1
|
Zerweck L, Klose U, Roder C, Staber D, Renger E, Blazhenets G, Grundmann-Hauser K, Meyer PT, Ernemann U, Hauser TK. Measuring cerebrovascular reactivity with breath-hold fMRI in patients with Moyamoya angiopathy: MR perfusion based delay correction significantly improves agreement to [ 15O]water PET. Neuroradiology 2025:10.1007/s00234-025-03649-3. [PMID: 40411608 DOI: 10.1007/s00234-025-03649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 05/10/2025] [Indexed: 05/26/2025]
Abstract
PURPOSE Breath-hold functional MRI (bh-fMRI) is able to quantify cerebrovascular reactivity. Vessel stenoses can lead to delayed hemodynamic responses. We aimed to investigate whether delay correction improves the quality of bh-fMRI compared to the diagnostic standard [15O]water PET. METHODS The bh-fMRI data sets of 25 patients with Moyamoya Angiopathy were analyzed retrospectively without and with delay correction. Delay correction was calculated using time-to-peak (TTP) maps derived from dynamic susceptibility contrast (DSC) perfusion MRI. [15O]water PET maps and bh-fMRI maps without and with delay correction were presented blinded for delay correction to two neuroradiologists. The agreement between bh-fMRI without and with delay correction and [15O]water PET was independently and consensually rated on a 4-point-Likert scale (1 = poor, 2 = moderate, 3 = good, 4 = excellent) and compared with Wilcoxon signed-rank test. RESULTS The agreement between bh-fMRI and [15O]water PET without delay correction was good/excellent (median = 3, modus = 4), and improved significantly after delay correction with medium effect size (median = 4, modus = 4, z = -2.121, p = 0.034, r = 0.42). CONCLUSION Delay correction improves the quality of bh-fMRI and seems to be helpful in clinical practice.
Collapse
Affiliation(s)
- Leonie Zerweck
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Tuebingen, Germany.
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Constantin Roder
- Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Deborah Staber
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Emely Renger
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Grundmann-Hauser
- Institute for Medical Genetics and Applied Genomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Zvolanek KM, Moore JE, Jarvis K, Moum SJ, Bright MG. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. J Cereb Blood Flow Metab 2025; 45:746-764. [PMID: 39534950 PMCID: PMC11563552 DOI: 10.1177/0271678x241298588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n = 12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity (CVR) in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.
Collapse
Affiliation(s)
- Kristina M Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Jackson E Moore
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly Jarvis
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah J Moum
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Piccinini JI, Sanz Perl Y, Pallavicini C, Deco G, Kringelbach M, Nutt D, Carhart-Harris R, Timmermann C, Tagliazucchi E. Transient destabilization of whole brain dynamics induced by N,N-Dimethyltryptamine (DMT). Commun Biol 2025; 8:409. [PMID: 40069397 PMCID: PMC11897362 DOI: 10.1038/s42003-025-07576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/20/2025] [Indexed: 03/15/2025] Open
Abstract
The transition towards the brain state induced by psychedelic drugs is frequently neglected in favor of a static description of their acute effects. We use a time-dependent whole-brain model to reproduce large-scale brain dynamics measured with fMRI from 15 volunteers under 20 mg intravenous N,N-Dimethyltryptamine (DMT), a short-acting psychedelic. To capture its transient effects, we parametrize the proximity to a global bifurcation using a pharmacokinetic equation. Simulated perturbations reveal a transient of heightened reactivity concentrated in fronto-parietal regions and visual cortices, correlated with serotonin 5HT2a receptor density, the primary target of psychedelics. These advances suggest a mechanism to explain key features of the psychedelic state and also predicts that the temporal evolution of these features aligns with pharmacokinetics. Our results contribute to understanding how psychedelics introduce a transient where minimal perturbations can achieve a maximal effect, shedding light on how short psychedelic episodes may extend an overarching influence over time.
Collapse
Affiliation(s)
- Juan Ignacio Piccinini
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, and CONICET - Universidad de Buenos Aires, Instituto de Física Aplicada e Interdisciplinaria (INFINA), Buenos Aires, Argentina.
| | - Yonatan Sanz Perl
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, and CONICET - Universidad de Buenos Aires, Instituto de Física Aplicada e Interdisciplinaria (INFINA), Buenos Aires, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carla Pallavicini
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, and CONICET - Universidad de Buenos Aires, Instituto de Física Aplicada e Interdisciplinaria (INFINA), Buenos Aires, Argentina
- Integrative Neuroscience and Cognition Center, CNRS, Université Paris Cité, Paris, France
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Enzo Tagliazucchi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, and CONICET - Universidad de Buenos Aires, Instituto de Física Aplicada e Interdisciplinaria (INFINA), Buenos Aires, Argentina.
