1
|
Kawasoe R, Takano S, Yasumoto Y, Takeo Y, Matsushita K, Sugata H. Functional connectivity via the dorsolateral prefrontal cortex in the late phase of rest periods predicts offline learning. Neurosci Lett 2024; 822:137645. [PMID: 38237719 DOI: 10.1016/j.neulet.2024.137645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The relationship between offline learning gains and functional connectivity (FC) has been investigated in several studies. They have focused on average motor task performance and resting-state FC across subjects. Generally, individual differences are seen in both offline learning gain and neurophysiological profiles in resting-state FC. However, few studies have focused on the relationship between individual differences in offline learning gain and temporal characteristics of resting-state FC. The present study aimed to clarify this relationship between the two profiles. Thirty-four healthy right-handed participants performed a force-controlled motor task. Electroencephalography was performed during the 15-minute wakeful rest period between tasks. The results revealed a significant correlation between offline learning gain and FC between the contralateral dorsolateral prefrontal cortex (DLPFC) and contralateral primary motor cortex (M1), and ipsilateral primary somatosensory cortex (S1) during late phase of the rest interval. These results are consistent with the findings of previous studies showing the FC between M1, which is necessary for awake offline learning, and DLPFC, which is related to motor control. Additionally, sensory feedback related to force control may be caused by the interaction between contralateral DLPFC and ipsilateral S1. Our study shed light on the temporal profiles of resting-state FC associated with individual differences in offline learning.
Collapse
Affiliation(s)
- Ryushin Kawasoe
- Graduate School of Welfare and Health Science, Oita University, 700, Dannoharu, Oita 870-1192, Japan
| | - Sou Takano
- Faculty of Welfare and Health Science, Oita University, 700, Dannoharu, Oita 870-1192, Japan
| | - Yui Yasumoto
- Faculty of Welfare and Health Science, Oita University, 700, Dannoharu, Oita 870-1192, Japan
| | - Yuhi Takeo
- Department of Rehabilitation, Oita University Hospital, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan; Graduate School of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Kojiro Matsushita
- Department of Mechanical Engineering, Gifu University, 1-1, Yanagito, Gifu 501-1193, Japan
| | - Hisato Sugata
- Graduate School of Welfare and Health Science, Oita University, 700, Dannoharu, Oita 870-1192, Japan; Faculty of Welfare and Health Science, Oita University, 700, Dannoharu, Oita 870-1192, Japan; Graduate School of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.
| |
Collapse
|
2
|
Geng Y, Qin L, Li Y, Yu Z, Li L, Asogbon MG, Zhan Y, Yan N, Guo X, Li G. Identifying Oscillations under Multi-site Sensory Stimulation for High-level Peripheral Nerve Injured Patients:A Pilot Study. J Neural Eng 2022; 19. [PMID: 35580572 DOI: 10.1088/1741-2552/ac7079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE For high-level peripheral nerve injured (PNI) patients with severe sensory dysfunction of upper extremities, identifying the multi-site tactile stimulation is of great importance to provide neurorehabilitation with sensory feedback. In this pilot study, we showed the feasibility of identifying multi-site and multi-intensity tactile stimulation in terms of electroencephalography (EEG). APPROACH Three high-level PNI patients and eight non-PNI participants were recruited in this study. Four different sites over the upper arm, forearm, thumb finger and little finger were randomly stimulated at two intensities (both sensory-level) based on the transcutaneous electrical nerve stimulation (TENS). Meanwhile, 64-channel EEG signals were recorded during the passive tactile sense stimulation on each side. MAIN RESULTS The spatial-spectral distribution of brain oscillations underlying multi-site sensory stimulation showed dominant power attenuation over the somatosensory and prefrontal cortices in both alpha-band (8-12 Hz) and beta-band (13-30 Hz). But there was no significant difference among different stimulation sites in terms of the averaged power spectral density over the region of interest (ROI). By further identifying different stimulation sites using temporal-spectral features, we found the classification accuracies were all above 89% for the affected arm of PNI patients, comparable to that from their intact side and that from the non-PNI group. When the stimulation site-intensity combinations were treated as eight separate classes, the classification accuracies were ranging from 88.89% to 99.30% for the affected side of PNI subjects, similar to that from their non-affected side and that from the non-PNI group. Other performance metrics, including Specificity, Precision, and F1-Score, also showed a sound identification performance for both PNI patients and non-PNI subjects. SIGNIFICANCE These results suggest that reliable brain oscillations could be evoked and identified well, even though induced tactile sense could not be discerned by the PNI patients. This study have implication for facilitating bidirectional neurorehabilitation systems with sensory feedback.
