1
|
Bonfanti D, Mazzi C, Savazzi S. Mapping the routes of perception: Hemispheric asymmetries in signal propagation dynamics. Psychophysiology 2024; 61:e14529. [PMID: 38279560 DOI: 10.1111/psyp.14529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
The visual system has long been considered equivalent across hemispheres. However, an increasing amount of data shows that functional differences may exist in this regard. We therefore tried to characterize the emergence of visual perception and the spatiotemporal dynamics resulting from the stimulation of visual cortices in order to detect possible interhemispheric asymmetries. Eighteen participants were tested. Each of them received 360 transcranial magnetic stimulation (TMS) pulses at phosphene threshold intensity over left and right early visual areas while electroencephalography was being recorded. After each single pulse, participants had to report the presence or absence of a phosphene. Local mean field power analysis of TMS-evoked potentials showed an effect of both site (left vs. right TMS) of stimulation and hemisphere (ipsilateral vs. contralateral to the TMS): while right TMS determined early stronger activations, left TMS determined later stronger activity in contralateral electrodes. The interhemispheric signal propagation index revealed differences in how TMS-evoked activity spreads: left TMS-induced activity diffused contralaterally more than right stimulation. With regard to phosphenes perception, distinct electrophysiological patterns were found to reflect similar perceptual experiences: left TMS-evoked phosphenes are associated with early occipito-parietal and frontal activity followed by late central activity; right TMS-evoked phosphenes determine only late, fronto-central, and parietal activations. Our results show that left and right occipital TMS elicits differential electrophysiological patterns in the brain, both per se and as a function of phosphene perception. These distinct activation patterns may suggest a different role of the two hemispheres in processing visual information and giving rise to perception.
Collapse
Affiliation(s)
- Davide Bonfanti
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Song J, Breitmeyer BG, Brown JM. Further Examination of the Pulsed- and Steady-Pedestal Paradigms under Hypothetical Parvocellular- and Magnocellular-Biased Conditions. Vision (Basel) 2024; 8:28. [PMID: 38804349 PMCID: PMC11130818 DOI: 10.3390/vision8020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
The pulsed- and steady-pedestal paradigms were designed to track increment thresholds (ΔC) as a function of pedestal contrast (C) for the parvocellular (P) and magnocellular (M) systems, respectively. These paradigms produce contrasting results: linear relationships between ΔC and C are observed in the pulsed-pedestal paradigm, indicative of the P system's processing, while the steady-pedestal paradigm reveals nonlinear functions, characteristic of the M system's response. However, we recently found the P model fits better than the M model for both paradigms, using Gabor stimuli biased towards the M or P systems based on their sensitivity to color and spatial frequency. Here, we used two-square pedestals under green vs. red light in the lower-left vs. upper-right visual fields to bias processing towards the M vs. P system, respectively. Based on our previous findings, we predicted the following: (1) steeper ΔC vs. C functions with the pulsed than the steady pedestal due to different task demands; (2) lower ΔCs in the upper-right vs. lower-left quadrant due to its bias towards P-system processing there; (3) no effect of color, since both paradigms track the P-system; and, most importantly (4) contrast gain should not be higher for the steady than for the pulsed pedestal. In general, our predictions were confirmed, replicating our previous findings and providing further evidence questioning the general validity of using the pulsed- and steady-pedestal paradigms to differentiate the P and M systems.
Collapse
Affiliation(s)
- Jaeseon Song
- Department of Psychology, University of Georgia, Athens, GA 30602, USA;
| | | | - James M. Brown
- Department of Psychology, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
3
|
Yang L, Yang W, Tang F, Yuan K, Zhang J, Liu J. Hereditary and cortical morphological biomarker of sensitivity to reward in short-term withdrawal methamphetamine abusers. Cereb Cortex 2024; 34:bhae169. [PMID: 38679482 DOI: 10.1093/cercor/bhae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Higher sensitivity to reward (SR) and weaker sensitivity to punishment (SP) construct the fundamental craving characteristics of methamphetamine abuse. However, few studies have appraised relationships between SR/SP (SR or SP) and cortical morphological alterations in methamphetamine abusers and whether hereditary factors take effects on SR/SP is unclear. Based on surface-based morphometric analysis, cortical discrepancy was investigated between 38 methamphetamine abusers and 37 healthy controls. Within methamphetamine abusers, correlation profiling was performed to discover associations among aberrant neuroimaging substrates, SR, SP, and craving. According to nine single nucleotide polymorphism sites of dopamine-related genes, we conducted univariate general linear model to find different effects of genotypes on cortical alterations and SR/SP/craving (SR, SP, or craving). Ultimately, mediation analyses were conducted among single nucleotide polymorphism sites, SR/SP/craving, and cortical morphological alterations to discover their association pathways. Compared to healthy controls, thinner cortices in inferior temporal gyrus, lateral orbitofrontal cortex, medial orbitofrontal cortex, inferior parietal lobule, and lateral occipital cortex in the left hemisphere were found in methamphetamine abusers (P < 0.05, family-wise error corrected). Cortical thickness in the inferior temporal gyrus was negatively correlated with SR scores. We found that rs1800497 A-containing genotypes had lower cortical thickness in the left inferior parietal lobule than the GG genotype. The rs5751876 had effects on SR scores. This study would provide convincing biomarkers for SR in methamphetamine abusers and offer potential genetic targets for personalizing relapse prevention.
Collapse
Affiliation(s)
- Longtao Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
| | - Fei Tang
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, No. 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi 710126, PR China
| | - Jun Zhang
- Hunan Judicial Police Academy, No. 9 Broad Third Road, Changsha Economic and Technological Development Zone, Changsha, Hunan 410138, PR China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
- Clinical Research Center for Medical Imaging in Hunan Province, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
- Department of Radiology Quality Control Center in Hunan Province, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
| |
Collapse
|
4
|
Bertrand Pilon C, Arguin M. The processing of spatial frequencies through time in visual word recognition. Sci Rep 2024; 14:6628. [PMID: 38503810 PMCID: PMC10951267 DOI: 10.1038/s41598-024-57219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
This study examined the temporal profile of spatial frequency processing in a word reading task in 16 normal adult readers. They had to report the word presented in a 200 ms display using a four-alternative forced-choice task (4AFC). The stimuli were made of an additive combination of the signal (i.e. the target word) and of a visual white noise patch wherein the signal-to-noise ratio varied randomly across stimulus duration. Four spatial frequency conditions were defined for the signal component of the stimulus (bandpass Butterworth filters with center frequencies of 1.2, 2.4, 4.8 and 9.6 cycles per degree). In contrast to the coarse-to-fine theory of visual recognition, the results show that the highest spatial frequency range dominates early processing, with a shift toward lower spatial frequencies at later points during stimulus exposure. This pattern interacted in a complex way with the temporal frequency content of signal-to-noise oscillations. The outcome of individual data patterns classification by a machine learning algorithm according to the corresponding spatial frequency band further shows that the most salient spatial frequency signature is obtained when the time dimension within data patterns is recoded into its Fourier transform.
Collapse
Affiliation(s)
- Clémence Bertrand Pilon
- Department of Psychology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Martin Arguin
- Department of Psychology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada.
