1
|
Kitchen NM, Dexheimer B, Yuk J, Maenza C, Ruelos PR, Kim T, Sainburg RL. The complementary dominance hypothesis: a model for remediating the 'good' hand in stroke survivors. J Physiol 2025; 603:663-683. [PMID: 38733166 PMCID: PMC11610521 DOI: 10.1113/jp285561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The complementary dominance hypothesis is a novel model of motor lateralization substantiated by decades of research examining interlimb differences in the control of upper extremity movements in neurotypical adults and hemisphere-specific motor deficits in stroke survivors. In contrast to earlier ideas that attribute handedness to the specialization of one hemisphere, our model proposes complementary motor control specializations in each hemisphere. The dominant hemisphere mediates optimal control of limb dynamics as required for smooth and efficient movements, whereas the non-dominant hemisphere mediates impedance control, important for countering unexpected mechanical conditions and achieving steady-state limb positions. Importantly, this model proposes that each hemisphere contributes its specialization to both arms (though with greater influence from either arm's contralateral hemisphere) and thus predicts that lesions to one hemisphere should produce hemisphere-specific motor deficits in not only the contralesional arm, but also the ipsilesional arm of stroke survivors - a powerful prediction now supported by a growing body of evidence. Such ipsilesional arm motor deficits vary with contralesional arm impairment, and thus individuals with little to no functional use of the contralesional arm experience both the greatest impairments in the ipsilesional arm, as well as the greatest reliance on it to serve as the main or sole manipulator for activities of daily living. Accordingly, we have proposed and tested a novel intervention that reduces hemisphere-specific ipsilesional arm deficits and thereby improves functional independence in stroke survivors with severe contralesional impairment.
Collapse
Affiliation(s)
- Nick M. Kitchen
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Brooke Dexheimer
- Department of Occupational TherapyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jisung Yuk
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Candice Maenza
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Paul R. Ruelos
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Taewon Kim
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Physical Medicine and Rehabilitation, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Robert L. Sainburg
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Rezaei S, Khanmohammadi R. Comparison of short- and long-term effects of neurofeedback and transcranial electrical stimulation on the motor learning in healthy adults. Behav Brain Res 2025; 476:115263. [PMID: 39307285 DOI: 10.1016/j.bbr.2024.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Researchers are exploring non-invasive neuromodulation techniques like transcranial direct current stimulation (tDCS) and neurofeedback (NFB) for enhancing motor learning. While tDCS modulates brain excitability using exogenous electric fields, NFB is an endogenous brain stimulation technique that enables individuals to regulate brain excitability in a closed-loop system. Despite their differing mechanisms, a direct comparison of their effects on motor learning is lacking. This study aimed to compare tDCS and NFB on online learning, short-term offline learning, and long-term offline learning in healthy participants, seeking to identify the most effective method for motor learning enhancement. In this parallel, randomized, single-blinded, controlled trial, 100 healthy participants were randomly assigned to one of five groups: real tDCS, sham tDCS, real NFB, sham NFB, and passive control. Primary outcomes included normalized reaction time (NRT), normalized response accuracy (NRA), and normalized skill index (NSI), measured through a serial reaction time task. Secondary outcomes involved physical and mental fatigue, assessed using a visual analog scale. The study involved 14 blocks of 80 trials each. Online learning was assessed by changes in NRT, NRA, and NSI between Block 3 and Block 9. Short-term and long-term offline learning were evaluated by changes in these measures between Block 9 and Block 11, and between Block 9 and Block 13, respectively. RESULTS: showed a significant decrease in NRA in the sham tDCS and passive control groups from block 3-9, with no changes in other groups. NRT significantly decreased in all intervention groups from block 9-11, with no change in the control group. The NSI significantly increased across all intervention groups between blocks 9 and 11, with large to very large effect sizes, while the passive control group saw a medium effect size increase. Furthermore, NRA significantly increased in the real NFB and real tDCS groups from block 9 to block 13. NRT also significantly decreased in all intervention groups when comparing block 13 to block 9, while the passive control group showed no significant changes. Notably, the reduction in NRT from block 9 to block 13 was significantly greater in the real tDCS group than in the control group, with a mean difference of 0.087 (95 % CI: 0.004-0.169, p = 0.031). Additionally, NSI significantly increased in all intervention groups except the control group from block 9 to block 13. In conclusion, neither NFB nor tDCS had a significant positive impact on online learning. However, both real and sham versions of tDCS and NFB resulted in notable improvements in short-term offline learning. The difference in improvement between NFB and tDCS, as well as between real and sham interventions, was not statistically significant, suggesting that the placebo effect may play a significant role in enhancing short-term offline learning. For long-term offline learning, both brain stimulation methods, particularly tDCS, showed positive effects, although the placebo effect also appeared to contribute.
Collapse
Affiliation(s)
- Sara Rezaei
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Khanmohammadi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Small Enhancement of Bimanual Typing Performance after 20 Sessions of tDCS in Healthy Young Adults. Neuroscience 2021; 466:26-35. [PMID: 33974964 DOI: 10.1016/j.neuroscience.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/04/2021] [Accepted: 05/02/2021] [Indexed: 01/10/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that may improve motor learning. However, the long-term effects of tDCS have not been explored, and the ecological validity of the evaluated tasks was limited. To determine whether 20 sessions of tDCS over the primary motor cortex (M1) would enhance the performance of a complex life motor skill, i.e., typing, in healthy young adults. Healthy young adults (n = 60) were semi-randomly assigned to three groups: the tDCS group (n = 20) received anodal tDCS over M1; the SHAM group (n = 20) received sham tDCS, both while performing a typing task; and the Control group (CON, n = 20) only performed the typing task. Typing speed and errors at maximum (mTT) and submaximal (iTT) speeds were measured before training, and after 10 and 20 sessions of tDCS. Every subject increased maximum typing speed after 10 and 20 tDCS sessions, with no significant differences (p > 0.05) between the groups. The number of errors at submaximal rates decreased significantly (p < 0.05) by 4% after 10 tDCS sessions compared with the 3% increase in the SHAM and the 2% increase in the CON groups. Between the 10th and 20th tDCS sessions, the number of typing errors increased significantly in all groups. While anodal tDCS reduced typing errors marginally, such performance-enhancing effects plateaued after 10 sessions without any further improvements in typing speed. These findings suggest that long-term tDCS may not have functionally relevant effects on healthy young adults' typing performance.