Collapse
Affiliation(s)
- Yanjuan Geng
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, Guangdong, 518055, CHINA
| | - Liuni Qin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, Guangdong, 518055, CHINA
| | - Yongcheng Li
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, Guangdong, 518055, CHINA
| | - Zhebin Yu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, Guangdong, 518055, CHINA
| | - Linling Li
- Shenzhen University, 1066 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, 518060, CHINA
| | - Mojisola Grace Asogbon
- Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, Guangdong, 518055, CHINA
| | - Yang Zhan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, Guangdong, 518055, CHINA
| | - Nan Yan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, Guangdong, 518055, CHINA
| | - Xin Guo
- Hebei University of Technology, Hebei University of Technology, Tianjin 300130, China, Tianjin, Tianjin, 300401, CHINA
| | - Guanglin Li
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
3
|
Cognitive and emotional regulation processes of spontaneous facial self-touch are activated in the first milliseconds of touch: Replication of previous EEG findings and further insights. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:984-1000. [PMID: 35182383 PMCID: PMC8857530 DOI: 10.3758/s13415-022-00983-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/22/2022]
Abstract
Spontaneously touching one’s own face (sFST) is an everyday behavior that occurs in people of all ages, worldwide. It is—as opposed to actively touching the own face—performed without directing one’s attention to the action, and it serves neither instrumental (scratching, nose picking) nor communicative purposes. These sFST have been discussed in the context of self-regulation, emotional homeostasis, working memory processes, and attention focus. Even though self-touch research dates back decades, neuroimaging studies of this spontaneous behavior are basically nonexistent. To date, there is only one electroencephalography study that analyzed spectral power changes before and after sFST in 14 participants. The present study replicates the previous study on a larger sample. Sixty participants completed a delayed memory task of complex haptic relief stimuli while distracting sounds were played. During the retention interval 44 of the participants exhibited spontaneous face touch. Spectral power analyses corroborated the results of the replicated study. Decreased power shortly before sFST and increased power right after sFST indicated an involvement of regulation of attentional, emotional, and working memory processes. Additional analyses of spectral power changes during the skin contact phase of sFST revealed that significant neurophysiological changes do not occur while skin contact is in progress but at the beginning of sFST (movement toward face and initial skin contact). The present findings clearly illustrate the complexity of sFST and that the specific trigger mechanisms and functions of this spontaneous behavior need to be further investigated in controlled, experimental studies.
Collapse
|
4
|
Su S, Chai G, Sheng X, Meng J, Zhu X. Contra-lateral desynchronized alpha oscillations linearly correlate with discrimination performance of tactile acuity. J Neural Eng 2020; 17:046041. [PMID: 32659752 DOI: 10.1088/1741-2552/aba55f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We used EEG to investigate cortical oscillatory activities during the tactile discrimination task and characterize the correlation between the EEG features and subjects' discrimination performance. APPROACH Transcutaneous electrical nerve stimulation (TENS) was applied on two finger areas (thumb and index for healthy hands, thumb and index-projected areas for disabled hands) to evoke two kinds of tactile sensations (vibration and pressure) with three levels of intensities (low, medium and high). Four forearm amputees and thirteen able-bodied subjects were recruited to discriminate the specific intensity and area of the applied stimulation. We assessed the discrimination performance [discrimination accuracy rate (AR) and response time (RT)] to quantify the tactile acuity. During the stimulation, EEG signals were recorded and the evoked cortical oscillatory activities were analyzed. Linear regression analyses were performed between EEG features and tactile discrimination performance. MAIN RESULTS Spectral analysis revealed that alpha ERD over somatosensory regions persisted the whole task period and was related to the sensory information processing. Alpha ERD over prefrontal regions was only found during the stimulation judgement period and might reflect advanced cognitive process. There was no linear correlation between prefrontal alpha ERD and tactile discrimination performance. While contralateral somatosensory alpha ERDs exhibited significantly negative correlations with ARs ([Formula: see text]) and positive correlations with RTs ([Formula: see text]). Specifically, the fitting results of higher alpha band (10-13 Hz) were superior to lower alpha band (8-10 Hz). SIGNIFICANCE Alpha ERD over contralateral somatosensory cortex could be used as an objective index for the evaluation of tactile acuity and might have the potential to be applied in sensory rehabilitation for amputees.
