-NE) system. However, interactions among these systems in salience processing remain unclear. Here, we simultaneously recorded pupillometry, EEG, and fMRI during an auditory oddball paradigm. The analyses of EEG and fMRI data uncovered spatiotemporally organized target-associated neural correlates. By modeling the target-modulated effective connectivity, we found that the target-evoked pupillary response is associated with the network directional couplings from late to early subsystems in the trial, as well as the network switching initiated by the SN. These findings indicate that the SN might cooperate with the pupil-indexed LC-NE system in the reset and switching of cortical networks, and shed light on their implications in various cognitive processes and neurological diseases.
Collapse
Affiliation(s)
- Hengda He
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Linbi Hong
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- Department of Electrical Engineering, Columbia University, New York, New York, United States of America
- Department of Radiology, Columbia University, New York, New York, United States of America
- Data Science Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
44
|
Dini H, Simonetti A, Bigne E, Bruni LE. Higher levels of narrativity lead to similar patterns of posterior EEG activity across individuals. Front Hum Neurosci 2023; 17:1160981. [PMID: 37234601 PMCID: PMC10206039 DOI: 10.3389/fnhum.2023.1160981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction The focus of cognitive and psychological approaches to narrative has not so much been on the elucidation of important aspects of narrative, but rather on using narratives as tools for the investigation of higher order cognitive processes elicited by narratives (e.g., understanding, empathy, etc.). In this study, we work toward a scalar model of narrativity, which can provide testable criteria for selecting and classifying communication forms in their level of narrativity. We investigated whether being exposed to videos with different levels of narrativity modulates shared neural responses, measured by inter-subject correlation, and engagement levels. Methods Thirty-two participants watched video advertisements with high-level and low-level of narrativity while their neural responses were measured through electroencephalogram. Additionally, participants' engagement levels were calculated based on the composite of their self-reported attention and immersion scores. Results Results demonstrated that both calculated inter-subject correlation and engagement scores for high-level video ads were significantly higher than those for low-level, suggesting that narrativity levels modulate inter-subject correlation and engagement. Discussion We believe that these findings are a step toward the elucidation of the viewers' way of processing and understanding a given communication artifact as a function of the narrative qualities expressed by the level of narrativity.
Collapse
Affiliation(s)
- Hossein Dini
- The Augmented Cognition Lab, Aalborg University, Copenhagen, Denmark
| | - Aline Simonetti
- Department of Marketing and Market Research, University of Valencia, Valencia, Spain
| | - Enrique Bigne
- Department of Marketing and Market Research, University of Valencia, Valencia, Spain
| | - Luis Emilio Bruni
- The Augmented Cognition Lab, Aalborg University, Copenhagen, Denmark
| |
Collapse
|
45
|
Wendiggensen P, Beste C. How Intermittent Brain States Modulate Neurophysiological Processes in Cognitive Flexibility. J Cogn Neurosci 2023; 35:749-764. [PMID: 36724399 DOI: 10.1162/jocn_a_01970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cognitive flexibility is an essential facet of everyday life, for example, when switching between different tasks. Neurophysiological accounts on cognitive flexibility have often focused on the task switch itself, disregarding preceding processes and the possible impact of "brain states" before engaging in cognitive flexibility. In a combined working memory/task-switching paradigm, we examined how neuronal processes during cognitive flexibility are interrelated to preceding neuronal processes across time and brain regions in a sample of n = 42 healthy adults. The interrelation of alpha- and theta-band-related processes over brain states ahead and during response selection was investigated on a functional neuroanatomical level using EEG-beamforming. The results showed that response selection processes (reflected by theta-band activity) seem to be strongly connected to "idling" and preparatory brain activity states (in both the theta- and alpha-band). Notably, the superior parietal cortex seems to play a crucial role by assembling alpha-band-related inhibitory processes from the rule- and goal-based actions during "idling" brain states, namely, short-term maintenance of rules (temporal cortex), task-set reconfiguration (superior frontal/precentral regions), and perceptual control (occipital cortex). This information is further relayed to response selection processes associated with theta-band activity. Notably, when the task has to be switched, theta-band activity in the superior frontal gyrus indicates a need for cognitive control in the "idling" brain state, which also seems to be relayed by BA7. The results indicate the importance of brain activity states ahead of response selection processes for cognitive flexibility.