Collapse
|
4
|
Hernandez-Martin E, Marcano F, Modroño C, Janssen N, González-Mora JL. Diffuse optical tomography to measure functional changes during motor tasks: a motor imagery study. BIOMEDICAL OPTICS EXPRESS 2020; 11:6049-6067. [PMID: 33282474 PMCID: PMC7687968 DOI: 10.1364/boe.399907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/03/2023]
Abstract
The present work shows the spatial reliability of the diffuse optical tomography (DOT) system in a group of healthy subjects during a motor imagery task. Prior to imagery task performance, the subjects executed a motor task based on the finger to thumb opposition for motor training, and to corroborate the DOT spatial localization during the motor execution. DOT technology and data treatment allows us to distinguish oxy- and deoxyhemoglobin at the cerebral gyri level unlike the cerebral activations provided by fMRI series that were processed using different approaches. Here we show the DOT reliability showing functional activations at the cerebral gyri level during motor execution and motor imagery, which provide subtler cerebral activations than the motor execution. These results will allow the use of the DOT system as a monitoring device in a brain computer interface.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
| | - Francisco Marcano
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Cristian Modroño
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Niels Janssen
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
- Psychology Department, Universidad de La Laguna 38071, Spain
| | - Jose Luis González-Mora
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| |
Collapse
|
5
|
Plata Bello J, Modroño C, Marcano F, González-Mora JL. The effect of motor familiarity during simple finger opposition tasks. Brain Imaging Behav 2016; 9:828-38. [PMID: 25511522 DOI: 10.1007/s11682-014-9340-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Humans are more familiar with performing (and observing) index-thumb than with any other finger to thumb grasping and the effect of familiarity has not been tested specifically with simple and intransitive actions. The study of simple and intransitive motor actions (i.e. simple actions without need of object interaction) provides the opportunity to investigate specifically the brain motor regions reducing the effect of non-motor aspects that are related with more complex and/or transitive motor actions. The aim of this study is to evaluate brain activity patterns during the execution of simple and intransitive finger movements with different degrees of familiarity. With this in mind, a functional Magnetic Resonance Imaging (fMRI) study was performed in which participants were asked to execute finger to thumb opposition tasks with all the different fingers (index, middle, ring and little) with a fixed frequency (1 Hz) determined by a visual cue. This movement is considered as the pantomime of a precision grasping action. Significant activity was identified in the Sensory Motor Cortex (SMC), posterior parietal and premotor regions for all simple conditions (index-finger>control, middle-finger>control, ring-finger>control and little-finger>control). However, a linear trend contrast (index<middle<ring<little) demonstrated that there was a linear increase of activity in the SMC (mainly in the Precentral Gyrus) while the finger used to perform the action was further from the thumb. Therefore, the execution of less familiar simple intransitive movements seems to lead to a stronger activation of the SMC than familiar ones. Posterior parietal and premotor regions did not show the aforementioned stronger activation. The most important implication of this study is the identification of differences in brain activity during the execution of simple intransitive movements with different degrees of familiarity.
Collapse
Affiliation(s)
- Julio Plata Bello
- Department of Physiology, Faculty of Medicine, University of La Laguna, San Cristóbal de La Laguna, Spain. .,Hospital Universitario de Canarias, Department of Neurosurgery, Calle Ofra s/n La Cuesta, CP 38320, La Laguna, S/C de Tenerife, Spain.
| | - Cristián Modroño
- Department of Physiology, Faculty of Medicine, University of La Laguna, San Cristóbal de La Laguna, Spain.,Servicio de Resonancia Magnética para Investigaciones Biomédicas (SRMIB), University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Francisco Marcano
- Department of Physiology, Faculty of Medicine, University of La Laguna, San Cristóbal de La Laguna, Spain.,Servicio de Resonancia Magnética para Investigaciones Biomédicas (SRMIB), University of La Laguna, San Cristóbal de La Laguna, Spain
| | - José Luis González-Mora
- Department of Physiology, Faculty of Medicine, University of La Laguna, San Cristóbal de La Laguna, Spain.,Servicio de Resonancia Magnética para Investigaciones Biomédicas (SRMIB), University of La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
6
|
Arm crossing updates brain functional connectivity of the left posterior parietal cortex. Sci Rep 2016; 6:28105. [PMID: 27302746 PMCID: PMC4908406 DOI: 10.1038/srep28105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/31/2016] [Indexed: 11/21/2022] Open
Abstract
The unusual configuration of body parts can cause illusions. For example, when tactile stimuli are delivered to crossed arms a reversal of subjective temporal ordering occurs. Our group has previously demonstrated that arm crossing without sensory stimuli causes activity changes in the left posterior parietal cortex (PPC) and an assessment of tactile temporal order judgments (TOJs) revealed a positive association between activity in this area, especially the left intraparietal sulcus (IPS), and the degree of the crossed-hand illusion. Thus, the present study investigated how the IPS actively relates to other cortical areas under arms-crossed and -uncrossed conditions by analyzing the functional connectivity of the IPS. Regions showing connectivity with the IPS overlapped with regions within the default mode network (DMN) but the IPS also showed connectivity with other brain areas, including the frontoparietal control network (FPCN). The right middle/inferior frontal gyrus (MFG/IFG), which is included in the FPCN, showed greater connectivity in the arms-crossed condition than in the arms-uncrossed condition. These findings suggest that there is state-dependent connectivity during arm crossing, and that the left IPS may play an important role during the spatio-temporal updating of arm positions.
Collapse
|
7
|
Chen Z, Calhoun VD. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA). J Neurosci Methods 2016; 261:161-71. [PMID: 26778607 DOI: 10.1016/j.jneumeth.2016.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/21/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. NEW METHODS A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. RESULTS With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. COMPARISON WITH EXISTING METHODS For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. CONCLUSION χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA.