Collapse
Affiliation(s)
- Shiyong Su
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
5
|
Zhao D, Zhou YD, Bodner M, Ku Y. The Causal Role of the Prefrontal Cortex and Somatosensory Cortex in Tactile Working Memory. Cereb Cortex 2019; 28:3468-3477. [PMID: 28968894 DOI: 10.1093/cercor/bhx213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 12/31/2022] Open
Abstract
In the present study, we searched for causal evidence linking activity in the bilateral primary somatosensory cortex (SI), posterior parietal cortex (PPC), and prefrontal cortex (PFC) with behavioral performance in vibrotactile working memory. Participants performed a vibrotactile delayed matching-to-sample task, while single-pulse transcranial magnetic stimulation (sp-TMS) was applied over these cortical areas at 100, 200, 300, 600, 1600, and 1900 ms after the onset of vibrotactile stimulation (200 ms duration). In our experiments, sp-TMS over the contralateral SI at the early delay (100 and 200 ms) deteriorated the accuracy of task performance, and over the ipsilateral SI at the late delay (1600 and 1900 ms) also induced such deteriorating effects. Furthermore, deteriorating effects caused by sp-TMS over the contralateral DLPFC at the same maintenance stage (1600 ms) were correlated with the effects caused by sp-TMS over the ipsilateral SI, indicating that information retained in the ipsilateral SI during the late delay may be associated with the DLPFC. Taken together, these results suggest that both the contralateral and ipsilateral SIs are involved in tactile WM, and the contralateral DLPFC bridges the contralateral SI and ipsilateral SI for goal-directed action.
Collapse
Affiliation(s)
- Di Zhao
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yong-Di Zhou
- NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, China.,Krieger Mind/Brain Institute, Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yixuan Ku
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, China
| |
Collapse
|
6
|
Kang L, Zhang A, Sun N, Liu P, Yang C, Li G, Liu Z, Wang Y, Zhang K. Functional connectivity between the thalamus and the primary somatosensory cortex in major depressive disorder: a resting-state fMRI study. BMC Psychiatry 2018; 18:339. [PMID: 30340472 PMCID: PMC6194586 DOI: 10.1186/s12888-018-1913-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Studies have confirmed that the thalamus and the primary somatosensory cortex (SI) are associated with cognitive function. These two brain regions are closely related in structure and function. The interactions between SI and the thalamus are of crucial significance for the cognitive process. Patients with major depressive disorder (MDD) have significant cognitive impairment. Based on these observations, we used resting-state functional magnetic resonance imaging (rs-fMRI) to investigate whether there is an abnormality in the SI-thalamic functional connection in MDD. Furthermore, we explored the clinical symptoms related to this abnormality. METHODS We included 31 patients with first-episode major depressive disorder and 28 age-, gender-, and education-matched healthy controls (HC). The SI-thalamic functional connectivity was compared between the MDD and HC groups. The correlation analyses were performed between areas with abnormal connectivity and clinical characteristics. RESULTS Compared with healthy subjects, the MDD patients had enhanced functional connectivity between the thalamus and SI (p < 0.05, corrected). Brain areas with significantly different levels of connectivity had a negative correlation with the Assessment of Neuropsychological Status total score (r = - 0.383, p = 0.033), delayed memory score (r = - 0.376, p = 0.037) and two-digit continuous operation test score (r = - 0.369, p = 0.041) in MDD patients. CONCLUSIONS These results demonstrate that SI-thalamic functional connectivity is abnormal and associated with the core clinical symptoms in MDD. The SI-thalamic functional connectivity functions as a neurobiological feature and potential biomarker for MDD.