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile.
| |
Collapse
|
4
|
Nanayakkara ND, Meusel LA, Anderson ND, Chen JJ. Estimation of cerebrovascular reactivity amplitude and lag using breath-holding fMRI and the global BOLD signal: Application in diabetes and hypertension. J Cereb Blood Flow Metab 2025; 45:459-475. [PMID: 39224949 PMCID: PMC11572012 DOI: 10.1177/0271678x241270420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
In this work, we demonstrate a data-driven approach for estimating cerebrovascular reactivity (CVR) amplitude and lag from breathhold (BH) fMRI data alone. Our approach employs a frequency-domain approach that is independent of external recordings. CVR amplitude is estimated from the BOLD frequency spectrum and CVR lag is estimated from the Fourier phase using the global-mean BOLD signal as reference. Unlike referencing to external recordings, these lags are specific to the brain. We demonstrated our method in detecting regional CVR amplitude and lag differences across healthy (CTL), hypertensive (HT) and hypertension-plus-type-2-diabetes (HT + DM) groups of similar ages and sex ratios, with a total N of 49. We found CVR amplitude to be significantly higher in CTL compared to HT + DM, with minimal difference between CTL and HT. Also, voxelwise CVR lag estimated in the Fourier domain is a more sensitive marker of vascular dysfunction than CVR amplitude. CVR lag in HT is significantly shorter than in CTL, with minimal difference between CTL and HT + DM. Our results support the importance of joint CVR amplitude and lag assessments in clinical applications.
Collapse
Affiliation(s)
- Nuwan D Nanayakkara
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
| | - Liesel-Ann Meusel
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
| | - Nicole D Anderson
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Zvolanek KM, Moore JE, Jarvis K, Moum SJ, Bright MG. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590312. [PMID: 38746187 PMCID: PMC11092525 DOI: 10.1101/2024.04.26.590312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n=12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.
Collapse
Affiliation(s)
- Kristina M. Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Jackson E. Moore
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly Jarvis
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah J. Moum
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Li YT, Lee HJ, Lin FH. Functional magnetic resonance imaging signal has sub-second temporal accuracy. J Cereb Blood Flow Metab 2024; 44:1643-1654. [PMID: 39234985 PMCID: PMC11418691 DOI: 10.1177/0271678x241241136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 09/06/2024]
Abstract
Neuronal activation sequence information is essential for understanding brain functions. Extracting such timing information from blood-oxygenation-level-dependent functional magnetic resonance imaging (fMRI) signals is confounded by local cerebral vascular reactivity (CVR), which varies across brain locations. Thus, detecting neuronal synchrony as well as inferring inter-regional causal modulation using fMRI signals can be biased. Here we used fast fMRI measurements sampled at 10 Hz to measure the fMRI latency difference between visual and sensorimotor areas when participants engaged in a visuomotor task. The regional fMRI timing was calibrated by subtracting the CVR latency measured by a breath-holding task. After CVR calibration, the fMRI signal at the lateral geniculate nucleus (LGN) preceded that at the visual cortex by 496 ms, followed by the fMRI signal at the sensorimotor cortex with a latency of 464 ms. Sequential LGN, visual, and sensorimotor cortex activations were found in each participant after the CVR calibration. These inter-regional fMRI timing differences across and within participants were more closely related to the reaction time after the CVR calibration. Our results suggested the feasibility of mapping brain activity using fMRI with accuracy in hundreds of milliseconds.
Collapse
Affiliation(s)
- Yi-Tien Li
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ju Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00057. [PMID: 39328846 PMCID: PMC11426116 DOI: 10.1162/imag_a_00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired blood oxygenation level dependent (BOLD) signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example, in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
8
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549746. [PMID: 37503125 PMCID: PMC10370165 DOI: 10.1101/2023.07.19.549746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired BOLD signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
9
|
Rangaprakash D, David O, Barry RL, Deshpande G. Comparison of hemodynamic response functions obtained from resting-state functional MRI and invasive electrophysiological recordings in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530359. [PMID: 37961471 PMCID: PMC10634675 DOI: 10.1101/2023.02.27.530359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Resting-state functional MRI (rs-fMRI) is a popular technology that has enriched our understanding of brain and spinal cord functioning, including how different regions communicate (connectivity). But fMRI is an indirect measure of neural activity capturing blood hemodynamics. The hemodynamic response function (HRF) interfaces between the unmeasured neural activity and measured fMRI time series. The HRF is variable across brain regions and individuals, and is modulated by non-neural factors. Ignoring this HRF variability causes errors in FC estimates. Hence, it is crucial to reliably estimate the HRF from rs-fMRI data. Robust techniques have emerged to estimate the HRF from fMRI time series. Although such techniques have been validated non-invasively using simulated and empirical fMRI data, thorough invasive validation using simultaneous electrophysiological recordings, the gold standard, has been elusive. This report addresses this gap in the literature by comparing HRFs derived from invasive intracranial electroencephalogram recordings with HRFs estimated from simultaneously acquired fMRI data in six epileptic rats. We found that the HRF shape parameters (HRF amplitude, latency and width) were not significantly different (p>0.05) between ground truth and estimated HRFs. In the single pathological region, the HRF width was marginally significantly different (p=0.03). Our study provides preliminary invasive validation for the efficacy of the HRF estimation technique in reliably estimating the HRF non-invasively from rs-fMRI data directly. This has a notable impact on rs-fMRI connectivity studies, and we recommend that HRF deconvolution be performed to minimize HRF variability and improve connectivity estimates.