Collapse
Affiliation(s)
- Zikuan Chen
- The Mind Research Network and LBERI, Albuquerque, NM 87106, United States.
| | - Vince D Calhoun
- The Mind Research Network and LBERI, Albuquerque, NM 87106, United States; University of New Mexico, Department of Electrical and Computer Engineering, Albuquerque, NM 87131, United States
| |
Collapse
|
8
|
Abstract
The purpose of this theoretical analysis and synthesis is to indicate how left-eye sighting dominance may lead to reading failure through dysfunctional right hemisphere letter encoding. Differing compensatory strategies are postulated to lead to outcomes that include the development of the phonologically impaired and phonologically proficient subtypes of dyslexia as well as specific spelling disability. Evidence is presented indicating that these disorders might be prevented by delaying the introduction of letter writing until the age of 8 years. Early childhood speech categorization in children genetically at-risk of developing dyslexia is also considered from this perspective. Convergent support for this premature writing hypothesis is provided by a comparison with the development of the left-hand inverted writing posture.
Collapse
|
9
|
Uchimura M, Nakano T, Morito Y, Ando H, Kitazawa S. Automatic representation of a visual stimulus relative to a background in the right precuneus. Eur J Neurosci 2015; 42:1651-9. [PMID: 25925368 PMCID: PMC5032987 DOI: 10.1111/ejn.12935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
Abstract
Our brains represent the position of a visual stimulus egocentrically, in either retinal or craniotopic coordinates. In addition, recent behavioral studies have shown that the stimulus position is automatically represented allocentrically relative to a large frame in the background. Here, we investigated neural correlates of the ‘background coordinate’ using an fMRI adaptation technique. A red dot was presented at different locations on a screen, in combination with a rectangular frame that was also presented at different locations, while the participants looked at a fixation cross. When the red dot was presented repeatedly at the same location relative to the rectangular frame, the fMRI signals significantly decreased in the right precuneus. No adaptation was observed after repeated presentations relative to a small, but salient, landmark. These results suggest that the background coordinate is implemented in the right precuneus.
Collapse
Affiliation(s)
- Motoaki Uchimura
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Brain Physiology, Graduate School of Medicine, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo, 102-0083, Japan
| | - Tamami Nakano
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Brain Physiology, Graduate School of Medicine, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yusuke Morito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Ando
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Osaka, 565-0871, Japan.,Multisensory Cognition and Computation Laboratory, National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika, Kyoto, 619-0289, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Brain Physiology, Graduate School of Medicine, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Dong L, Zhang Y, Zhang R, Zhang X, Gong D, Valdes-Sosa PA, Xu P, Luo C, Yao D. Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA). Neuroimage 2015; 109:388-401. [PMID: 25592998 DOI: 10.1016/j.neuroimage.2015.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/24/2014] [Accepted: 01/01/2015] [Indexed: 10/24/2022] Open
Abstract
Many important problems in the analysis of neuroimages can be formulated as discovering the relationship between two sets of variables, a task for which linear techniques such as canonical correlation analysis (CCA) have been commonly used. However, to further explore potential nonlinear processes that might co-exist with linear ones in brain function, a more flexible method is required. Here, we propose a new unsupervised and data-driven method, termed the eigenspace maximal information canonical correlation analysis (emiCCA), which is capable of automatically capturing the linear and/or nonlinear relationships between various data sets. A simulation confirmed the superior performance of emiCCA in comparison with linear CCA and kernel CCA (a nonlinear version of CCA). An emiCCA framework for functional magnetic resonance imaging (fMRI) data processing was designed and applied to data from a real motor execution fMRI experiment. This analysis uncovered one linear (in primary motor cortex) and a few nonlinear networks (e.g., in the supplementary motor area, bilateral insula, and cerebellum). This suggests that these various task-related brain areas are part of networks that also contribute to the execution of movements of the hand. These results suggest that emiCCA is a promising technique for exploring various data.
Collapse
Affiliation(s)
- Li Dong
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yangsong Zhang
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Rui Zhang
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xingxing Zhang
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Diankun Gong
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pedro A Valdes-Sosa
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Cuban Neuroscience Center, Havana, Cuba
| | - Peng Xu
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Luo
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dezhong Yao
- The Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
11
|
Dong L, Luo C, Cao W, Zhang R, Gong J, Gong D, Yao D. Spatiotemporal consistency of local neural activities: A new imaging measure for functional MRI data. J Magn Reson Imaging 2014; 42:729-36. [DOI: 10.1002/jmri.24831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/05/2014] [Indexed: 11/08/2022] Open
Affiliation(s)
- Li Dong
- Key Laboratory for NeuroInformation of Ministry of Education; School of Life Science and Technology, University of Electronic Science and Technology of China; Chengdu P.R. China
- Center for Information in BioMedicine; University of Electronic Science and Technology of China; Chengdu P.R. China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education; School of Life Science and Technology, University of Electronic Science and Technology of China; Chengdu P.R. China
- Center for Information in BioMedicine; University of Electronic Science and Technology of China; Chengdu P.R. China
| | - Weifang Cao
- Key Laboratory for NeuroInformation of Ministry of Education; School of Life Science and Technology, University of Electronic Science and Technology of China; Chengdu P.R. China
- Center for Information in BioMedicine; University of Electronic Science and Technology of China; Chengdu P.R. China
| | - Rui Zhang
- Key Laboratory for NeuroInformation of Ministry of Education; School of Life Science and Technology, University of Electronic Science and Technology of China; Chengdu P.R. China
- Center for Information in BioMedicine; University of Electronic Science and Technology of China; Chengdu P.R. China
| | - Jinnan Gong
- Key Laboratory for NeuroInformation of Ministry of Education; School of Life Science and Technology, University of Electronic Science and Technology of China; Chengdu P.R. China
- Center for Information in BioMedicine; University of Electronic Science and Technology of China; Chengdu P.R. China
| | - Diankun Gong
- Key Laboratory for NeuroInformation of Ministry of Education; School of Life Science and Technology, University of Electronic Science and Technology of China; Chengdu P.R. China
- Center for Information in BioMedicine; University of Electronic Science and Technology of China; Chengdu P.R. China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education; School of Life Science and Technology, University of Electronic Science and Technology of China; Chengdu P.R. China
- Center for Information in BioMedicine; University of Electronic Science and Technology of China; Chengdu P.R. China
| |
Collapse
|
12
|
Brauns I, Teixeira S, Velasques B, Bittencourt J, Machado S, Cagy M, Gongora M, Bastos VH, Machado D, Sandoval-Carrillo A, Salas-Pacheco J, Piedade R, Ribeiro P, Arias-Carrión O. Changes in the theta band coherence during motor task after hand immobilization. Int Arch Med 2014; 7:51. [PMID: 25838843 PMCID: PMC4363202 DOI: 10.1186/1755-7682-7-51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/02/2014] [Indexed: 11/10/2022] Open
Abstract
Many different factors can temporarily or permanently impair movement and impairs cortical organization, e.g. hand immobilization. Such changes have been widely studied using electroencephalography. Within this context, we have investigated the immobilization effects through the theta band coherence analysis, in order to find out whether the immobilization period causes any changes in the inter and intra-hemispheric coherence within the cerebral cortex, as well as to observe whether the theta band provides any information about the neural mechanisms involved during the motor act. We analyzed the cortical changes that occurred after 48 hours of hand immobilization. The theta band coherence was study through electroencephalography in 30 healthy subjects, divided into two groups (control and experimental). Within both groups, the subjects executed a task involving flexion and extension of the index finger, before and after 48 hours. The experimental group, however, was actually submitted to hand immobilization. We were able to observe an increase in the coupling within the experimental group in the frontal, parietal and temporal regions, and a decrease in the motor area. In order to execute manual tasks after some time of movement restriction, greater coherence is present in areas related to attention, movement preparation and sensorimotor integration processes. These results may contribute to a detailed assessment of involved neurophysiological mechanism in motor act execution.