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Department of Psychology, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
5
|
Geuzebroek AC, Woutersen K, van den Berg AV. When You Do Not Get the Whole Picture: Scene Perception After Occipital Cortex Lesions. Front Neurosci 2021; 15:716273. [PMID: 34966253 PMCID: PMC8710569 DOI: 10.3389/fnins.2021.716273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Occipital cortex lesions (OCLs) typically result in visual field defects (VFDs) contralateral to the damage. VFDs are usually mapped with perimetry involving the detection of point targets. This, however, ignores the important role of integration of visual information across locations in many tasks of everyday life. Here, we ask whether standard perimetry can fully characterize the consequences of OCLs. We compare performance on a rapid scene discrimination task of OCL participants and healthy observers with simulated VFDs. While the healthy observers will only suffer the loss of part of the visual scene, the damage in the OCL participants may further compromise global visual processing. Methods: VFDs were mapped with Humphrey perimetry, and participants performed two rapid scene discrimination tasks. In healthy participants, the VFDs were simulated with hemi- and quadrant occlusions. Additionally, the GIST model, a computational model of scene recognition, was used to make individual predictions based on the VFDs. Results: The GIST model was able to predict the performance of controls regarding the effects of the local occlusion. Using the individual predictions of the GIST model, we can determine that the variability between the OCL participants is much larger than the extent of the VFD could account for. The OCL participants can further be categorized as performing worse, the same, or better as their VFD would predict. Conclusions: While in healthy observers the extent of the simulated occlusion accounts for their performance loss, the OCL participants' performance is not fully determined by the extent or shape of their VFD as measured with Humphrey perimetry. While some OCL participants are indeed only limited by the local occlusion of the scene, for others, the lesions compromised the visual network in a more global and disruptive way. Yet one outperformed a healthy observer, suggesting a possible adaptation to the VFD. Preliminary analysis of neuroimaging data suggests that damage to the lateral geniculate nucleus and corpus callosum might be associated with the larger disruption of rapid scene discrimination. We believe our approach offers a useful behavioral tool for investigating why similar VFDs can produce widely differing limitations in everyday life.
Collapse
Affiliation(s)
- Anna C. Geuzebroek
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University, Nijmegen, Netherlands
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Karlijn Woutersen
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University Medical Center (RadboudUMC), Nijmegen, Netherlands
| | - Albert V. van den Berg
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University Medical Center (RadboudUMC), Nijmegen, Netherlands
| |
Collapse
|
6
|
Flexible time course of spatial frequency use during scene categorization. Sci Rep 2021; 11:14079. [PMID: 34234183 PMCID: PMC8263560 DOI: 10.1038/s41598-021-93252-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Human observers can quickly and accurately categorize scenes. This remarkable ability is related to the usage of information at different spatial frequencies (SFs) following a coarse-to-fine pattern: Low SFs, conveying coarse layout information, are thought to be used earlier than high SFs, representing more fine-grained information. Alternatives to this pattern have rarely been considered. Here, we probed all possible SF usage strategies randomly with high resolution in both the SF and time dimensions at two categorization levels. We show that correct basic-level categorizations of indoor scenes are linked to the sampling of relatively high SFs, whereas correct outdoor scene categorizations are predicted by an early use of high SFs and a later use of low SFs (fine-to-coarse pattern of SF usage). Superordinate-level categorizations (indoor vs. outdoor scenes) rely on lower SFs early on, followed by a shift to higher SFs and a subsequent shift back to lower SFs in late stages. In summary, our results show no consistent pattern of SF usage across tasks and only partially replicate the diagnostic SFs found in previous studies. We therefore propose that SF sampling strategies of observers differ with varying stimulus and task characteristics, thus favouring the notion of flexible SF usage.
Collapse
|
7
|
Zhang X, Sun Y, Liu W, Zhang Z, Wu B. Twin mechanisms: Rapid scene recognition involves both feedforward and feedback processing. Acta Psychol (Amst) 2020; 208:103101. [PMID: 32485339 DOI: 10.1016/j.actpsy.2020.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022] Open
Abstract
The low spatial frequency (LSF) component of visual information rapidly conveyed coarse information for global perception, while the high spatial frequency (HSF) component delivered fine-grained information for detailed analyses. The feedforward theorists deemed that a coarse-to-fine process was sufficient for a rapid scene recognition. Based on the response priming paradigm, the present study aimed to deeply explore how different spatial frequency interacted with each other during rapid scene recognition. The response priming paradigm posited that as long as the prime slide could be rapidly recognized, the prime-target system was behaviorally equivalent to a feedforward system. Adopting broad spatial frequency images, experiment 1 revealed a typical response priming effect. But in experiment 2, when the HSF and the LSF components of the same pictures were separately presented, neither the LSF-to-HSF sequence nor the HSF-to-LSF sequence reproduced the response priming effect. These results demonstrated that LSF or HSF component alone was not sufficient for rapid scene recognition and, further, that the integration of different spatial frequency needed some early feedback loops. These findings supported that the local recurrent processing loops among early visual cortex was involved during rapid scene recognition.
Collapse
|
8
|
Spatial frequency tuning of motor responses reveals differential contribution of dorsal and ventral systems to action comprehension. Proc Natl Acad Sci U S A 2020; 117:13151-13161. [PMID: 32457158 DOI: 10.1073/pnas.1921512117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding object-directed actions performed by others is central to everyday life. This ability is thought to rely on the interaction between the dorsal action observation network (AON) and a ventral object recognition pathway. On this view, the AON would encode action kinematics, and the ventral pathway, the most likely intention afforded by the objects. However, experimental evidence supporting this model is still scarce. Here, we aimed to disentangle the contribution of dorsal vs. ventral pathways to action comprehension by exploiting their differential tuning to low-spatial frequencies (LSFs) and high-spatial frequencies (HSFs). We filtered naturalistic action images to contain only LSF or HSF and measured behavioral performance and corticospinal excitability (CSE) using transcranial magnetic stimulation (TMS). Actions were embedded in congruent or incongruent scenarios as defined by the compatibility between grips and intentions afforded by the contextual objects. Behaviorally, participants were better at discriminating congruent actions in intact than LSF images. This effect was reversed for incongruent actions, with better performance for LSF than intact and HSF. These modulations were mirrored at the neurophysiological level, with greater CSE facilitation for congruent than incongruent actions for HSF and the opposite pattern for LSF images. Finally, only for LSF did we observe CSE modulations according to grip kinematics. While results point to differential dorsal (LSF) and ventral (HSF) contributions to action comprehension for grip and context encoding, respectively, the negative congruency effect for LSF images suggests that object processing may influence action perception not only through ventral-to-dorsal connections, but also through a dorsal-to-dorsal route involved in predictive processing.