Collapse
Affiliation(s)
- D Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Olivier David
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neuroscience, F-38000, Grenoble, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL, USA
| |
Collapse
|
10
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. eLife 2023; 12:e86453. [PMID: 37565644 PMCID: PMC10506795 DOI: 10.7554/elife.86453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here, we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, because differences in fMRI frequency content can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
- Sydney M Bailes
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Daniel EP Gomez
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
11
|
Rangaprakash D, Barry RL, Deshpande G. The confound of hemodynamic response function variability in human resting-state functional MRI studies. Front Neurosci 2023; 17:934138. [PMID: 37521709 PMCID: PMC10375034 DOI: 10.3389/fnins.2023.934138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/07/2023] [Indexed: 08/01/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an indirect measure of neural activity with the hemodynamic response function (HRF) coupling it with unmeasured neural activity. The HRF, modulated by several non-neural factors, is variable across brain regions, individuals and populations. Yet, a majority of human resting-state fMRI connectivity studies continue to assume a non-variable HRF. In this article, with supportive prior evidence, we argue that HRF variability cannot be ignored as it substantially confounds within-subject connectivity estimates and between-subjects connectivity group differences. We also discuss its clinical relevance with connectivity impairments confounded by HRF aberrations in several disorders. We present limited data on HRF differences between women and men, which resulted in a 15.4% median error in functional connectivity estimates in a group-level comparison. We also discuss the implications of HRF variability for fMRI studies in the spinal cord. There is a need for more dialogue within the community on the HRF confound, and we hope that our article is a catalyst in the process.
Collapse
Affiliation(s)
- D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Birmingham, AL, United States
- Key Laboratory for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Gong J, Stickland RC, Bright MG. Hemodynamic timing in resting-state and breathing-task BOLD fMRI. Neuroimage 2023; 274:120120. [PMID: 37072074 PMCID: PMC10208394 DOI: 10.1016/j.neuroimage.2023.120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/20/2023] Open
Abstract
The blood flow response to a vasoactive stimulus demonstrates regional heterogeneity across both the healthy brain and in cerebrovascular pathology. The timing of a regional hemodynamic response is emerging as an important biomarker of cerebrovascular dysfunction, as well as a confound within fMRI analyses. Previous research demonstrated that hemodynamic timing is more robustly characterized when a larger systemic vascular response is evoked by a breathing challenge, compared to when only spontaneous fluctuations in vascular physiology are present (i.e., in resting-state data). However, it is not clear whether hemodynamic delays in these two conditions are physiologically interchangeable, and how methodological signal-to-noise factors may limit their agreement. To address this, we generated whole-brain maps of hemodynamic delays in nine healthy adults. We assessed the agreement of voxel-wise gray matter (GM) hemodynamic delays between two conditions: resting-state and breath-holding. We found that delay values demonstrated poor agreement when considering all GM voxels, but increasingly greater agreement when limiting analyses to voxels showing strong correlation with the GM mean time-series. Voxels showing the strongest agreement with the GM mean time-series were primarily located near large venous vessels, however these voxels explain some, but not all, of the observed agreement in timing. Increasing the degree of spatial smoothing of the fMRI data enhanced the correlation between individual voxel time-series and the GM mean time-series. These results suggest that signal-to-noise factors may be limiting the accuracy of voxel-wise timing estimates and hence their agreement between the two data segments. In conclusion, caution must be taken when using voxel-wise delay estimates from resting-state and breathing-task data interchangeably, and additional work is needed to evaluate their relative sensitivity and specificity to aspects of vascular physiology and pathology.
Collapse
Affiliation(s)
- Jingxuan Gong
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States of America.
| | - Rachael C Stickland
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Molly G Bright
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States of America; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
13
|
Greene AS, Horien C, Barson D, Scheinost D, Constable RT. Why is everyone talking about brain state? Trends Neurosci 2023; 46:508-524. [PMID: 37164869 PMCID: PMC10330476 DOI: 10.1016/j.tins.2023.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
The rapid and coordinated propagation of neural activity across the brain provides the foundation for complex behavior and cognition. Technical advances across neuroscience subfields have advanced understanding of these dynamics, but points of convergence are often obscured by semantic differences, creating silos of subfield-specific findings. In this review we describe how a parsimonious conceptualization of brain state as the fundamental building block of whole-brain activity offers a common framework to relate findings across scales and species. We present examples of the diverse techniques commonly used to study brain states associated with physiology and higher-order cognitive processes, and discuss how integration across them will enable a more comprehensive and mechanistic characterization of the neural dynamics that are crucial to survival but are disrupted in disease.