Collapse
Affiliation(s)
- Igor Brauns
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Silmar Teixeira
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil ; Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González/IFC-UNAM, Mexico City, Mexico ; Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Ajusco Medio, Secretaria de Salud Mexico City, Mexico
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil ; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil ; National Institute of Traumatology and Orthopaedics (INTO), Neuromuscular Research Laboratory, Rio de Janeiro, Brazil
| | - Juliana Bittencourt
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Sergio Machado
- Institute of Psychiatry of Federal University of Rio de Janeiro, Panic and Respiration, Rio de Janeiro, Brazil ; National Institute for Translational Medicine (INCT-TM), Rio de Janeiro, Brazil ; Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Gongora
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, UFPI, Parnaiba, Brazil ; Brain Mapping and Plasticity Laboratory, Federal University of Piauí, UFPI, Parnaiba, Brazil
| | - Dionis Machado
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, UFPI, Parnaiba, Brazil ; Brain Mapping and Plasticity Laboratory, Federal University of Piauí, UFPI, Parnaiba, Brazil
| | - Ada Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Durango, México
| | - Jose Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Durango, México
| | - Roberto Piedade
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil ; School of Physical Education, Bioscience Department (EEFD/UFRJ), Rio de Janeiro, Brazil ; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González/IFC-UNAM, Mexico City, Mexico ; Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Ajusco Medio, Secretaria de Salud Mexico City, Mexico
| |
Collapse
|
13
|
Bech B, Lönn L, Schroeder TV, Ringsted C. Fine-motor skills testing and prediction of endovascular performance. Acta Radiol 2013; 54:1165-74. [PMID: 23803752 DOI: 10.1177/0284185113491088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice candidates at entry to practice. PURPOSE To study the association between performance in a novel aptitude test of fine-motor skills and performance in simulated procedures. MATERIAL AND METHODS The test was based on manual course-tracking using a proprietary hand-operated roller-bar device coupled to a personal computer with monitor view rotation. A total of 40 test repetitions were conducted separately with each hand. Test scores were correlated with simulator performance. Group A (n = 14), clinicians with various levels of endovascular experience, performed a simulated procedure of contralateral iliac artery stenting. Group B (n = 19), medical students, performed 10 repetitions of crossing a challenging aortic bifurcation in a simulator. RESULTS The test score differed markedly between the individuals in both groups, in particular with the non-dominant hand. Group A: the test score with the non-dominant hand correlated significantly with simulator performance assessed with the global rating scale SAVE (R = -0.69, P = 0.007). There was no association observed from performances with the dominant hand. Group B: there was no significant association between the test score and endovascular skills acquisition neither with the dominant nor with the non-dominant hand. CONCLUSION Clinicians with increasing levels of endovascular technical experience had developed good fine-motor control of the non-dominant hand, in particular, that was associated with good procedural performance in the simulator. The aptitude test did not predict endovascular skills acquisition among medical students, thus, cannot be suggested for selection of novice candidates. Procedural experience and practice probably supplant the influence of innate abilities (talent) over time.
Collapse
Affiliation(s)
- Bo Bech
- Centre for Clinical Education, University of Copenhagen and Capital Region of Denmark, Denmark
- Department of Vascular Surgery, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Lars Lönn
- Department of Vascular Surgery, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
- Department of Radiology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Torben V Schroeder
- Department of Vascular Surgery, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ringsted
- Centre for Clinical Education, University of Copenhagen and Capital Region of Denmark, Denmark
| |
Collapse
|
14
|
Kwon YH, Park JW. Changes in Cerebral and Cerebellar Activation Patterns Induced by Short-term Sequence Learning of a Serial Reaction Time Task: an fMRI Study. J Phys Ther Sci 2013. [DOI: 10.1589/jpts.25.505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yong Hyun Kwon
- Department of Physical Therapy, Yeungnam College of Science and Technology
| | - Ji Won Park
- Department of Physical Therapy, College of Medical Science, Catholic University of Daegu: 330 Geumrak 1-ri, Hayang-eup, Gyeongsan-si, Kyeongbuk 712-702, Republic of Korea
| |
Collapse
|
15
|
Chiarelli AM, Di Vacri A, Romani GL, Merla A. Fast optical signal in visual cortex: Improving detection by General Linear Convolution Model. Neuroimage 2012; 66:194-202. [PMID: 23110889 DOI: 10.1016/j.neuroimage.2012.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/30/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022] Open
Abstract
In this study we applied the General Linear Convolution Model to fast optical signals (FOS). We modeled the Impulse Response Function (IRF) as a rectangular function lasting 30ms, with variable time delay with respect to the stimulus onset. Simulated data confirmed the feasibility of this approach and its capability of detecting simulated activations in case of very unfavorable Signal to Noise Ratio (SNR), providing better results than the grand average method. The model was tested in a cohort of 10 healthy volunteers who underwent to hemi-field visual stimulation. Experimental data quantified the IRF time delay at 80-100ms after the stimulus onset, in agreement with classical visual evoked potential literature and previous optical imaging studies based on grand average approach and a larger number of trails. FOS confirmed the expected contralateral activation in the occipital region. Correlational analysis between hemodynamic intensity signal, phase and intensity FOS supports diffusive rather than optical absorption changes associated with neuronal activity in the activated cortical volume. Our study provides a feasible method for detecting fast cortical activations by means of FOS.