Collapse
|
9
|
Aghajari S, Vinke LN, Ling S. Population spatial frequency tuning in human early visual cortex. J Neurophysiol 2020; 123:773-785. [PMID: 31940228 DOI: 10.1152/jn.00291.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons within early visual cortex are selective for basic image statistics, including spatial frequency. However, these neurons are thought to act as band-pass filters, with the window of spatial frequency sensitivity varying across the visual field and across visual areas. Although a handful of previous functional (f)MRI studies have examined human spatial frequency sensitivity using conventional designs and analysis methods, these measurements are time consuming and fail to capture the precision of spatial frequency tuning (bandwidth). In this study, we introduce a model-driven approach to fMRI analyses that allows for fast and efficient estimation of population spatial frequency tuning (pSFT) for individual voxels. Blood oxygen level-dependent (BOLD) responses within early visual cortex were acquired while subjects viewed a series of full-field stimuli that swept through a large range of spatial frequency content. Each stimulus was generated by band-pass filtering white noise with a central frequency that changed periodically between a minimum of 0.5 cycles/degree (cpd) and a maximum of 12 cpd. To estimate the underlying frequency tuning of each voxel, we assumed a log-Gaussian pSFT and optimized the parameters of this function by comparing our model output against the measured BOLD time series. Consistent with previous studies, our results show that an increase in eccentricity within each visual area is accompanied by a drop in the peak spatial frequency of the pSFT. Moreover, we found that pSFT bandwidth depends on eccentricity and is correlated with the pSFT peak; populations with lower peaks possess broader bandwidths in logarithmic scale, whereas in linear scale this relationship is reversed.NEW & NOTEWORTHY Spatial frequency selectivity is a hallmark property of early visuocortical neurons, and mapping these sensitivities gives us crucial insight into the hierarchical organization of information within visual areas. Due to technical obstacles, we lack a comprehensive picture of the properties of this sensitivity in humans. Here, we introduce a new method, coined population spatial frequency tuning mapping, which circumvents the limitations of the conventional neuroimaging methods, yielding a fuller visuocortical map of spatial frequency sensitivity.
Collapse
Affiliation(s)
- Sara Aghajari
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Louis N Vinke
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
10
|
Abstract
Torrance Test of Creative Thinking is the most widely used form of creativity test. Although creativity assessed using the figural form of Torrance Test of Creative Thinking has been considered non-unidimensional, the structural correlates for each separable dimension have yet to be explored. The present study investigated the underlying cortical structure of separable dimensions for creativity using the figural Torrance Test of Creative Thinking. To this end, we recruited healthy young adults and conducted a regression analysis of the figural Torrance Test of Creative Thinking scores of gray matter volume after factorizing the five subscales using exploratory factor analysis. As a result, two factors of the figural Torrance Test of Creative Thinking were identified: (1) 'FO' factor consisting of fluency and originality and (2) 'RAS' factor consisting resistance to premature closure, abstractness of titles, and sophistication/elaboration. Subsequently, the FO factor showed a positive association with cerebral volumes in the parieto-temporal regions of the left angular gyrus and the right inferior parietal lobule, inferior and middle temporal, and parahippocampal gyri, which overlapped the default network. The RAS factor showed a positive correlation with the fronto-temporal regions including the bilateral temporal area, the left inferior parietal, and the right dorsolateral prefrontal regions representing the semantic control network. Our findings revealed the morphological substrates for the figural Torrance Test of Creative Thinking depending on two creative dimensions. The implications of the results are discussed.
Collapse
|
11
|
Jeantet C, Caharel S, Schwan R, Lighezzolo-Alnot J, Laprevote V. Factors influencing spatial frequency extraction in faces: A review. Neurosci Biobehav Rev 2018. [DOI: 10.1016/j.neubiorev.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Geuzebroek AC, van den Berg AV. Eccentricity scale independence for scene perception in the first tens of milliseconds. J Vis 2018; 18:9. [DOI: 10.1167/18.9.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anna C. Geuzebroek
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Albert V. van den Berg
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Zinchenko O, Yaple ZA, Arsalidou M. Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis. Front Hum Neurosci 2018; 12:227. [PMID: 29922137 PMCID: PMC5996092 DOI: 10.3389/fnhum.2018.00227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023] Open
Abstract
Identifying facial expressions is crucial for social interactions. Functional neuroimaging studies show that a set of brain areas, such as the fusiform gyrus and amygdala, become active when viewing emotional facial expressions. The majority of functional magnetic resonance imaging (fMRI) studies investigating face perception typically employ static images of faces. However, studies that use dynamic facial expressions (e.g., videos) are accumulating and suggest that a dynamic presentation may be more sensitive and ecologically valid for investigating faces. By using quantitative fMRI meta-analysis the present study examined concordance of brain regions associated with viewing dynamic facial expressions. We analyzed data from 216 participants that participated in 14 studies, which reported coordinates for 28 experiments. Our analysis revealed bilateral fusiform and middle temporal gyri, left amygdala, left declive of the cerebellum and the right inferior frontal gyrus. These regions are discussed in terms of their relation to models of face processing.
Collapse
Affiliation(s)
- Oksana Zinchenko
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Zachary A Yaple
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.,Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russia.,Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
14
|
Domínguez-Borràs J, Rieger SW, Corradi-Dell'Acqua C, Neveu R, Vuilleumier P. Fear Spreading Across Senses: Visual Emotional Events Alter Cortical Responses to Touch, Audition, and Vision. Cereb Cortex 2017; 27:68-82. [PMID: 28365774 PMCID: PMC5939199 DOI: 10.1093/cercor/bhw337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/07/2016] [Indexed: 12/01/2022] Open
Abstract
Attention and perception are potentiated for emotionally significant stimuli, promoting efficient reactivity and survival. But does such enhancement extend to stimuli simultaneously presented across different sensory modalities? We used functional magnetic resonance imaging in humans to examine the effects of visual emotional signals on concomitant sensory inputs in auditory, somatosensory, and visual modalities. First, we identified sensory areas responsive to task-irrelevant tones, touches, or flickers, presented bilaterally while participants attended to either a neutral or a fearful face. Then, we measured whether these responses were modulated by the emotional content of the face. Sensory responses in primary cortices were enhanced for auditory and tactile stimuli when these appeared with fearful faces, compared with neutral, but striate cortex responses to the visual stimuli were reduced in the left hemisphere, plausibly as a consequence of sensory competition. Finally, conjunction and functional connectivity analyses identified 2 distinct networks presumably responsible for these emotional modulatory processes, involving cingulate, insular, and orbitofrontal cortices for the increased sensory responses, and ventrolateral prefrontal cortex for the decreased sensory responses. These results suggest that emotion tunes the excitability of sensory systems across multiple modalities simultaneously, allowing the individual to adaptively process incoming inputs in a potentially threatening environment.
Collapse
Affiliation(s)
- Judith Domínguez-Borràs
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, CH-1211 Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1202 Geneva, Switzerland
| | - Sebastian Walter Rieger
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1202 Geneva, Switzerland
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva, Switzerland
| | - Corrado Corradi-Dell'Acqua
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, CH-1211 Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1202 Geneva, Switzerland
- Department of Psychology, FPSE, University of Geneva, CH-1205, Geneva, Switzerland
| | - Rémi Neveu
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, CH-1211 Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1202 Geneva, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University Medical Center, CH-1211 Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-1202 Geneva, Switzerland
- Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva, Switzerland
- Department of Neurology, University Hospital, CH-1211 Geneva, Switzerland
| |
Collapse
|
15
|
Groen IIA, Ghebreab S, Lamme VAF, Scholte HS. The time course of natural scene perception with reduced attention. J Neurophysiol 2016; 115:931-46. [DOI: 10.1152/jn.00896.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022] Open
Abstract
Attention is thought to impose an informational bottleneck on vision by selecting particular information from visual scenes for enhanced processing. Behavioral evidence suggests, however, that some scene information is extracted even when attention is directed elsewhere. Here, we investigated the neural correlates of this ability by examining how attention affects electrophysiological markers of scene perception. In two electro-encephalography (EEG) experiments, human subjects categorized real-world scenes as manmade or natural (full attention condition) or performed tasks on unrelated stimuli in the center or periphery of the scenes (reduced attention conditions). Scene processing was examined in two ways: traditional trial averaging was used to assess the presence of a categorical manmade/natural distinction in event-related potentials, whereas single-trial analyses assessed whether EEG activity was modulated by scene statistics that are diagnostic of naturalness of individual scenes. The results indicated that evoked activity up to 250 ms was unaffected by reduced attention, showing intact categorical differences between manmade and natural scenes and strong modulations of single-trial activity by scene statistics in all conditions. Thus initial processing of both categorical and individual scene information remained intact with reduced attention. Importantly, however, attention did have profound effects on later evoked activity; full attention on the scene resulted in prolonged manmade/natural differences, increased neural sensitivity to scene statistics, and enhanced scene memory. These results show that initial processing of real-world scene information is intact with diminished attention but that the depth of processing of this information does depend on attention.