Collapse
Affiliation(s)
- Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Daniel Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Zvolanek KM, Moia S, Dean JN, Stickland RC, Caballero-Gaudes C, Bright MG. Comparing end-tidal CO 2, respiration volume per time (RVT), and average gray matter signal for mapping cerebrovascular reactivity amplitude and delay with breath-hold task BOLD fMRI. Neuroimage 2023; 272:120038. [PMID: 36958618 DOI: 10.1016/j.neuroimage.2023.120038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical development and aging processes. A robust and widely implemented method to map CVR involves using a breath-hold task during a BOLD fMRI scan. Recording end-tidal CO2 (PETCO2) changes during the breath-hold task is recommended to be used as a reference signal for modeling CVR amplitude in standard units (%BOLD/mmHg) and CVR delay in seconds. However, obtaining reliable PETCO2 recordings requires equipment and task compliance that may not be achievable in all settings. To address this challenge, we investigated two alternative reference signals to map CVR amplitude and delay in a lagged general linear model (lagged-GLM) framework: respiration volume per time (RVT) and average gray matter BOLD response (GM-BOLD). In 8 healthy adults with multiple scan sessions, we compare spatial agreement of CVR maps from RVT and GM-BOLD to those generated with PETCO2. We define a threshold to determine whether a PETCO2 recording has "sufficient" quality for CVR mapping and perform these comparisons in 16 datasets with sufficient PETCO2 and 6 datasets with insufficient PETCO2. When PETCO2 quality is sufficient, both RVT and GM-BOLD produce CVR amplitude maps that are nearly identical to those from PETCO2 (after accounting for differences in scale), with the caveat they are not in standard units to facilitate between-group comparisons. CVR delays are comparable to PETCO2 with an RVT regressor but may be underestimated with the average GM-BOLD regressor. Importantly, when PETCO2 quality is insufficient, RVT and GM-BOLD CVR recover reasonable CVR amplitude and delay maps, provided the participant attempted the breath-hold task. Therefore, our framework offers a solution for achieving high quality CVR maps in both retrospective and prospective studies where sufficient PETCO2 recordings are not available and especially in populations where obtaining reliable measurements is a known challenge (e.g., children). Our results have the potential to improve the accessibility of CVR mapping and to increase the prevalence of this promising metric of vascular health.
Collapse
Affiliation(s)
- Kristina M Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA.
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain; Medical Imaging Processing Lab (MIP:Lab), Neuro-X institute, EPFL, Geneva, Switzerland
| | - Joshua N Dean
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Rachael C Stickland
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Molly G Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
15
|
Marxen M, Graff JE, Riedel P, Smolka MN. Observing cognitive processes in time through functional MRI model comparison. Hum Brain Mapp 2023; 44:1359-1370. [PMID: 36288248 PMCID: PMC9921218 DOI: 10.1002/hbm.26114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
The temporal specificity of functional magnetic resonance imaging (fMRI) is limited by a sluggish and locally variable hemodynamic response trailing the neural activity by seconds. Here, we demonstrate for an attention capture paradigm that it is, never the less, possible to extract information about the relative timing of regional brain activity during cognitive processes on the scale of 100 ms by comparing alternative signal models representing early versus late activation. We demonstrate that model selection is not driven by confounding regional differences in hemodynamic delay. We show, including replication, that the activity in the dorsal anterior insula is an early signal predictive of behavioral performance, while amygdala and ventral anterior insula signals are not. This specific finding provides new insights into how the brain assigns salience to stimuli and emphasizes the role of the dorsal anterior insula in this context. The general analytic approach, named "Cognitive Timing through Model Comparison" (CTMC), offers an exciting and novel method to identify functional brain subunits and their causal interactions.
Collapse
Affiliation(s)
- Michael Marxen
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Johanna E Graff
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Philipp Riedel
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525528. [PMID: 36747821 PMCID: PMC9900794 DOI: 10.1101/2023.01.25.525528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, as differences can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
| | - Daniel E. P. Gomez
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| |
Collapse
|
17
|
Setzer B, Fultz NE, Gomez DEP, Williams SD, Bonmassar G, Polimeni JR, Lewis LD. A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state. Nat Commun 2022; 13:5442. [PMID: 36114170 PMCID: PMC9481532 DOI: 10.1038/s41467-022-33010-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Awakening from sleep reflects a profound transformation in neural activity and behavior. The thalamus is a key controller of arousal state, but whether its diverse nuclei exhibit coordinated or distinct activity at transitions in behavioral arousal state is unknown. Using fast fMRI at ultra-high field (7 Tesla), we measured sub-second activity across thalamocortical networks and within nine thalamic nuclei to delineate these dynamics during spontaneous transitions in behavioral arousal state. We discovered a stereotyped sequence of activity across thalamic nuclei and cingulate cortex that preceded behavioral arousal after a period of inactivity, followed by widespread deactivation. These thalamic dynamics were linked to whether participants subsequently fell back into unresponsiveness, with unified thalamic activation reflecting maintenance of behavior. These results provide an outline of the complex interactions across thalamocortical circuits that orchestrate behavioral arousal state transitions, and additionally, demonstrate that fast fMRI can resolve sub-second subcortical dynamics in the human brain.