Collapse
Affiliation(s)
- Lijun Kang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China ,grid.263452.4Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Aixia Zhang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Ning Sun
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Penghong Liu
- grid.263452.4Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Chunxia Yang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Gaizhi Li
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Zhifen Liu
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Yanfang Wang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
7
|
Prieto A, Mayas J, Ballesteros S. Alpha and beta band correlates of haptic perceptual grouping: Results from an orientation detection task. PLoS One 2018; 13:e0201194. [PMID: 30024961 PMCID: PMC6053228 DOI: 10.1371/journal.pone.0201194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Behavioral and neurophysiological findings in vision suggest that perceptual grouping is not a unitary process and that different grouping principles have different processing requirements and neural correlates. The present study aims to examine whether the same occurs in the haptic modality using two grouping principles widely studied in vision, spatial proximity and texture similarity. We analyzed behavioral responses (accuracy and response times) and conducted an independent component analysis of brain oscillations in alpha and beta bands for haptic stimuli grouped by spatial proximity and texture similarity, using a speeded orientation detection task performed on a novel haptic device (MonHap). Behavioral results showed faster response times for patterns grouped by spatial proximity relative to texture similarity. Independent component clustering analysis revealed the activation of a bilateral network of sensorimotor and parietal areas while performing the task. We conclude that, as occurs in visual perception, grouping the elements of the haptic scene by means of their spatial proximity is faster than forming the same objects by means of texture similarity. In addition, haptic grouping seems to involve the activation of a network of widely distributed bilateral sensorimotor and parietal areas as reflected by the consistent event-related desynchronization found in alpha and beta bands.
Collapse
Affiliation(s)
- Antonio Prieto
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
- * E-mail:
| | - Julia Mayas
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
| | - Soledad Ballesteros
- Studies on Aging and Neurodegenerative Diseases Research Group, Departamento de Psicología Básica II, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, España
| |
Collapse
|
8
|
Somatotopic Map and Inter- and Intra-Digit Distance in Brodmann Area 2 by Pressure Stimulation. Sci Rep 2016; 6:30243. [PMID: 27452859 PMCID: PMC4958956 DOI: 10.1038/srep30243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/01/2016] [Indexed: 11/09/2022] Open
Abstract
The somatotopic representation of the tactile stimulation on the finger in the brain is an essential part of understanding the human somatosensory system as well as rehabilitation and other clinical therapies. Many studies have used vibrotactile stimulations and reported finger somatotopic representations in the Brodmann area 3 (BA 3). On the contrary, few studies investigated finger somatotopic representation using pressure stimulations. Therefore, the present study aimed to find a comprehensive somatotopic representation (somatotopic map and inter- and intra-digit distance) within BA 2 of humans that could describe tactile stimulations on different joints across the fingers by applying pressure stimulation to three joints-the first (p1), second (p2), and third (p3) joints-of four fingers (index, middle, ring, and little finger). Significant differences were observed in the inter-digit distance between the first joints (p1) of the index and little fingers, and between the third joints (p3) of the index and little fingers. In addition, a significant difference was observed in the intra-digit distance between p1 and p3 of the little finger. This study suggests that a somatotopic map and inter- and intra-digit distance could be found in BA 2 in response to pressure stimulation on finger joints.
Collapse
|
9
|
Yau JM, Kim SS, Thakur PH, Bensmaia SJ. Feeling form: the neural basis of haptic shape perception. J Neurophysiol 2016; 115:631-42. [PMID: 26581869 PMCID: PMC4752307 DOI: 10.1152/jn.00598.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex.