Collapse
Affiliation(s)
- Iris I. A. Groen
- Amsterdam Brain and Cognition Center, Department of Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Sennay Ghebreab
- Amsterdam Brain and Cognition Center, Department of Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
- Intelligent Systems Lab Amsterdam, Institute of Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Victor A. F. Lamme
- Amsterdam Brain and Cognition Center, Department of Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - H. Steven Scholte
- Amsterdam Brain and Cognition Center, Department of Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Rokszin AA, Győri-Dani D, Nyúl LG, Csifcsák G. Electrophysiological correlates of top-down effects facilitating natural image categorization are disrupted by the attenuation of low spatial frequency information. Int J Psychophysiol 2015; 100:19-27. [PMID: 26707649 DOI: 10.1016/j.ijpsycho.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/26/2022]
Abstract
The modulatory effects of low and high spatial frequencies on the posterior C1, P1 and N1 event-related potential (ERP) amplitudes have long been known from previous electrophysiological studies. There is also evidence that categorization of complex natural images relies on top-down processes, probably by facilitating contextual associations during the recognition process. However, to our knowledge, no study has investigated so far how such top-down effects are manifested in scalp ERPs, when presenting natural images with attenuated low or high spatial frequency information. Twenty-one healthy subjects participated in an animal vs. vehicle categorization task with intact grayscale stimuli and images predominantly containing high (HSF) or low spatial frequencies (LSF). ERP scalp maps and amplitudes/latencies measured above occipital, parietal and frontocentral sites were compared among the three stimulus conditions. Although early occipital components (C1 and P1) were modulated by spatial frequencies, the time range of the N1 was the earliest to show top-down effects for images with unmodified low spatial frequency spectrum (intact and LSF stimuli). This manifested in ERP amplitude changes spreading to anterior scalp sites and shorter posterior N1 latencies. Finally, the frontocentral N350 and the centroparietal LPC were differently influenced by spatial frequency filtering, with the LPC being the only component to show an amplitude and latency modulation congruent with the behavioral responses (sensitivity index and reaction times). Our results strengthen the coarse-to-fine model of object recognition and provide electrophysiological evidence for low spatial frequency-based top-down effects within the first 200 ms of visual processing.
Collapse
Affiliation(s)
- Adrienn Aranka Rokszin
- Doctoral School of Education, Faculty of Arts, University of Szeged, Petőfi Sándor sgt. 30-34, 6722 Szeged, Hungary
| | - Dóra Győri-Dani
- Doctoral School of Education, Faculty of Arts, University of Szeged, Petőfi Sándor sgt. 30-34, 6722 Szeged, Hungary
| | - László G Nyúl
- Department of Image Processing and Computer Graphics, Faculty of Science and Informatics, University of Szeged, Árpád tér 2, 6720 Szeged, Hungary
| | - Gábor Csifcsák
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Arts, University of Szeged, Egyetem u. 2, 6722 Szeged, Hungary.
| |
Collapse
|
17
|
Kauffmann L, Bourgin J, Guyader N, Peyrin C. The Neural Bases of the Semantic Interference of Spatial Frequency-based Information in Scenes. J Cogn Neurosci 2015; 27:2394-405. [DOI: 10.1162/jocn_a_00861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Current models of visual perception suggest that during scene categorization, low spatial frequencies (LSF) are processed rapidly and activate plausible interpretations of visual input. This coarse analysis would then be used to guide subsequent processing of high spatial frequencies (HSF). The present fMRI study examined how processing of LSF may influence that of HSF by investigating the neural bases of the semantic interference effect. We used hybrid scenes as stimuli by combining LSF and HSF from two different scenes, and participants had to categorize the HSF scene. Categorization was impaired when LSF and HSF scenes were semantically dissimilar, suggesting that the LSF scene was processed automatically and interfered with categorization of the HSF scene. fMRI results revealed that this semantic interference effect was associated with increased activation in the inferior frontal gyrus, the superior parietal lobules, and the fusiform and parahippocampal gyri. Furthermore, a connectivity analysis (psychophysiological interaction) revealed that the semantic interference effect resulted in increasing connectivity between the right fusiform and the right inferior frontal gyri. Results support influential models suggesting that, during scene categorization, LSF information is processed rapidly in the pFC and activates plausible interpretations of the scene category. These coarse predictions would then initiate top–down influences on recognition-related areas of the inferotemporal cortex, and these could interfere with the categorization of HSF information in case of semantic dissimilarity to LSF.
Collapse
|
18
|
Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study. Brain Cogn 2015; 99:46-56. [DOI: 10.1016/j.bandc.2015.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/30/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022]
|
19
|
Kauffmann L, Chauvin A, Guyader N, Peyrin C. Rapid scene categorization: Role of spatial frequency order, accumulation mode and luminance contrast. Vision Res 2015; 107:49-57. [DOI: 10.1016/j.visres.2014.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/08/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
|
20
|
Abstract
Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP.
Collapse
Affiliation(s)
- Donald J Hagler
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Kauffmann L, Ramanoël S, Peyrin C. The neural bases of spatial frequency processing during scene perception. Front Integr Neurosci 2014; 8:37. [PMID: 24847226 PMCID: PMC4019851 DOI: 10.3389/fnint.2014.00037] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/19/2014] [Indexed: 11/13/2022] Open
Abstract
Theories on visual perception agree that scenes are processed in terms of spatial frequencies. Low spatial frequencies (LSF) carry coarse information whereas high spatial frequencies (HSF) carry fine details of the scene. However, how and where spatial frequencies are processed within the brain remain unresolved questions. The present review addresses these issues and aims to identify the cerebral regions differentially involved in low and high spatial frequency processing, and to clarify their attributes during scene perception. Results from a number of behavioral and neuroimaging studies suggest that spatial frequency processing is lateralized in both hemispheres, with the right and left hemispheres predominantly involved in the categorization of LSF and HSF scenes, respectively. There is also evidence that spatial frequency processing is retinotopically mapped in the visual cortex. HSF scenes (as opposed to LSF) activate occipital areas in relation to foveal representations, while categorization of LSF scenes (as opposed to HSF) activates occipital areas in relation to more peripheral representations. Concomitantly, a number of studies have demonstrated that LSF information may reach high-order areas rapidly, allowing an initial coarse parsing of the visual scene, which could then be sent back through feedback into the occipito-temporal cortex to guide finer HSF-based analysis. Finally, the review addresses spatial frequency processing within scene-selective regions areas of the occipito-temporal cortex.