Collapse
Affiliation(s)
- Antonio Maria Chiarelli
- Infrared Imaging Lab, ITAB - Institute for Advanced Biomedical Technologies, Foundation University G. d'Annunzio, Chieti, Italy; Department of Neurosciences and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Assunta Di Vacri
- Infrared Imaging Lab, ITAB - Institute for Advanced Biomedical Technologies, Foundation University G. d'Annunzio, Chieti, Italy; Department of Neurosciences and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Gian Luca Romani
- Infrared Imaging Lab, ITAB - Institute for Advanced Biomedical Technologies, Foundation University G. d'Annunzio, Chieti, Italy; Department of Neurosciences and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Arcangelo Merla
- Infrared Imaging Lab, ITAB - Institute for Advanced Biomedical Technologies, Foundation University G. d'Annunzio, Chieti, Italy; Department of Neurosciences and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy.
| |
Collapse
|
16
|
Silva F, Arias-Carrión O, Teixeira S, Velasques B, Peressutti C, Paes F, Basile LF, Menéndez-González M, Murillo-Rodríguez E, Cagy M, Piedade R, Nardi AE, Machado S, Ribeiro P. Functional coupling of sensorimotor and associative areas during a catching ball task: a qEEG coherence study. Int Arch Med 2012; 5:9. [PMID: 22364485 PMCID: PMC3353194 DOI: 10.1186/1755-7682-5-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/24/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. METHODS Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. RESULTS Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. CONCLUSION It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object.
Collapse
Affiliation(s)
- Farmy Silva
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Oscar Arias-Carrión
- Department for Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Technical University Munich (TUM), Munich, Germany
| | - Silmar Teixeira
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Caroline Peressutti
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Flávia Paes
- Laboratory of Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- National Institute of Translational Medicine (INCT-TM), Rio de Janeiro, Brazil
- Faculty of Psychology, Brazilian Institute of Medicine and Rehabilitation (IBMR), Rio de Janeiro, Brazil
| | - Luis F Basile
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Psychophysiology, Faculty of Psychology and Phonoaudiology - UMESP, São Paulo, Brazil
| | | | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas. Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México
| | - Mauricio Cagy
- Division of Epidemiology and Biostatistics, Institute of Health Community, Federal Fluminense University (UFF), Rio de Janeiro, Brazil
| | - Roberto Piedade
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Antonio Egídio Nardi
- Laboratory of Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- National Institute of Translational Medicine (INCT-TM), Rio de Janeiro, Brazil
| | - Sergio Machado
- Laboratory of Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- National Institute of Translational Medicine (INCT-TM), Rio de Janeiro, Brazil
- Quiropraxia Program, Central University, Santiago, Chile
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
- Bioscience Department (EEFD/UFRJ), School of Physical Education, Rio de Janeiro, Brazil
- Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Neuronal network coherent with hand kinematics during fast repetitive hand movements. Neuroimage 2012; 59:1684-91. [DOI: 10.1016/j.neuroimage.2011.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/09/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022] Open
|
18
|
Malinen S, Hari R. Data-based functional template for sorting independent components of fMRI activity. Neurosci Res 2011; 71:369-76. [DOI: 10.1016/j.neures.2011.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 11/15/2022]
|
19
|
Abe K, Takahashi T, Takikawa Y, Arai H, Kitazawa S. Applying independent component analysis to detect silent speech in magnetic resonance imaging signals. Eur J Neurosci 2011; 34:1189-99. [DOI: 10.1111/j.1460-9568.2011.07856.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Kang EK, Paik NJ. Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:4. [PMID: 21496317 PMCID: PMC3101127 DOI: 10.1186/2040-7378-3-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 04/17/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND This study was undertaken to test the hypothesis that a combination of excitatory anodal transcranial direct current stimulation (tDCS) to the contralateral motor cortex and inhibitory cathodal tDCS to the ipsilateral motor cortex of the motor performing hand (Bi-tDCS) would elicit more implicit motor sequence learning than anodal tDCS applied to the contralateral motor cortex alone (Uni-tDCS). METHODS Eleven healthy right-handed adults underwent a randomized crossover experiment of Uni-tDCS, Bi-tDCS, or sham stimulation. Subjects performed a 12-digit finger sequence serial reaction time task with the right hand at baseline (Pre), at immediately (Post 1), and 24 hours after stimulation (Post 2). The ratios of reaction times of predetermined repeating sequence versus random sequence were subjected to statistical analysis. RESULTS The paired t test showed that reaction time ratios were significant decreased by all stimulation types at Post 1 versus Pre (P < 0.01). However, mean reaction time ratios showed a significant decrease after Uni-tDCS (P < 0.01) and Bi-tDCS (P < 0.01), but only a marginal decreased after Sham (P = 0.05) at Post 2, which suggests that motor sequence learning is consolidated by Uni-tDCS and Bi-tDCS, but only partially consolidated by sham stimulation. No significant differences were observed between Uni-tDCS and Bi-tDCS in terms of in reaction time ratios at Post 1 or 2. CONCLUSIONS No significant difference was found between Uni-tDCS and Bi-tDCS in terms of induced implicit motor sequence learning, but tDCS led to greater consolidation of the learned motor sequence than sham stimulation. These findings need to be tested in the context of stroke hand motor rehabilitation.
Collapse
Affiliation(s)
- Eun Kyoung Kang
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | | |
Collapse
|
21
|
Mennes M, Wouters H, Vanrumste B, Lagae L, Stiers P. Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP. Psychophysiology 2011; 47:1142-50. [PMID: 20409015 DOI: 10.1111/j.1469-8986.2010.01015.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eye movement artifacts in electroencephalogram (EEG) recordings can greatly distort grand mean event-related potential (ERP) waveforms. Different techniques have been suggested to remove these artifacts prior to ERP analysis. Independent component analysis (ICA) is suggested as an alternative method to "filter" eye movement artifacts out of the EEG, preserving the brain activity of interest and preserving all trials. However, the identification of artifact components is not always straightforward. Here, we compared eye movement artifact removal by ICA compiled on 10 s of EEG, on eye movement epochs, or on the complete EEG recording to the removal of eye movement artifacts by rejecting trials or by the Gratton and Coles method. ICA performed as well as the Gratton and Coles method. By selecting only eye movement epochs for ICA compilation, we were able to facilitate the identification of components representing eye movement artifacts.