Collapse
|
46
|
Takacs A, Beste C. A neurophysiological perspective on the integration between incidental learning and cognitive control. Commun Biol 2023; 6:329. [PMID: 36973381 PMCID: PMC10042851 DOI: 10.1038/s42003-023-04692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractAdaptive behaviour requires interaction between neurocognitive systems. Yet, the possibility of concurrent cognitive control and incidental sequence learning remains contentious. We designed an experimental procedure of cognitive conflict monitoring that follows a pre-defined sequence unknown to participants, in which either statistical or rule-based regularities were manipulated. We show that participants learnt the statistical differences in the sequence when stimulus conflict was high. Neurophysiological (EEG) analyses confirmed but also specified the behavioural results: the nature of conflict, the type of sequence learning, and the stage of information processing jointly determine whether cognitive conflict and sequence learning support or compete with each other. Especially statistical learning has the potential to modulate conflict monitoring. Cognitive conflict and incidental sequence learning can engage in cooperative fashion when behavioural adaptation is challenging. Three replication and follow-up experiments provide insights into the generalizability of these results and suggest that the interaction of learning and cognitive control is dependent on the multifactorial aspects of adapting to a dynamic environment. The study indicates that connecting the fields of cognitive control and incidental learning is advantageous to achieve a synergistic view of adaptive behaviour.
Collapse
|
47
|
Alilović J, Lampers E, Slagter HA, van Gaal S. Illusory object recognition is either perceptual or cognitive in origin depending on decision confidence. PLoS Biol 2023; 21:e3002009. [PMID: 36862734 PMCID: PMC10013920 DOI: 10.1371/journal.pbio.3002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
We occasionally misinterpret ambiguous sensory input or report a stimulus when none is presented. It is unknown whether such errors have a sensory origin and reflect true perceptual illusions, or whether they have a more cognitive origin (e.g., are due to guessing), or both. When participants performed an error-prone and challenging face/house discrimination task, multivariate electroencephalography (EEG) analyses revealed that during decision errors (e.g., mistaking a face for a house), sensory stages of visual information processing initially represent the presented stimulus category. Crucially however, when participants were confident in their erroneous decision, so when the illusion was strongest, this neural representation flipped later in time and reflected the incorrectly reported percept. This flip in neural pattern was absent for decisions that were made with low confidence. This work demonstrates that decision confidence arbitrates between perceptual decision errors, which reflect true illusions of perception, and cognitive decision errors, which do not.
Collapse
Affiliation(s)
- Josipa Alilović
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Eline Lampers
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Heleen A. Slagter
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, the Netherlands
- Institute for Brain and Behavior, Vrije Universiteit Amsterdam, the Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
48
|
Gu J, Jiang J, Ge S, Wang H. Capped L21-norm-based common spatial patterns for EEG signals classification applicable to BCI systems. Med Biol Eng Comput 2023; 61:1083-1092. [PMID: 36658415 DOI: 10.1007/s11517-023-02782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
The common spatial patterns (CSP) technique is an effective strategy for the classification of multichannel electroencephalogram (EEG) signals. However, the objective function expression of the conventional CSP algorithm is based on the L2-norm, which makes the performance of the method easily affected by outliers and noise. In this paper, we consider a new extension to CSP, which is termed capped L21-norm-based common spatial patterns (CCSP-L21), by using the capped L21-norm rather than the L2-norm for robust modeling. L21-norm considers the L1-norm sum which largely alleviates the influence of outliers and noise for the sake of robustness. The capped norm is further used to mitigate the effects of extreme outliers whose signal amplitude is much higher than that of the normal signal. Moreover, a non-greedy iterative procedure is derived to solve the proposed objective function. The experimental results show that the proposed method achieves the highest average recognition rates on the three real data sets of BCI competitions, which are 91.67%, 85.07%, and 82.04%, respectively. Capped L21-norm-based common spatial patterns-a robust model for EEG signals classification.