Collapse
Affiliation(s)
- Louise Kauffmann
- University Grenoble Alpes LPNC, Grenoble, France ; CNRS, LPNC, Université Pierre Mendès France Grenoble, France
| | - Stephen Ramanoël
- University Grenoble Alpes LPNC, Grenoble, France ; CNRS, LPNC, Université Pierre Mendès France Grenoble, France
| | - Carole Peyrin
- University Grenoble Alpes LPNC, Grenoble, France ; CNRS, LPNC, Université Pierre Mendès France Grenoble, France
| |
Collapse
|
22
|
Flevaris AV, Martínez A, Hillyard SA. Attending to global versus local stimulus features modulates neural processing of low versus high spatial frequencies: an analysis with event-related brain potentials. Front Psychol 2014; 5:277. [PMID: 24782792 PMCID: PMC3988377 DOI: 10.3389/fpsyg.2014.00277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/14/2014] [Indexed: 11/17/2022] Open
Abstract
Spatial frequency (SF) selection has long been recognized to play a role in global and local processing, though the nature of the relationship between SF processing and global/local perception is debated. Previous studies have shown that attention to relatively lower SFs facilitates global perception, and that attention to relatively higher SFs facilitates local perception. Here we recorded event-related brain potentials (ERPs) to investigate whether processing of low versus high SFs is modulated automatically during global and local perception, and to examine the time course of any such effects. Participants compared bilaterally presented hierarchical letter stimuli and attended to either the global or local levels. Irrelevant SF grating probes flashed at the center of the display 200 ms after the onset of the hierarchical letter stimuli could either be low or high in SF. It was found that ERPs elicited by the SF grating probes differed as a function of attended level (global versus local). ERPs elicited by low SF grating probes were more positive in the interval 196–236 ms during global than local attention, and this difference was greater over the right occipital scalp. In contrast, ERPs elicited by the high SF gratings were more positive in the interval 250–290 ms during local than global attention, and this difference was bilaterally distributed over the occipital scalp. These results indicate that directing attention to global versus local levels of a hierarchical display facilitates automatic perceptual processing of low versus high SFs, respectively, and this facilitation is not limited to the locations occupied by the hierarchical display. The relatively long latency of these attention-related ERP modulations suggests that initial (early) SF processing is not affected by attention to hierarchical level, lending support to theories positing a higher level mechanism to underlie the relationship between SF processing and global versus local perception.
Collapse
Affiliation(s)
| | - Antigona Martínez
- Department of Neurosciences, University of California San Diego, CA, USA ; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research New York, NY, USA
| | - Steven A Hillyard
- Department of Neurosciences, University of California San Diego, CA, USA
| |
Collapse
|
23
|
Laprevote V, Oliva A, Ternois AS, Schwan R, Thomas P, Boucart M. Low Spatial Frequency Bias in Schizophrenia is Not Face Specific: When the Integration of Coarse and Fine Information Fails. Front Psychol 2013; 4:248. [PMID: 23653616 PMCID: PMC3644708 DOI: 10.3389/fpsyg.2013.00248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/15/2013] [Indexed: 12/03/2022] Open
Abstract
Studies have shown that patients with schizophrenia exhibit visual processing impairments, particularly regarding the processing of spatial frequencies. In a previous work, we found that, compared to healthy volunteers, patients were biased toward low spatial frequencies (LSF) to identify facial expression at a glance. Given the ubiquity of faces in visual perception, it remains an open question whether the LSF bias is face specific or also occurs with other visual objects. Here, 15 patients with schizophrenia and 11 healthy control adults performed a categorization task with hybrid stimuli. These stimuli were single images consisting of two different objects, a fruit and an animal, each in a specific spatial frequency range, either low (LSF) or high (HSF). Observers were asked to report if they saw an animal or a fruit. The reported category demonstrated which spatial scale was preferentially perceived in each trial. In a control experiment, participants performed the same task but with images of only a single object, either a LSF or HSF filtered animal or fruit, to verify that participants could perceive both HSF or LSF when presented in isolation. The results on the categorization task showed that patients chose more frequently LSF with hybrid stimuli compared to healthy controls. However, both populations performed equally well with HSF and LSF filtered pictures in the control experiment, demonstrating that the LSF preference found with hybrid stimuli in patients was not due to an inability to perceive HSF. The LSF preference found in schizophrenia confirms our previous study conducted with faces, and shows that this LSF bias generalizes to other categories of objects. When a broad range of spatial frequencies are present in the image, as in normal conditions of viewing, patients preferentially rely on coarse visual information contained in LSF. This result may be interpreted as a dysfunction of the guidance of HSF processing by LSF processing.
Collapse
Affiliation(s)
- Vincent Laprevote
- Centre d'Investigation Clinique-INSERM 9501, CHU Nancy Nancy, France ; Centre de Soins, d'Accompagnement et de Prévention en Addictologie, CHU Nancy Nancy, France
| | | | | | | | | | | |
Collapse
|
24
|
Musel B, Bordier C, Dojat M, Pichat C, Chokron S, Le Bas JF, Peyrin C. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization. J Cogn Neurosci 2013; 25:1315-31. [PMID: 23574583 DOI: 10.1162/jocn_a_00397] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Using large natural scenes filtered in spatial frequencies, we aimed to demonstrate that spatial frequency processing could not only be retinotopically mapped but could also be lateralized in both hemispheres. For this purpose, participants performed a categorization task using large black and white photographs of natural scenes (indoors vs. outdoors, with a visual angle of 24° × 18°) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and nonfiltered scenes, in block-designed fMRI recording sessions. At the group level, the comparison between the spatial frequency content of scenes revealed first that, compared with HSF, LSF scene categorization elicited activation in the anterior half of the calcarine fissures linked to the peripheral visual field, whereas, compared with LSF, HSF scene categorization elicited activation in the posterior part of the occipital lobes, which are linked to the fovea, according to the retinotopic property of visual areas. At the individual level, functional activations projected on retinotopic maps revealed that LSF processing was mapped in the anterior part of V1, whereas HSF processing was mapped in the posterior and ventral part of V2, V3, and V4. Moreover, at the group level, direct interhemispheric comparisons performed on the same fMRI data highlighted a right-sided occipito-temporal predominance for LSF processing and a left-sided temporal cortex predominance for HSF processing, in accordance with hemispheric specialization theories. By using suitable method of analysis on the same data, our results enabled us to demonstrate for the first time that spatial frequencies processing is mapped retinotopically and lateralized in human occipital cortex.
Collapse
|
25
|
Chen P, Hartman AJ, Priscilla Galarza C, DeLuca J. Global processing training to improve visuospatial memory deficits after right-brain stroke. Arch Clin Neuropsychol 2012; 27:891-905. [PMID: 23070314 PMCID: PMC3589919 DOI: 10.1093/arclin/acs089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2012] [Indexed: 11/13/2022] Open
Abstract
Visuospatial stimuli are normally perceived from the global structure to local details. A right-brain stroke often disrupts this perceptual organization, resulting in piecemeal encoding and thus poor visuospatial memory. Using a randomized controlled design, the present study examined whether promoting the global-to-local encoding improves retrieval accuracy in right-brain-damaged stroke survivors with visuospatial memory deficits. Eleven participants received a single session of the Global Processing Training (global-to-local encoding) or the Rote Repetition Training (no encoding strategy) to learn the Rey-Osterrieth Complex Figure. The result demonstrated that the Global Processing Training significantly improved visuospatial memory deficits after a right-brain stroke. On the other hand, rote practice without a step-by-step guidance limited the degree of memory improvement. The treatment effect was observed both immediately after the training procedure and 24 h post-training. Overall, the present findings are consistent with the long-standing principle in cognitive rehabilitation that an effective treatment is based on specific training aimed at improving specific neurocognitive deficits. Importantly, visuospatial memory deficits after a right-brain stroke may improve with treatments that promote global processing at encoding.