Collapse
Affiliation(s)
- Maarten Mennes
- Department of Woman & Child, KU Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Yanaka HT, Saito DN, Uchiyama Y, Sadato N. Neural substrates of phasic alertness: A functional magnetic resonance imaging study. Neurosci Res 2010; 68:51-8. [DOI: 10.1016/j.neures.2010.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
24
|
Quantitative analysis of asymmetrical cortical activity based on power spectrum changes. Brain Topogr 2010; 23:257-68. [PMID: 20177767 DOI: 10.1007/s10548-010-0136-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
The present study intends to quantitatively analyze power changes in blood oxygenation level-dependent (BOLD) signals, and to investigate functional asymmetry of cortical activity in motor areas during sequential finger movements. A power spectrum method was employed, mainly in contrast with the signal magnitude analysis, to investigate functional asymmetry of motor area cortical activity. Six right-handed subjects were included in the functional magnetic resonance imaging (fMRI) experiments. Both bi-handed and single-handed movements were analyzed. The power spectrum method demonstrated that right-handed subjects exhibited a larger power difference in BOLD signals between task and rest states in the right motor area than in the left motor area. These results showed that more nerve cells were evoked in the right motor area of right-handed subjects. In addition, the power spectrum method was confirmed to be a valid quantitative-analysis method for brain asymmetry analyses.
Collapse
|
25
|
Comparison Between a Real Sequential Finger and Imagery Movements: An fMRI Study Revisited. Brain Imaging Behav 2010; 4:80-5. [DOI: 10.1007/s11682-009-9087-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Wymbs NF, Grafton ST. Neural substrates of practice structure that support future off-line learning. J Neurophysiol 2009; 102:2462-76. [PMID: 19692514 DOI: 10.1152/jn.00315.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Off-line learning is facilitated when motor skills are acquired under a random practice schedule and retention suffers when a similar set of motor skills are practiced under a blocked schedule. The current study identified the neural correlates of a random training schedule while participants learned a set of four-element finger sequences using their nondominant hand during functional magnetic resonance imaging. A go/no go task was used to separately probe brain areas supporting sequence preparation and production. By the end of training, the random practice schedule, relative to the block schedule, recruited a broad premotor-parietal network as well as sensorimotor and subcortical regions during both preparation and production trials, despite equivalent motor performance. Longitudinal analysis demonstrated that preparation-related activity under a random schedule remained stable or increased over time. The blocked schedule showed the opposite pattern. Across individual subjects, successful skill retention was correlated with greater activity at the end of training in the ipsilateral left motor cortex, for both preparation and production. This is consistent with recent evidence that attributes off-line learning to training-related processing within primary motor cortex. These results reflect the importance of an overlooked aspect of motor skill learning. Specifically, how trials are organized during training-with a random schedule-provides an effective basis for the formation of enduring motor memories, through enhanced engagement of core regions involved in the active preparation and implementation of motor programs.
Collapse
Affiliation(s)
- Nicholas F Wymbs
- 1Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
27
|
Teixeira MCT, Teixeira LA. Leg preference and interlateral performance asymmetry in soccer player children. Dev Psychobiol 2009; 50:799-806. [PMID: 18688809 DOI: 10.1002/dev.20322] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Strength of leg preference and interlateral asymmetry in kinematics of kicking a ball for power were assessed in 6- to 10-year-old right-footed soccer player children. Leg preference was evaluated separately for three task categories: balance stabilization, soccer related mobilization, and general mobilization. The results showed that while both categories of mobilization tasks were featured by a consistent preference for the right leg, in stabilization tasks we observed lower scores and greater interindividual variability of leg preference. No effect of age was detected on leg preference. Analysis of peak foot velocity revealed similar increment of performance of the right and left legs from the ages 6-8 to 10 years. This finding supports the notion of stable magnitude of interlateral asymmetries of performance during motor development.
Collapse
|
28
|
Machado S, Cunha M, Portella CE, Silva JG, Velasques B, Bastos VH, Budde H, Pompeu F, Basile L, Cagy M, Piedade R, Ribeiro P. Integration of cortical areas during performance of a catching ball task. Neurosci Lett 2008; 446:7-10. [DOI: 10.1016/j.neulet.2008.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/01/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
|
29
|
Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci 2008; 9:103. [PMID: 18957075 PMCID: PMC2584652 DOI: 10.1186/1471-2202-9-103] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores. Results A repeated measures ANOVA yielded a significant effect of tDCS condition (F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere (p = .021) and sham stimulation (p = .041). Conclusion We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.
Collapse
Affiliation(s)
- Bradley W Vines
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
30
|
Tomatsu S, Someya Y, Sung YW, Ogawa S, Kakei S. Temporal feature of BOLD responses varies with temporal patterns of movement. Neurosci Res 2008; 62:160-7. [PMID: 18789981 DOI: 10.1016/j.neures.2008.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/31/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022]
Abstract
Which brain sites represent the final form of motor commands that encode temporal patterns of muscle activities? Here, we show the possible brain sites which have activity equivalent to the motor commands with functional magnetic resonance imaging (fMRI). We hypothesized that short-temporal patterns of movements or stimuli are reflected in blood-oxygenation-level-dependent (BOLD) responses and we searched for regions representing the response. Participants performed two temporal patterns of tapping and/or listened to the same patterns of auditory stimuli in a 3T fMRI. The patterns were designed to have the same number (11) of events and the same duration, but different temporal distribution of events. The 11 events were divided into two parts (10 repetitive taps and one stand-alone tap) and the interval of the two parts was 3s. The two patterns had reverse order of the two parts. The results revealed that different temporal patterns of auditory stimuli were represented in different temporal features of BOLD responses in the bilateral auditory cortex, whereas different temporal patterns of tapping were reflected in contralateral primary motor cortex and the ipsilateral anterior cerebellum. In bilateral premotor cortex, supplementary motor area, visual cortex, and posterior cerebellum, task-related BOLD responses were exhibited, but their responses did not reflect the temporal patterns of the movement and/or stimuli. One possible explanation is that the neuronal activities were similar for the two patterns in these regions. The sensitivity of the BOLD response to the temporal patterns reflects local differences in functional contributions to the tasks. The present experimental design and analysis may be useful to reveal particular brain regions that participate in multiple functions.