Collapse
Affiliation(s)
- Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas;
| | - Sung Soo Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | | | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Kim J, Müller KR, Chung YG, Chung SC, Park JY, Bülthoff HH, Kim SP. Distributed functions of detection and discrimination of vibrotactile stimuli in the hierarchical human somatosensory system. Front Hum Neurosci 2015; 8:1070. [PMID: 25653609 PMCID: PMC4301016 DOI: 10.3389/fnhum.2014.01070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
According to the hierarchical view of human somatosensory network, somatic sensory information is relayed from the thalamus to primary somatosensory cortex (S1), and then distributed to adjacent cortical regions to perform further perceptual and cognitive functions. Although a number of neuroimaging studies have examined neuronal activity correlated with tactile stimuli, comparatively less attention has been devoted toward understanding how vibrotactile stimulus information is processed in the hierarchical somatosensory cortical network. To explore the hierarchical perspective of tactile information processing, we studied two cases: (a) discrimination between the locations of finger stimulation; and (b) detection of stimulation against no stimulation on individual fingers, using both standard general linear model (GLM) and searchlight multi-voxel pattern analysis (MVPA) techniques. These two cases were studied on the same data set resulting from a passive vibrotactile stimulation experiment. Our results showed that vibrotactile stimulus locations on fingers could be discriminated from measurements of human functional magnetic resonance imaging (fMRI). In particular, it was in case (a) we observed activity in contralateral posterior parietal cortex (PPC) and supramarginal gyrus (SMG) but not in S1, while in case; (b) we found significant cortical activations in S1 but not in PPC and SMG. These discrepant observations suggest the functional specialization with regard to vibrotactile stimulus locations, especially, the hierarchical information processing in the human somatosensory cortical areas. Our findings moreover support the general understanding that S1 is the main sensory receptive area for the sense of touch, and adjacent cortical regions (i.e., PPC and SMG) are in charge of a higher level of processing and may thus contribute most for the successful classification between stimulated finger locations.
Collapse
Affiliation(s)
- Junsuk Kim
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
| | - Klaus-Robert Müller
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
- Machine Learning Group, Berlin Institute of TechnologyBerlin, Germany
| | - Yoon Gi Chung
- Department of Global Biomedical Engineering, IBS Center for Neuroscience Imaging Research, Sungkyunkwan UniversitySuwon, South Korea
| | - Soon-Cheol Chung
- School of Biomedical Engineering, Konkuk UniversityChungju, South Korea
| | - Jang-Yeon Park
- Department of Global Biomedical Engineering, IBS Center for Neuroscience Imaging Research, Sungkyunkwan UniversitySuwon, South Korea
| | - Heinrich H. Bülthoff
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological CyberneticsTübingen, Germany
| | - Sung-Phil Kim
- Department of Human and Systems Engineering, Ulsan National Institute of Science and TechnologyUlsan, South Korea
| |
Collapse
|
11
|
Rojas-Hortelano E, Concha L, de Lafuente V. The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape. J Neurophysiol 2014; 112:1894-902. [DOI: 10.1152/jn.00177.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects.
Collapse
Affiliation(s)
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Victor de Lafuente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
12
|
Katus T, Grubert A, Eimer M. Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory. Cereb Cortex 2014; 25:4697-703. [DOI: 10.1093/cercor/bhu153] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Voss P, Pike BG, Zatorre RJ. Evidence for both compensatory plastic and disuse atrophy-related neuroanatomical changes in the blind. ACTA ACUST UNITED AC 2014; 137:1224-40. [PMID: 24648057 DOI: 10.1093/brain/awu030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The behavioural and neurofunctional consequences of blindness are becoming increasingly well established, and it has become evident that the amount of reorganization is directly linked to the behavioural adaptations observed in the blind. However investigations of potential neuroanatomical changes resulting from blindness have yielded conflicting results as to the nature of the observed changes, because apparent loss of occipital tissue is difficult to reconcile with observed functional recruitment. To address this issue we used two complementary brain measures of neuroanatomy, voxel-based morphometry and magnetization transfer imaging, with the latter providing insight into myelin concentration through the magnetization transfer ratio. Both early and late blind, as well as sighted control subjects participated in the study and were tested on a series of auditory and tactile tasks to provide behavioural data that we could relate to neuroanatomy. The behavioural findings show that the early blind outperform the sighted in four of five tasks, whereas the late blind do so for only one. Moreover, correlations between the auditory and tactile performance of early blind individuals seem to indicate that they might benefit from some general-purpose compensatory plasticity mechanisms, as opposed to modality-specific ones. Neuroanatomical findings reveal three key findings: (i) occipital regions in the early blind have higher magnetization transfer ratio and grey matter concentration than in the sighted; (ii) behavioural performance of the blind is strongly predicted by magnetization transfer ratio and grey matter concentration in different occipital regions; and (iii) lower grey matter and white matter concentration was also found in other occipital areas in the early blind compared to the sighted. We thus show a clear dissociation between anatomical changes that are direct result of sensory deprivation and consequent atrophy, and those related to compensatory reorganization and behavioural adaptations. Moreover, the magnetization transfer ratio results also suggest that one mechanism for this reorganization may be related to increased myelination of intracortical neurons, or perhaps of fibres conveying information to and from remote locations.