Collapse
Affiliation(s)
- Beverly Setzer
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Nina E Fultz
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Daniel E P Gomez
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
18
|
Veldhuizen MG, Cecchetto C, Fjaeldstad AW, Farruggia MC, Hartig R, Nakamura Y, Pellegrino R, Yeung AWK, Fischmeister FPS. Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges. Front Syst Neurosci 2022; 16:885304. [PMID: 35707745 PMCID: PMC9190244 DOI: 10.3389/fnsys.2022.885304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023] Open
Abstract
Ecological chemosensory stimuli almost always evoke responses in more than one sensory system. Moreover, any sensory processing takes place along a hierarchy of brain regions. So far, the field of chemosensory neuroimaging is dominated by studies that examine the role of brain regions in isolation. However, to completely understand neural processing of chemosensation, we must also examine interactions between regions. In general, the use of connectivity methods has increased in the neuroimaging field, providing important insights to physical sensory processing, such as vision, audition, and touch. A similar trend has been observed in chemosensory neuroimaging, however, these established techniques have largely not been rigorously applied to imaging studies on the chemical senses, leaving network insights overlooked. In this article, we first highlight some recent work in chemosensory connectomics and we summarize different connectomics techniques. Then, we outline specific challenges for chemosensory connectome neuroimaging studies. Finally, we review best practices from the general connectomics and neuroimaging fields. We recommend future studies to develop or use the following methods we perceive as key to improve chemosensory connectomics: (1) optimized study designs, (2) reporting guidelines, (3) consensus on brain parcellations, (4) consortium research, and (5) data sharing.
Collapse
Affiliation(s)
- Maria G. Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padova, Padua, Italy
| | - Alexander W. Fjaeldstad
- Flavour Clinic, Department of Otorhinolaryngology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Yuko Nakamura
- The Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Andy W. K. Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Florian Ph. S. Fischmeister
- Institute of Psychology, University of Graz, Graz, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
19
|
Yan W, Palaniyappan L, Liddle PF, Rangaprakash D, Wei W, Deshpande G. Characterization of Hemodynamic Alterations in Schizophrenia and Bipolar Disorder and Their Effect on Resting-State fMRI Functional Connectivity. Schizophr Bull 2022; 48:695-711. [PMID: 34951473 PMCID: PMC9077436 DOI: 10.1093/schbul/sbab140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Common and distinct neural bases of Schizophrenia (SZ) and bipolar disorder (BP) have been explored using resting-state fMRI (rs-fMRI) functional connectivity (FC). However, fMRI is an indirect measure of neural activity, which is a convolution of the hemodynamic response function (HRF) and latent neural activity. The HRF, which models neurovascular coupling, varies across the brain within and across individuals, and is altered in many psychiatric disorders. Given this background, this study had three aims: quantifying HRF aberrations in SZ and BP, measuring the impact of such HRF aberrations on FC group differences, and exploring the genetic basis of HRF aberrations. We estimated voxel-level HRFs by deconvolving rs-fMRI data obtained from SZ (N = 38), BP (N = 19), and matched healthy controls (N = 35). We identified HRF group differences (P < .05, FDR corrected) in many regions previously implicated in SZ/BP, with mediodorsal, habenular, and central lateral nuclei of the thalamus exhibiting HRF differences in all pairwise group comparisons. Thalamus seed-based FC analysis revealed that ignoring HRF variability results in false-positive and false-negative FC group differences, especially in insula, superior frontal, and lingual gyri. HRF was associated with DRD2 gene expression (P < .05, 1.62 < |Z| < 2.0), as well as with medication dose (P < .05, 1.75 < |Z| < 3.25). In this first study to report HRF aberrations in SZ and BP, we report the possible modulatory effect of dopaminergic signalling on HRF, and the impact that HRF variability can have on FC studies in clinical samples. To mitigate the impact of HRF variability on FC group differences, we suggest deconvolution during data preprocessing.
Collapse
Affiliation(s)
- Wenjing Yan
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, USA
- Department of Information Management, School of E-business and Logistics, Beijing Technology and Business University, Beijing, China
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Peter F Liddle
- Centre for Translational Neuroimaging, Division of Mental Health and Clinical Neuroscience, Institute of Mental Health, University of Nottingham, UK
| | - D Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Wei
- Department of Information Management, School of E-business and Logistics, Beijing Technology and Business University, Beijing, China
| | - Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, USA
- Department of Psychological Sciences, Auburn University, Auburn, AL
- Alabama Advanced Imaging Consortium, Birmingham, AL
- Center for Neuroscience, Auburn University, AL, USA
- School of Psychology, Capital Normal University, Beijing, China
- Key Laboratory for Learning and Cognition, Capital Normal University, Beijing, China
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Huotari N, Tuunanen J, Raitamaa L, Raatikainen V, Kananen J, Helakari H, Tuovinen T, Järvelä M, Kiviniemi V, Korhonen V. Cardiovascular Pulsatility Increases in Visual Cortex Before Blood Oxygen Level Dependent Response During Stimulus. Front Neurosci 2022; 16:836378. [PMID: 35185462 PMCID: PMC8853630 DOI: 10.3389/fnins.2022.836378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
The physiological pulsations that drive tissue fluid homeostasis are not well characterized during brain activation. Therefore, we used fast magnetic resonance encephalography (MREG) fMRI to measure full band (0–5 Hz) blood oxygen level-dependent (BOLDFB) signals during a dynamic visual task in 23 subjects. This revealed brain activity in the very low frequency (BOLDVLF) as well as in cardiac and respiratory bands. The cardiovascular hemodynamic envelope (CHe) signal correlated significantly with the visual BOLDVLF response, considered as an independent signal source in the V1-V2 visual cortices. The CHe preceded the canonical BOLDVLF response by an average of 1.3 (± 2.2) s. Physiologically, the observed CHe signal could mark increased regional cardiovascular pulsatility following vasodilation.