Collapse
Affiliation(s)
- Saeka Tomatsu
- Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
31
|
Ipsilateral brain deactivation specific to the nondominant hand during simple finger movements. Neuroreport 2008; 19:483-6. [DOI: 10.1097/wnr.0b013e3282f6030b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Geiser E, Zaehle T, Jancke L, Meyer M. The Neural Correlate of Speech Rhythm as Evidenced by Metrical Speech Processing. J Cogn Neurosci 2008; 20:541-52. [DOI: 10.1162/jocn.2008.20029] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The present study investigates the neural correlates of rhythm processing in speech perception. German pseudosentences spoken with an exaggerated (isochronous) or a conversational (nonisochronous) rhythm were compared in an auditory functional magnetic resonance imaging experiment. The subjects had to perform either a rhythm task (explicit rhythm processing) or a prosody task (implicit rhythm processing). The study revealed bilateral activation in the supplementary motor area (SMA), extending into the cingulate gyrus, and in the insulae, extending into the right basal ganglia (neostriatum), as well as activity in the right inferior frontal gyrus (IFG) related to the performance of the rhythm task. A direct contrast between isochronous and nonisochronous sentences revealed differences in lateralization of activation for isochronous processing as a function of the explicit and implicit tasks. Explicit processing revealed activation in the right posterior superior temporal gyrus (pSTG), the right supramarginal gyrus, and the right parietal operculum. Implicit processing showed activation in the left supramarginal gyrus, the left pSTG, and the left parietal operculum. The present results indicate a function of the SMA and the insula beyond motor timing and speak for a role of these brain areas in the perception of acoustically temporal intervals. Secondly, the data speak for a specific task-related function of the right IFG in the processing of accent patterns. Finally, the data sustain the assumption that the right secondary auditory cortex is involved in the explicit perception of auditory suprasegmental cues and, moreover, that activity in the right secondary auditory cortex can be modulated by top-down processing mechanisms.
Collapse
Affiliation(s)
| | | | | | - Martin Meyer
- 1University Zurich, Switzerland
- 2University Hospital of Zurich, Switzerland
| |
Collapse
|
33
|
Fall S, de Marco G. Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data. BIOLOGICAL CYBERNETICS 2008; 98:101-114. [PMID: 18057954 DOI: 10.1007/s00422-007-0198-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 10/12/2007] [Indexed: 05/25/2023]
Abstract
Functional magnetic resonance imaging (fMRI) was used to assess the contributions of movement preparation and execution of a visuomotor task in a cerebral motor network. The functional connectivity of the voxel time series between brain regions in the frequency space was investigated by performing spectral analysis of fMRI time series. The regional interactivities between the two portions of the supplementary motor area (pre-SMA and SMA-proper) and the primary motor cortex (M1), defined as a seed region, were evaluated. The spectral parameter of coherence was used to describe a correlation structure in the frequency domain between two voxel-based time series and to infer the strength of the functional interaction within our presumed motor network of connections. The results showed meaningful differences of the functional interactions between the two portions of the SMA and the M1 area depending on the task conditions. This approach demonstrated the existence of a functional dissociation between the pre-SMA and SMA-proper subregions. We therefore conclude that spectral analysis is useful for identifying functional interactions of brain regions and might provide a powerful tool to quantify changes in connectivity profiles associated with various components of an experimental task.
Collapse
Affiliation(s)
- S Fall
- Laboratoire de Biophysique et Traitement de l'Image Médicale, CHU-nord UPJV Amiens, Amiens Cedex, France.
| | | |
Collapse
|
34
|
Liao KC, Hogen-Esch T, Richmond FJ, Marcu L, Clifton W, Loeb GE. Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo. Biosens Bioelectron 2008; 23:1458-65. [PMID: 18304798 DOI: 10.1016/j.bios.2008.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/19/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022]
Abstract
We are developing a family of fiber-optic sensors called Sencils (sensory cilia), which are disposable, minimally invasive, and can provide in vivo monitoring of various analytes for several weeks. The key element is a percutaneous optical fiber that permits reliable spectroscopic measurement of chemical reactions in a nano-engineered polymeric matrix attached to the implanted end of the fiber. This paper describes its first application to measure interstitial glucose based on changes in fluorescence resonance energy transfer (FRET) between fluorophores bound to betacyclodextrin and Concanavalin A (Con A) in a polyethylene glycol (PEG) matrix. In vitro experiments demonstrate a rapid and precise relationship between the ratio of the two fluorescent emissions and concentration of glucose in saline for the physiological range of concentrations (0-500mg/dl) over seven weeks. Chronic animal implantation studies have demonstrated good biocompatibility and durability for clinical applications.
Collapse
Affiliation(s)
- Kuo-Chih Liao
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
35
|
Cross ES, Schmitt PJ, Grafton ST. Neural Substrates of Contextual Interference during Motor Learning Support a Model of Active Preparation. J Cogn Neurosci 2007; 19:1854-71. [DOI: 10.1162/jocn.2007.19.11.1854] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
When individuals acquire new skills, initial performance is typically better and tasks are judged to be easier when the tasks are segregated and practiced by block, compared to when different tasks are randomly intermixed in practice. However, subsequent skill retention is better for a randomly practiced group, an effect known as contextual interference (CI). The present study examined the neural substrates of CI using functional magnetic resonance imaging (fMRI). Individuals learned a set of three 4-element sequences with the left hand according to a block or random practice schedule. Behavioral retest for skill retention confirmed the presence of a typical CI effect with the random group outperforming the block group. Using a go/no-go fMRI paradigm, sequence preparation during the premovement study period was separated from movement execution. Imaging data for the two groups were compared for the first 1/3 and final 1/3 of training trials. Toward the end of training, behavioral performance between the two groups was similar, although the random group would later display a performance advantage on retention testing. During study time, the random group showed greater activity in sensorimotor and premotor regions compared to the block group. These areas are associated with motor preparation, sequencing, and response selection. This pattern of recruitment is consistent with the hypothesis that CI benefits in a sequencing task are due to improved capacity to actively prepare motor responses.
Collapse
|
36
|
Kurata K. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys. J Neurophysiol 2007; 98:2008-21. [PMID: 17686916 DOI: 10.1152/jn.00149.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.