Collapse
Affiliation(s)
- Peii Chen
- Kessler Foundation Research Center, West Orange, NJ 07052, USA.
| | | | | | | |
Collapse
|
26
|
Musel B, Chauvin A, Guyader N, Chokron S, Peyrin C. Is coarse-to-fine strategy sensitive to normal aging? PLoS One 2012; 7:e38493. [PMID: 22675568 PMCID: PMC3366939 DOI: 10.1371/journal.pone.0038493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Theories on visual perception agree that visual recognition begins with global analysis and ends with detailed analysis. Different results from neurophysiological, computational, and behavioral studies all indicate that the totality of visual information is not immediately conveyed, but that information analysis follows a predominantly coarse-to-fine processing sequence (low spatial frequencies are extracted first, followed by high spatial frequencies). We tested whether such processing continues to occur in normally aging subjects. Young and aged participants performed a categorization task (indoor vs. outdoor scenes), using dynamic natural scene stimuli, in which they resorted to either a coarse-to-fine (CtF) sequence or a reverse fine-to-coarse sequence (FtC). The results show that young participants categorized CtF sequences more quickly than FtC sequences. However, sequence processing interacts with semantic category only for aged participants. The present data support the notion that CtF categorization is effective even in aged participants, but is constrained by the spatial features of the scenes, thus highlighting new perspectives in visual models.
Collapse
Affiliation(s)
- Benoit Musel
- Laboratoire de Psychologie et NeuroCognition, CNRS - UMR 5105, Université Pierre Mendès France, Grenoble, France.
| | | | | | | | | |
Collapse
|
27
|
Moving and being moved: Differences in cerebral activation during recollection of whole-body motion. Behav Brain Res 2012; 227:21-9. [DOI: 10.1016/j.bbr.2011.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/21/2022]
|
28
|
Oppermann F, Hassler U, Jescheniak JD, Gruber T. The Rapid Extraction of Gist—Early Neural Correlates of High-level Visual Processing. J Cogn Neurosci 2012; 24:521-9. [DOI: 10.1162/jocn_a_00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The human cognitive system is highly efficient in extracting information from our visual environment. This efficiency is based on acquired knowledge that guides our attention toward relevant events and promotes the recognition of individual objects as they appear in visual scenes. The experience-based representation of such knowledge contains not only information about the individual objects but also about relations between them, such as the typical context in which individual objects co-occur. The present EEG study aimed at exploring the availability of such relational knowledge in the time course of visual scene processing, using oscillatory evoked gamma-band responses as a neural correlate for a currently activated cortical stimulus representation. Participants decided whether two simultaneously presented objects were conceptually coherent (e.g., mouse–cheese) or not (e.g., crown–mushroom). We obtained increased evoked gamma-band responses for coherent scenes compared with incoherent scenes beginning as early as 70 msec after stimulus onset within a distributed cortical network, including the right temporal, the right frontal, and the bilateral occipital cortex. This finding provides empirical evidence for the functional importance of evoked oscillatory activity in high-level vision beyond the visual cortex and, thus, gives new insights into the functional relevance of neuronal interactions. It also indicates the very early availability of experience-based knowledge that might be regarded as a fundamental mechanism for the rapid extraction of the gist of a scene.
Collapse
|
29
|
The what and why of perceptual asymmetries in the visual domain. Adv Cogn Psychol 2010; 6:103-15. [PMID: 21228922 PMCID: PMC3019986 DOI: 10.2478/v10053-008-0080-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/19/2010] [Indexed: 11/20/2022] Open
Abstract
Perceptual asymmetry is one of the most important characteristics of our visual
functioning. We carefully reviewed the scientific literature in order to examine
such asymmetries, separating them into two major categories: within-visual field
asymmetries and between-visual field asymmetries. We explain these asymmetries
in terms of perceptual aspects or tasks, the what of the
asymmetries; and in terms of underlying mechanisms, the why of
the asymmetries. Tthe within-visual field asymmetries are fundamental to
orientation, motion direction, and spatial frequency processing. between-visual
field asymmetries have been reported for a wide range of perceptual phenomena.
foveal dominance over the periphery, in particular, has been prominent for
visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds
true for object or face recognition and reading performance. upper-lower visual
field asymmetries in favour of the lower have been demonstrated for temporal and
contrast sensitivities, visual acuity, spatial resolution, orientation, hue and
motion processing. Iin contrast, the upper field advantages have been seen in
visual search, apparent size, and object recognition tasks. left-right visual
field asymmetries include the left field dominance in spatial (e.g.,
orientation) processing and the right field dominance in non-spatial (e.g.,
temporal) processing. left field is also better at low spatial frequency or
global and coordinate spatial processing, whereas the right field is better at
high spatial frequency or local and categorical spatial processing. All these
asymmetries have inborn neural/physiological origins, the primary
why, but can be also susceptible to visual experience, the
critical why (promotes or blocks the asymmetries by
altering neural functions).
Collapse
|
30
|
Peyrin C, Michel CM, Schwartz S, Thut G, Seghier M, Landis T, Marendaz C, Vuilleumier P. The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes: a combined fMRI and ERP study. J Cogn Neurosci 2010; 22:2768-80. [PMID: 20044901 DOI: 10.1162/jocn.2010.21424] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Spatial frequencies in an image influence visual analysis across a distributed, hierarchically organized brain network. Low spatial frequency (LSF) information may rapidly reach high-order areas to allow an initial coarse parsing of the visual scene, which could then be "retroinjected" through feedback into lower level visual areas to guide finer analysis on the basis of high spatial frequency (HSF). To test this "coarse-to-fine" processing scheme and to identify its neural substrates in the human brain, we presented sequences of two spatial-frequency-filtered scenes in rapid succession (LSF followed by HSF or vice versa) during fMRI and ERPs in the same participants. We show that for low-to-high sequences (but not for high-to-low sequences), LSF produces a first increase of activity in prefrontal and temporo-parietal areas, followed by enhanced responses to HSF in primary visual cortex. This pattern is consistent with retroactive influences on low-level areas that process HSF after initial activation of higher order areas by LSF.
Collapse
Affiliation(s)
- Carole Peyrin
- Laboratoire de Psychologie et NeuroCognition, CNRS-UMR 5105, Université Pierre Mendès-France, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Visual demand and visual field presentation influence natural scene processing. Graefes Arch Clin Exp Ophthalmol 2010; 249:223-32. [PMID: 20652817 DOI: 10.1007/s00417-010-1451-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/18/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Bottom-up and top-down processes are involved in visual analysis of scenes. Here we examined the influence of top-down visual demand on natural scene processing. METHODS We measured accuracy and response time in adults performing two stimuli-equivalent tasks. Unfiltered, low or high spatial frequency (SF) natural scenes were presented in central, left, or right visual fields (CVF, LVF, RVF). The tasks differed only by the instructed visual demand. In the detection task, participants had to decide whether a scene was present or not. In the categorization task, they had to decide whether the scene was a city or a forest. RESULTS Higher accuracy was seen for the LVF in the detection task, but for categorization, greater accuracy was seen for the RVF. The interaction between Task and SF revealed coarse-to-fine processing in the categorization task for both accuracy and reaction time, which nearly disappeared in the detection task. Considering the interaction of Task, VF and SF, a left-hemisphere specialisation (i.e., RVF advantage) was observed for the categorisation of HSF scenes for accuracy alone, whereas a LVF advantage was seen for all SFs in the detection task for both accuracy and reaction time. CONCLUSION Our results revealed that the nature of top-down visual demand is essential to understanding how visual analysis is achieved in each hemisphere. Moreover, this study examining the effects of visual demand, visual field presentation, and SF content of stimuli through the use of ecological stimuli provides a tool to enrich the clinical examination of visual and neurovisual patients.