Collapse
Affiliation(s)
- Jingyu Gu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Jiuchuan Jiang
- School of Information Engineering, Nanjing University of Finance and Economics, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Sheng Ge
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China.
| |
Collapse
|
49
|
Sensorimotor recalibration of postural control strategies occurs after whole body vibration. Sci Rep 2023; 13:522. [PMID: 36627328 PMCID: PMC9831994 DOI: 10.1038/s41598-022-27117-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
Efficient postural control results from an effective interplay between sensory feedbacks integration and muscle modulation and can be affected by ageing and neuromuscular injuries. With this study, we investigated the effect of whole-body vibratory stimulation on postural control strategies employed to maintain an upright posture. We explored both physiological and posturography metrics, through corticomuscular and intramuscular coherence, and muscle networks analyses. The stimulation disrupts balance in the short term, but leads to a greater contribution of cortical activity, necessary to modulate muscle activation via the formation of (new) synergies. We also observed a reconfiguration of muscle recruitment patterns that returned to pre-stimulation levels after few minutes, accompanied by a slight improvement of balance in the anterior-posterior direction. Our results suggest that, in the context of postural control, appropriate mechanical stimulation is capable of triggering a recalibration of the sensorimotor set and might offer new perspectives for motor re-education.
Collapse
|
50
|
Lupenko S, Butsiy R, Shakhovska N. Advanced Modeling and Signal Processing Methods in Brain-Computer Interfaces Based on a Vector of Cyclic Rhythmically Connected Random Processes. SENSORS (BASEL, SWITZERLAND) 2023; 23:760. [PMID: 36679557 PMCID: PMC9866141 DOI: 10.3390/s23020760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In this study is substantiated the new mathematical model of vector of electroencephalographic signals, registered under the conditions of multiple repetitions of the mental control influences of brain-computer interface operator, in the form of a vector of cyclic rhythmically connected random processes, which, due to taking into account the stochasticity and cyclicity, the variability and commonality of the rhythm of the investigated signals have a number of advantages over the known models. This new model opens the way for the study of multidimensional distribution functions; initial, central, and mixed moment functions of higher order such as for each electroencephalographic signal separately; as well as for their respective compatible probabilistic characteristics, among which the most informative characteristics can be selected. This provides an increase in accuracy in the detection (classification) of mental control influences of the brain-computer interface operators. Based on the developed mathematical model, the statistical processing methods of vector of electroencephalographic signals are substantiated, which consist of statistical evaluation of its probabilistic characteristics and make it possible to conduct an effective joint statistical estimation of the probability characteristics of electroencephalographic signals. This provides the basis for coordinated integration of information from different sensors. The use of moment functions of higher order and their spectral images in the frequency domain, as informative characteristics in brain-computer interface systems, are substantiated. Their significant sensitivity to the mental controlling influence of the brain-computer interface operator is experimentally established. The application of Bessel's inequality to the problems of reducing the dimensions (from 500 to 20 numbers) of the vectors of informative features makes it possible to significantly reduce the computational complexity of the algorithms for the functioning of brain-computer interface systems. Namely, we experimentally established that only the first 20 values of the Fourier transform of the estimation of moment functions of higher-order electroencephalographic signals are sufficient to form the vector of informative features in brain-computer interface systems, because these spectral components make up at least 95% of the total energy of the corresponding statistical estimate of the moment functions of higher-order electroencephalographic signals.
Collapse
Affiliation(s)
- Serhii Lupenko
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland
- Institute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
| | - Roman Butsiy
- Institute of Telecommunications and Global Information Space, National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
| | - Nataliya Shakhovska
- Institute of Computer Sciences and Information Technologies, Lviv Polytechnic National University, 79000 Lviv, Ukraine
| |
Collapse
|