Collapse
Affiliation(s)
- Niko Huotari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- *Correspondence: Niko Huotari,
| | - Johanna Tuunanen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Lauri Raitamaa
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Ville Raatikainen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Janne Kananen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Heta Helakari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Timo Tuovinen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Matti Järvelä
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| |
Collapse
|
21
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
22
|
Dowdle LT, Ghose G, Chen CCC, Ugurbil K, Yacoub E, Vizioli L. Statistical power or more precise insights into neuro-temporal dynamics? Assessing the benefits of rapid temporal sampling in fMRI. Prog Neurobiol 2021; 207:102171. [PMID: 34492308 DOI: 10.1016/j.pneurobio.2021.102171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Functional magnetic resonance imaging (fMRI), a non-invasive and widely used human neuroimaging method, is most known for its spatial precision. However, there is a growing interest in its temporal sensitivity. This is despite the temporal blurring of neuronal events by the blood oxygen level dependent (BOLD) signal, the peak of which lags neuronal firing by 4-6 seconds. Given this, the goal of this review is to answer a seemingly simple question - "What are the benefits of increased temporal sampling for fMRI?". To answer this, we have combined fMRI data collected at multiple temporal scales, from 323 to 1000 milliseconds, with a review of both historical and contemporary temporal literature. After a brief discussion of technological developments that have rekindled interest in temporal research, we next consider the potential statistical and methodological benefits. Most importantly, we explore how fast fMRI can uncover previously unobserved neuro-temporal dynamics - effects that are entirely missed when sampling at conventional 1 to 2 second rates. With the intrinsic link between space and time in fMRI, this temporal renaissance also delivers improvements in spatial precision. Far from producing only statistical gains, the array of benefits suggest that the continued temporal work is worth the effort.
Collapse
Affiliation(s)
- Logan T Dowdle
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States; Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, United States.
| | - Geoffrey Ghose
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, United States
| | - Clark C C Chen
- Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States
| | - Luca Vizioli
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States.
| |
Collapse
|
23
|
Stickland RC, Zvolanek KM, Moia S, Ayyagari A, Caballero-Gaudes C, Bright MG. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function. Neuroimage 2021; 239:118306. [PMID: 34175427 PMCID: PMC8552969 DOI: 10.1016/j.neuroimage.2021.118306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent (BOLD) response to a CO2 pressure change, is a useful metric of cerebrovascular function. Both the amplitude and the timing (hemodynamic lag) of the CVR response can bring insight into the nature of a cerebrovascular pathology and aid in understanding noise confounds when using functional Magnetic Resonance Imaging (fMRI) to study neural activity. This research assessed a practical modification to a typical resting-state fMRI protocol, to improve the characterization of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting-state data segments, and in data segments which added a 2–3 minute breathing task to the start of a resting-state segment. Two different breathing tasks were used to induce fluctuations in arterial CO2 pressure: a breath-hold task to induce hypercapnia (CO2 increase) and a cued deep breathing task to induce hypocapnia (CO2 decrease). Our analysis produced voxel-wise estimates of the amplitude (CVR) and timing (lag) of the BOLD-fMRI response to CO2 by systematically shifting the CO2 regressor in time to optimize the model fit. This optimization inherently increases gray matter CVR values and fit statistics. The inclusion of a simple breathing task, compared to a resting-state scan only, increases the number of voxels in the brain that have a significant relationship between CO2 and BOLD-fMRI signals, and improves our confidence in the plausibility of voxel-wise CVR and hemodynamic lag estimates. We demonstrate the clinical utility and feasibility of this protocol in an incidental finding of Moyamoya disease, and explore the possibilities and challenges of using this protocol in younger populations. This hybrid protocol has direct applications for CVR mapping in both research and clinical settings and wider applications for fMRI denoising and interpretation.
Collapse
Affiliation(s)
- Rachael C Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Kristina M Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain; University of the Basque Country EHU/UPV, Donostia, Gipuzkoa, Spain
| | - Apoorva Ayyagari
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | | | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
24
|
Saarimäki H. Naturalistic Stimuli in Affective Neuroimaging: A Review. Front Hum Neurosci 2021; 15:675068. [PMID: 34220474 PMCID: PMC8245682 DOI: 10.3389/fnhum.2021.675068] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Naturalistic stimuli such as movies, music, and spoken and written stories elicit strong emotions and allow brain imaging of emotions in close-to-real-life conditions. Emotions are multi-component phenomena: relevant stimuli lead to automatic changes in multiple functional components including perception, physiology, behavior, and conscious experiences. Brain activity during naturalistic stimuli reflects all these changes, suggesting that parsing emotion-related processing during such complex stimulation is not a straightforward task. Here, I review affective neuroimaging studies that have employed naturalistic stimuli to study emotional processing, focusing especially on experienced emotions. I argue that to investigate emotions with naturalistic stimuli, we need to define and extract emotion features from both the stimulus and the observer.