Collapse
|
32
|
Goffaux V, Peters J, Haubrechts J, Schiltz C, Jansma B, Goebel R. From coarse to fine? Spatial and temporal dynamics of cortical face processing. ACTA ACUST UNITED AC 2010; 21:467-76. [PMID: 20576927 PMCID: PMC3020585 DOI: 10.1093/cercor/bhq112] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Primary vision segregates information along 2 main dimensions: orientation and spatial frequency (SF). An important question is how this primary visual information is integrated to support high-level representations. It is generally assumed that the information carried by different SF is combined following a coarse-to-fine sequence. We directly addressed this assumption by investigating how the network of face-preferring cortical regions processes distinct SF over time. Face stimuli were flashed during 75, 150, or 300 ms and masked. They were filtered to preserve low SF (LSF), middle SF (MSF), or high SF (HSF). Most face-preferring regions robustly responded to coarse LSF, face information in early stages of visual processing (i.e., until 75 ms of exposure duration). LSF processing decayed as a function of exposure duration (mostly until 150 ms). In contrast, the processing of fine HSF, face information became more robust over time in the bilateral fusiform face regions and in the right occipital face area. The present evidence suggests the coarse-to-fine strategy as a plausible modus operandi in high-level visual cortex.
Collapse
Affiliation(s)
- Valerie Goffaux
- Educational Measurement and Applied Cognitive Science Unit and Faculté des Lettres, des Sciences Humaines, des Arts et des Sciences de l'Education, University of Luxembourg, L-7210 Walferdange, Luxembourg.
| | | | | | | | | | | |
Collapse
|
33
|
Burgmans S, van Boxtel M, Vuurman E, Evers E, Jolles J. Increased neural activation during picture encoding and retrieval in 60-year-olds compared to 20-year-olds. Neuropsychologia 2010; 48:2188-97. [DOI: 10.1016/j.neuropsychologia.2010.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
34
|
Abstract
Whether emotional distracters call for attentional resources has been discussed in several studies. We have earlier shown that brief unpleasant distracters captured right hemisphere (RH) attentional resources as evidenced with reduced event-related potential responses and increased reaction times to nonemotional left visual field/RH targets. The aim of this study was to investigate whether emotional distracters selectively interfere with processes predominantly relying on the RH such as processing global visual features. Evoked potentials were recorded from 18 participants carrying out a visual discrimination task engaging global RH and local left hemisphere-dependent processes. Unpleasant distracters reduced global target detection-related right parietal activity. We conclude that brief unpleasant distracters compete for RH attentional resources with global level processing.
Collapse
Affiliation(s)
- Kaisa M Hartikainen
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA.
| | | | | |
Collapse
|
35
|
Flevaris AV, Bentin S, Robertson LC. Local or global? Attentional selection of spatial frequencies binds shapes to hierarchical levels. Psychol Sci 2010; 21:424-31. [PMID: 20424080 PMCID: PMC2861790 DOI: 10.1177/0956797609359909] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Contrary to the traditional view that shapes and their hierarchical level (local or global) are a priori integrated in perception, recent evidence suggests that the identity of a shape and its level are encoded independently, implying the need for shape-level binding to account for normal perception. What is the binding mechanism in this case? Using hierarchically arranged letter shapes, we obtained evidence that the left hemisphere has a preference for binding shapes to the local level, whereas the right hemisphere has a preference for binding shapes to the global level. More important, binding is modulated by attentional selection of higher or lower spatial frequencies. Attention to higher spatial frequencies facilitated subsequent binding by the left hemisphere of elements to the local level, whereas attention to lower spatial frequencies facilitated subsequent binding by the right hemisphere of elements to the global level.
Collapse
Affiliation(s)
- Anastasia V Flevaris
- Department of Psychology, University of California, Berkeley, 3210 Tolman Hall, Berkeley, CA 94720-1650, USA.
| | | | | |
Collapse
|
36
|
Looking both ways through time: The Janus model of lateralized cognition. Brain Cogn 2008; 67:292-323. [DOI: 10.1016/j.bandc.2008.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 01/22/2008] [Accepted: 02/01/2008] [Indexed: 11/22/2022]
|
37
|
La Cara GE, Ursino M. A model of contour extraction including multiple scales, flexible inhibition and attention. Neural Netw 2008; 21:759-73. [PMID: 18406105 DOI: 10.1016/j.neunet.2007.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 11/07/2007] [Indexed: 11/29/2022]
Abstract
A mathematical model of contextual integration and contour extraction in the primary visual cortex developed in a recent work [Ursino, M., & La Cara, G. E. (2004). A model of contextual interactions and contour detection in primary visual cortex. Neural Networks, 17, 719-735] has been significantly improved to include two fundamental additional aspects, i.e., multi-scale decomposition and attention. The model incorporates two independent paths for visual processing corresponding to two different scales. Attention from higher hierarchical levels works by modifying different properties of the network: by selecting the portion of the image to be scrutinized and the appropriate scale, by modulating the threshold of a gating mechanism, and by modifying the width and/or strength of lateral inhibition. Through computer simulations of real complex and noisy black-and-white images, we demonstrate that appropriate selection of the above factors allows accurate analysis of image contours at different levels, from global perception of the overall objects without details, down to a fine examination of minute particulars (such as the lips in a face or the fingers of a hand). Attentive reconfiguration of lateral inhibition plays a key role in the analysis of images at different detail levels.
Collapse
|
38
|
Rotshtein P, Vuilleumier P, Winston J, Driver J, Dolan R. Distinct and convergent visual processing of high and low spatial frequency information in faces. Cereb Cortex 2007; 17:2713-24. [PMID: 17283203 PMCID: PMC2600423 DOI: 10.1093/cercor/bhl180] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We tested for differential brain response to distinct spatial frequency (SF) components in faces. During a functional magnetic resonance imaging experiment, participants were presented with "hybrid" faces containing superimposed low and high SF information from different identities. We used a repetition paradigm where faces at either SF range were independently repeated or changed across consecutive trials. In addition, we manipulated which SF band was attended. Our results suggest that repetition and attention affected partly overlapping occipitotemporal regions but did not interact. Changes of high SF faces increased responses of the right inferior occipital gyrus (IOG) and left inferior temporal gyrus (ITG), with the latter response being also modulated additively by attention. In contrast, the bilateral middle occipital gyrus (MOG) responded to repetition and attention manipulations of low SF. A common effect of high and low SF repetition was observed in the right fusiform gyrus (FFG). Follow-up connectivity analyses suggested direct influence of the MOG (low SF), IOG, and ITG (high SF) on the FFG responses. Our results reveal that different regions within occipitotemporal cortex extract distinct visual cues at different SF ranges in faces and that the outputs from these separate processes project forward to the right FFG, where the different visual cues may converge.