Collapse
Affiliation(s)
- Patrice Voss
- 1 Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
14
|
van Ede F, de Lange FP, Maris E. Anticipation increases tactile stimulus processing in the ipsilateral primary somatosensory cortex. Cereb Cortex 2013; 24:2562-71. [PMID: 23645714 DOI: 10.1093/cercor/bht111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stimulus anticipation improves perception. To account for this improvement, we investigated how stimulus processing is altered by anticipation. In contrast to a large body of previous work, we employed a demanding perceptual task and investigated sensory responses that occur beyond early evoked activity in contralateral primary sensory areas: Stimulus-induced modulations of neural oscillations. For this, we recorded magnetoencephalography in 19 humans while they performed a cued tactile identification task involving the identification of either a proximal or a distal stimulation on the fingertips. We varied the cue-target interval between 0 and 1000 ms such that tactile targets occurred at various degrees of anticipation. This allowed us to investigate the influence of anticipation on stimulus processing in a parametric fashion. We observed that anticipation increases the stimulus-induced response (suppression of beta-band oscillations) originating from the ipsilateral primary somatosensory cortex. This occurs in the period in which the tactile memory trace is analyzed and is correlated with the anticipation-induced improvement in tactile perception. We propose that this ipsilateral response indicates distributed processing across bilateral primary sensory cortices, of which the extent increases with anticipation. This constitutes a new and potentially important mechanism contributing to perception and its improvement following anticipation.
Collapse
Affiliation(s)
- Freek van Ede
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Eric Maris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Li Hegner Y, Lee Y, Grodd W, Braun C. Comparing Tactile Pattern and Vibrotactile Frequency Discrimination: A Human fMRI Study. J Neurophysiol 2010; 103:3115-22. [DOI: 10.1152/jn.00940.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated to which extent the discrimination of tactile patterns and vibrotactile frequencies share common cortical areas. An adaptation paradigm has been used to identify cortical areas specific for processing particular features of tactile stimuli. Healthy right-handed subjects performed a delayed-match-to-sample (DMTS) task discriminating between pairs of tactile patterns or vibrotactile frequencies in separate functional MRI sessions. The tactile stimuli were presented to the right middle fingertip sequentially with a 5.5 s delay. Regions of interest (ROIs) were defined by cortical areas commonly activated in both tasks and those that showed differential activation between both tasks. Results showed recruitment of many common brain regions along the sensory motor pathway (such as bilateral somatosensory, premotor areas, and anterior insula) in both tasks. Three cortical areas, the right intraparietal sulcus (IPS), supramarginal gyrus (SMG)/parietal operculum (PO), and PO, were significantly more activated during the pattern than in the frequency task. Further BOLD time course analysis was performed in the ROIs. Significant BOLD adaptation was found in bilateral IPS, right anterior insula, and SMG/PO in the pattern task, whereas there was no significant BOLD adaptation found in the frequency task. In addition, the right hemisphere was found to be more dominant in the pattern than in the frequency task, which could be attributed to the differences between spatial (pattern) and temporal (frequency) processing. From the different spatio-temporal characteristics of BOLD activation in the pattern and frequency tasks, we concluded that different neuronal mechanisms are underlying the tactile spatial and temporal processing.
Collapse
Affiliation(s)
- Yiwen Li Hegner
- Institute of Medical Psychology and Behavioral Neurobiology,
- MEG Center,
| | - Ying Lee
- Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, and
| | - Wolfgang Grodd
- Section of MR Imaging of the CNS, Neuroradiology, University of Tübingen, Tubingen, Germany; and
| | - Christoph Braun
- Center for Mind/Brain Sciences and
- Department of Cognitive and Education Sciences, University of Trento, Trento, Italy
| |
Collapse
|
16
|
Picard D, Monnier C. Short-term memory for spatial configurations in the tactile modality: A comparison with vision. Memory 2009; 17:789-801. [PMID: 19606379 DOI: 10.1080/09658210903107838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Abstract
Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (< 200 ms from stimulus onset) is intimately related to subsequent WM performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.
Collapse
|