Collapse
Affiliation(s)
- Heini Saarimäki
- Human Information Processing Laboratory, Faculty of Social Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
25
|
Callara AL, Sebastiani L, Vanello N, Scilingo EP, Greco A. Parasympathetic-Sympathetic Causal Interactions Assessed by Time-Varying Multivariate Autoregressive Modeling of Electrodermal Activity and Heart-Rate-Variability. IEEE Trans Biomed Eng 2021; 68:3019-3028. [PMID: 33617448 DOI: 10.1109/tbme.2021.3060867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Most of the bodily functions are regulated by multiple interactions between the parasympathetic (PNS) and sympathetic (SNS) nervous system. In this study, we propose a novel framework to quantify the causal flow of information between PNS and SNS through the analysis of heart rate variability (HRV) and electrodermal activity (EDA) signals. METHODS Our method is based on a time-varying (TV) multivariate autoregressive model of EDA and HRV time-series and incorporates physiologically inspired assumptions by estimating the Directed Coherence in a specific frequency range. The statistical significance of the observed interactions is assessed by a bootstrap procedure purposely developed to infer causalities in the presence of both TV model coefficients and TV model residuals (i.e., heteroskedasticity). We tested our method on two different experiments designed to trigger a sympathetic response, i.e., a hand-grip task (HG) and a mental-computation task (MC). RESULTS Our results show a parasympathetic driven interaction in the resting state, which is consistent across different studies. The onset of the stressful stimulation triggers a cascade of events characterized by the presence or absence of the PNS-SNS interaction and changes in the directionality. Despite similarities between the results related to the two tasks, we reveal differences in the dynamics of the PNS-SNS interaction, which might reflect different regulatory mechanisms associated with different stressors. CONCLUSION We estimate causal coupling between PNS and SNS through MVAR modeling of EDA and HRV time-series. SIGNIFICANCE Our results suggest promising future applicability to investigate more complex contexts such as affective and pathological scenarios.
Collapse
|
26
|
Altered cerebrovascular reactivity due to respiratory rate and breath holding: a BOLD-fMRI study on healthy adults. Brain Struct Funct 2021; 226:1229-1239. [PMID: 33598760 DOI: 10.1007/s00429-021-02236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
Cerebrovascular reactivity (CVR) is of great significance for the treatment and prevention of cerebrovascular diseases. CVR can be mapped using the blood oxygenation level-dependent (BOLD) signal of fMRI. Breath holding (BH) is a reliable method to produce the desired increase in arterial CO2, while its application in clinical research is limited due to subject's compliance and variability. BH task with variable respiratory rates could allow more flexibility in clinical populations. In this study, 50 healthy volunteers were scanned for end-inspiration BH tasks with three different respiration rates. For the three respiratory rates BH tasks, the CVR was estimated based on the BOLD signal and general linear model (GLM) separately. Specifically, the extra time delay was considered for the hemodynamic response function, and the optimal delay was estimated for each voxel. To measure CVR in grey matter, BOLD signals of end-inspiration BH were used as regressors in general linear models to quantify their impact on CVR. This was performed for regions and voxels. Systematic differences were observed between the three end-inspiratory breathing rates. The greatest increase in activation intensity was found in fast breathing followed by self-paced and slow breathing. We conclude that the BH task of variable respiratory rates allows for CVR measurement, making breath-holding challenges more flexible and appropriate for routine practice.
Collapse
|
27
|
Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol 2021; 11:608475. [PMID: 33536935 PMCID: PMC7848198 DOI: 10.3389/fphys.2020.608475] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ability of vessels to alter their caliber in response to vasoactive factors, by means of dilating or constricting, in order to increase or decrease regional cerebral blood flow (CBF). Importantly, CVR may provide a sensitive biomarker for pathologies where vasculature is compromised. Furthermore, the spatiotemporal dynamics of CVR observed in healthy subjects, reflecting regional differences in cerebral vascular tone and response, may also be important in functional MRI studies based on neurovascular coupling mechanisms. Assessment of CVR is usually based on the use of a vasoactive stimulus combined with a CBF measurement technique. Although transcranial Doppler ultrasound has been frequently used to obtain global flow velocity measurements, MRI techniques are being increasingly employed for obtaining CBF maps. For the vasoactive stimulus, vasodilatory hypercapnia is usually induced through the manipulation of respiratory gases, including the inhalation of increased concentrations of carbon dioxide. However, most of these methods require an additional apparatus and complex setups, which not only may not be well-tolerated by some populations but are also not widely available. For these reasons, strategies based on voluntary breathing fluctuations without the need for external gas challenges have been proposed. These include the task-based methodologies of breath holding and paced deep breathing, as well as a new generation of methods based on spontaneous breathing fluctuations during resting-state. Despite the multitude of alternatives to gas challenges, existing literature lacks definitive conclusions regarding the best practices for the vasoactive modulation and associated analysis protocols. In this work, we perform an extensive review of CVR mapping techniques based on MRI and CO2 variations without gas challenges, focusing on the methodological aspects of the breathing protocols and corresponding data analysis. Finally, we outline a set of practical guidelines based on generally accepted practices and available data, extending previous reports and encouraging the wider application of CVR mapping methodologies in both clinical and academic MRI settings.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