Collapse
Affiliation(s)
- Pia Rotshtein
- Behavioural Brain Science Centre, School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | | | |
Collapse
|
39
|
Thiel CM, Fink GR. Visual and Auditory Alertness: Modality-Specific and Supramodal Neural Mechanisms and Their Modulation by Nicotine. J Neurophysiol 2007; 97:2758-68. [PMID: 17287445 DOI: 10.1152/jn.00017.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alertness is a nonselective attention component that refers to a state of general readiness that improves stimulus processing and response initiation. We used functional magnetic resonance imaging (fMRI) to identify neural correlates of visual and auditory alertness. A further aim was to investigate the modulatory effects of the cholinergic agonist nicotine. Nonsmoking participants were given either placebo or nicotine (NICORETTE gum, 2 mg) and performed a target-detection task with warned and unwarned trials in the visual and auditory modality. Our results provide evidence for modality-specific correlates of visual and auditory alertness in respective higher-level sensory cortices and in posterior parietal and frontal brain areas. The only region commonly involved in visual and auditory alertness was the right superior temporal gyrus. A connectivity analysis showed that this supramodal region exhibited modality-dependent coupling with respective higher sensory cortices. Nicotine was found to mainly decrease visual and auditory alertness-related activity in several brain regions, which was evident as a significant interaction of nicotine-induced decreases in BOLD signal in warned trials and increases in unwarned trials. The cholinergic drug also affected alerting-dependent activity in the supramodal right superior temporal gyrus; here the effect was the result of a significant increase of neural activity in unwarned trials. We conclude that the role of the right superior temporal gyrus is to induce an “alert” state in response to warning cues and thereby optimize stimulus processing and responding. We speculate that nicotine increases brain mechanisms of alertness specifically in conditions where no extrinsic warning is provided.
Collapse
Affiliation(s)
- Christiane M Thiel
- Institute of Biology and Environmental Science, Fak. V, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.
| | | |
Collapse
|
40
|
Cousin E, Peyrin C, Pichat C, Lamalle L, Le Bas JF, Baciu M. Functional MRI approach for assessing hemispheric predominance of regions activated by a phonological and a semantic task. Eur J Radiol 2007; 63:274-85. [PMID: 17339089 DOI: 10.1016/j.ejrad.2007.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/20/2007] [Accepted: 01/24/2007] [Indexed: 11/25/2022]
Abstract
This fMRI study performed in healthy subjects aimed at using a statistical approach in order to determine significant functional differences between hemispheres and to assess specialized regions activated during a phonological and during a semantic task. This approach ("flip" method and subsequent statistical analyses of the parameter estimates extracted from regions of interest) allows identifying: (a) hemispheric specialized regions for each language task [semantic (living categorization) and phonological (rhyme detection)] and (b) condition-specific regions with respect to paradigm conditions (task and control). Our results showed that the rhyme-specific task regions were the inferior frontal (sub-region of BA 44, 45) and left inferior parietal (BA 40, 39) lobules. Furthermore, within the inferior parietal lobule, the angular gyrus was specific to target (rhyming) items (related to successfully grapho-phonemic processing). The categorization-specific task regions were the left inferior frontal (sub-region of BA 44, 45) and superior temporal (BA 22) cortices. Furthermore, the superior temporal gyrus was related to non-target (non-living) items (correlated to task difficulty). The relatively new approach used in this study has the advantage of providing: (a) statistical significance of the hemispheric specialized regions for a given language task and (b) supplementary information in terms of paradigm condition-specificity of the activated regions. The results (standard hemispheric specialized regions for a semantic and for a phonological task) obtained in healthy subjects may constitute a basement for mapping language and assessing hemispheric predominance in epileptic patients before surgery and avoiding post-surgical impairments of language.
Collapse
Affiliation(s)
- Emilie Cousin
- Laboratoire de Psychologie et Neurocognition, UMR CNRS 5105, Université Pierre Mendès-France, BP 47, 38040 Grenoble Cedex 09, France
| | | | | | | | | | | |
Collapse
|
41
|
Peyrin C, Mermillod M, Chokron S, Marendaz C. Effect of temporal constraints on hemispheric asymmetries during spatial frequency processing. Brain Cogn 2006; 62:214-20. [PMID: 16837115 DOI: 10.1016/j.bandc.2006.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 11/26/2022]
Abstract
Studies on functional hemispheric asymmetries have suggested that the right vs. left hemisphere should be predominantly involved in low vs. high spatial frequency (SF) analysis, respectively. By manipulating exposure duration of filtered natural scene images, we examined whether the temporal characteristics of SF analysis (i.e., the temporal precedence of low on high spatial frequencies) may interfere with hemispheric specialization. Results showed the classical hemispheric specialization pattern for brief exposure duration and a trend to a right hemisphere advantage irrespective of the SF content for longer exposure duration. The present study suggests that the hemispheric specialization pattern for visual information processing should be considered as a dynamic system, wherein the superiority of one hemisphere over the other could change according to the level of temporal constraints: the higher the temporal constraints of the task, the more the hemispheres are specialized in SF processing.
Collapse
|
42
|
Hollows FC. Visual-Evoked Response, Pattern Electroretinogram, and Psychophysical Magnocellular Thresholds in Glaucoma, Optic Atrophy, and Dyslexia. Optom Vis Sci 2006; 83:486-98. [PMID: 16840873 DOI: 10.1097/01.opx.0000225920.97380.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this study is to compare visual-evoked response (VEP) pattern electroretinogram (PERG) and psychophysical thresholds to the same stimulus, designed to be optimal for the magnocellular system, in suspects and patients with early glaucoma, patients with optic nerve disease, dyslexic children, and age-matched controls. METHODS Stimuli were low spatial frequency sinusoidal luminance profile gratings abruptly phase reversing at 7.14 Hz. Electrophysiological recordings were made at 50%, 30%, 20%, 10%, and 5% contrast. Threshold was the lowest contrast evoking a clear response at the stimulus frequency. Three independent judges scored the traces. Psychophysical thresholds were obtained by ascending and descending method of limits. VEPs and PERGs to International Society for Clinical Electrophysiology of Vision (ISCEV) standards and to increasing spatial frequencies were obtained as parvocellular specific controls. Patients were diagnosed independently by the referring professionals. RESULTS Parvocellular-specific responses were normal, except in cases with explicable visual acuity loss. The judges scores correlated highly (> 0.9). VEPs and PERGs correlated highly and each correlated less well with psychophysics in normals, glaucoma, and dyslexia but the opposite occurred in optic nerve disease. VEPs had the lowest normal values and least variance (all adults < 5%, children < 10%, PERGs < 20%). In glaucoma, VEP magnocellular deficits occurred in 85% of recently diagnosed positive cases, 48% of high-risk suspects, 39% of low-risk suspects, and ocular hypertensives. Approximately 28% of dyslexics had VEP magnocellular deficits. PERG losses were less frequent. There was a clear dichotomy and low correlations between psychophysics and electrophysiology both within and between groups. Psychophysical threshold elevations were absent in all glaucoma groups, often large in optic atrophy and small (2.5%) but highly significant in dyslexia. CONCLUSION Contrast thresholds to magnocellular-specific stimuli are consistent in cortex and retina. VEPs are more reliable. Psychophysics seems to tap different mechanisms. VEPs are very sensitive to early glaucoma. The lack of VEP loss in dyslexia suggests the other losses are artifactual. Further research is needed to see if stimuli even more like the frequency-doubling technology are more useful clinically.
Collapse
|