Collapse
Affiliation(s)
- Kiyoshi Kurata
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki, Japan.
| |
Collapse
|
37
|
Zeng L, Chen H, Ouyang L, Yao D, Gao JH. Quantitative analysis of asymmetrical cortical activity in motor areas during sequential finger movement. Magn Reson Imaging 2007; 25:1370-5. [PMID: 17482410 DOI: 10.1016/j.mri.2007.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/14/2007] [Accepted: 03/14/2007] [Indexed: 11/17/2022]
Abstract
Brain asymmetry is a phenomenon well known for handedness and has been studied in motor cortices. However, few quantitative studies on asymmetrical cortical activity in motor areas have been conducted. In this study, we systematically investigated asymmetrical cortical activity in motor areas during sequential finger movement by quantitatively analyzing functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) responses. The norm of BOLD signal percentage of change was introduced to quantitatively measure the BOLD signal intensity change difference between the left and right motor areas. The results of the data collected from six subjects show that the norm of BOLD signal percentage of change in the right motor area is higher than that in the left motor area for two-hand movement (P=.0059) and single-hand movement (P=.0279) with right-handedness. These results from fMRI show the asymmetry of motor areas and may suggest that the left hemisphere motor area comes into being as an adaptation system that needs few neuron cells only to finish any movement task for right-handedness. The activation intensity in the left motor area is reduced with normal right finger movement. The activation intensity in the right motor area is obviously higher than that in the left motor area.
Collapse
Affiliation(s)
- Ling Zeng
- School of Life Science and Technology/School of Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | | | | | | |
Collapse
|
38
|
Chen H, Yao D, Lu G, Zhang Z, Hu Q. Localization of latent epileptic activities using spatio-temporal independent component analysis of FMRI data. Brain Topogr 2007; 19:21-8. [PMID: 17136593 DOI: 10.1007/s10548-006-0009-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Localizing interictal epileptic activities is a difficult problem in clinical practice. We report a novel noninvasive technique, resting functional magnetic resonance imaging (fMRI) with spatio-temporal independent component analysis (ICA), for localizing interictal epileptic activities. First, the fMRI data is separated into independent spatial patterns by spatial-ICA, and the patterns with Z-values larger than a threshold are selected as the potential spatial patterns of the epileptic activities. Second, the temporal series of the active points in the selected patterns are separated by temporal-ICA, and the component with the biggest Gaussian deviation (kurtosis) is selected as the representative of the epileptic discharge activity in a sub-region. Finally, those spatial sub-regions, which have distinct epileptic discharge activities confirmed by temporal-ICA are considered as the epileptic foci. This method was applied to fMRI data of six epileptic patients, and the results are consistent with the clinical assessment. Though more studies are required to validate this technique, the above preliminary results demonstrate the potential of using the resting fMRI with spatio-temporal ICA to detect and localize latent epileptic activities.
Collapse
Affiliation(s)
- Huafu Chen
- School of Life Science and Technology/School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, China, 610054
| | | | | | | | | |
Collapse
|
39
|
Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K. Global activation of primary motor cortex during voluntary movements in man. Neuroimage 2006; 34:1227-37. [PMID: 17137794 DOI: 10.1016/j.neuroimage.2006.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/14/2006] [Accepted: 08/18/2006] [Indexed: 10/23/2022] Open
Abstract
Unilateral voluntary movements are accompanied by robust activation of contralateral primary motor cortex (M1) in a somatotopic fashion. Occasionally, coactivation of M1 (M1-CoA) ipsilateral to the movement was described. In a study with brain tumor patients, we consistently observed additional somatotopic M1-CoAs and hypothesized that they might represent a basic feature of movement execution. To test this hypothesis, we used BOLD functional magnetic resonance imaging in healthy subjects and show that unilateral voluntary movements of the fingers or toes go along not only with contralateral M1 activation, but also with ipsilateral M1-CoA of the respective homotopic representation and bilateral M1-CoA of different heterotopic representations not directly involved in the executed movement. Moreover, bilateral M1-CoA of heterotopic representations was observed in tongue movements. All M1-CoAs respected the correct somatotopy; however, their Euclidean coordinates were shifted and resembled to those obtained for imagined movements rather than for actual movements. BOLD signal intensities and correlations to the applied hemodynamic reference function were lower in M1-CoAs as compared to the M1 activations driving the movement but did not differ between homo- and heterotopic M1-CoAs. Thus, we propose that specific unilateral voluntary movements are accompanied by a global activation of primary motor areas, reflecting an overall increase in neuronal activity and unraveling the fundamental principle of distributed processing in M1. Executive motor function may rely on a balance of inhibitory and excitatory neuronal activity, where actual movement would result from a shift towards excitation.
Collapse
Affiliation(s)
- Christoph Stippich
- Division of Neuroradiology, Department of Neurology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Kansaku K, Johnson A, Grillon ML, Garraux G, Sadato N, Hallett M. Neural correlates of counting of sequential sensory and motor events in the human brain. Neuroimage 2006; 31:649-60. [PMID: 16460961 DOI: 10.1016/j.neuroimage.2005.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/21/2005] [Accepted: 12/19/2005] [Indexed: 11/24/2022] Open
Abstract
Little is known about the ability to enumerate small numbers of successive stimuli and movements. It is possible that there exist neural substrates that are consistently recruited both to count sensory stimuli from different modalities and for counting movements executed by different effectors. Here, we identify a network of areas that was involved in enumerating small numbers of auditory, visual, and somatosensory stimuli, and in enumerating sequential movements of hands and feet, in the bilateral premotor cortex, presupplementary motor area, posterior temporal cortex, and thalamus. The most significant consistent activation across sensory and motor counting conditions was found in the lateral premotor cortex. Lateral premotor activation was not dependent on movement preparation, stimulus presentation timing, or number word verbalization. Movement counting, but not sensory counting, activated the anterior parietal cortex. This anterior parietal area may correspond to an area recruited for movement counting identified by recent single-neuron studies in monkeys. These results suggest that overlapping but not identical networks of areas are involved in counting sequences of sensory stimuli and sequences of movements in the human brain.
Collapse
Affiliation(s)
- Kenji Kansaku
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 5N226, 10 Center Drive MSC 1428, Bethesda, MD 20892-1428, USA
| | | | | | | | | | | |
Collapse
|