29
|
Salas JA, Bayrak RG, Huo Y, Chang C. Reconstruction of respiratory variation signals from fMRI data. Neuroimage 2020; 225:117459. [PMID: 33129927 PMCID: PMC7868104 DOI: 10.1016/j.neuroimage.2020.117459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Functional MRI signals can be heavily influenced by systemic physiological processes in addition to local neural activity. For example, widespread hemodynamic fluctuations across the brain have been found to correlate with natural, low-frequency variations in the depth and rate of breathing over time. Acquiring peripheral measures of respiration during fMRI scanning not only allows for modeling such effects in fMRI analysis, but also provides valuable information for interrogating brain-body physiology. However, physiological recordings are frequently unavailable or have insufficient quality. Here, we propose a computational technique for reconstructing continuous low-frequency respiration volume (RV) fluctuations from fMRI data alone. We evaluate the performance of this approach across different fMRI preprocessing strategies. Further, we demonstrate that the predicted RV signals can account for similar patterns of temporal variation in resting-state fMRI data compared to measured RV fluctuations. These findings indicate that fluctuations in respiration volume can be extracted from fMRI alone, in the common scenario of missing or corrupted respiration recordings. The results have implications for enriching a large volume of existing fMRI datasets through retrospective addition of respiratory variations information.
Collapse
Affiliation(s)
- Jorge A Salas
- Department of Electrical Engineering and Computer Science, Vanderbilt University, USA.
| | - Roza G Bayrak
- Department of Electrical Engineering and Computer Science, Vanderbilt University, USA
| | - Yuankai Huo
- Department of Electrical Engineering and Computer Science, Vanderbilt University, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, USA; Department of Biomedical Engineering, Vanderbilt University, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA.
| |
Collapse
|
30
|
Lund MJ, Alnæs D, Schwab S, van der Meer D, Andreassen OA, Westlye LT, Kaufmann T. Differences in directed functional brain connectivity related to age, sex and mental health. Hum Brain Mapp 2020; 41:4173-4186. [PMID: 32613721 PMCID: PMC7502836 DOI: 10.1002/hbm.25116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Functional interconnections between brain regions define the "connectome" which is of central interest for understanding human brain function. Resting-state functional magnetic resonance (rsfMRI) work has revealed changes in static connectivity related to age, sex, cognitive abilities and psychiatric symptoms, yet little is known how these factors may alter the information flow. The commonly used approach infers functional brain connectivity using stationary coefficients yielding static estimates of the undirected connection strength between brain regions. Dynamic graphical models (DGMs) are a multivariate model with dynamic coefficients reflecting directed temporal associations between nodes, and can yield novel insight into directed functional connectivity. Here, we leveraged this approach to test for associations between edge-wise estimates of direction flow across the functional connectome and age, sex, intellectual abilities and mental health. We applied DGM to investigate patterns of information flow in data from 984 individuals from the Human Connectome Project (HCP) and 10,249 individuals from the UK Biobank. Our analysis yielded patterns of directed connectivity in independent HCP and UK Biobank data similar to those previously reported, including that the cerebellum consistently receives information from other networks. We show robust associations between information flow and age and sex for several connections, with strongest effects of age observed in the sensorimotor network. Visual, auditory and sensorimotor nodes were also linked to mental health. Our findings support the use of DGM as a measure of directed connectivity in rsfMRI data and provide new insight into the shaping of the connectome during aging.
Collapse
Affiliation(s)
- Martina J. Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- Bjørknes University CollegeOsloNorway
| | - Simon Schwab
- Center for Reproducible Science (CRS) & Epidemiology, Biostatistics and Prevention Institute (EBPI)University of ZürichZurichSwitzerland
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for neurodevelopmental disorders, University of OsloOsloNorway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for neurodevelopmental disorders, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| |
Collapse
|
31
|
Archila-Meléndez ME, Sorg C, Preibisch C. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest. Neuroimage 2020; 218:116871. [DOI: 10.1016/j.neuroimage.2020.116871] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
|
32
|
Xu TL, de Barbaro K, Abney DH, Cox RFA. Finding Structure in Time: Visualizing and Analyzing Behavioral Time Series. Front Psychol 2020; 11:1457. [PMID: 32793025 PMCID: PMC7393268 DOI: 10.3389/fpsyg.2020.01457] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
The temporal structure of behavior contains a rich source of information about its dynamic organization, origins, and development. Today, advances in sensing and data storage allow researchers to collect multiple dimensions of behavioral data at a fine temporal scale both in and out of the laboratory, leading to the curation of massive multimodal corpora of behavior. However, along with these new opportunities come new challenges. Theories are often underspecified as to the exact nature of these unfolding interactions, and psychologists have limited ready-to-use methods and training for quantifying structures and patterns in behavioral time series. In this paper, we will introduce four techniques to interpret and analyze high-density multi-modal behavior data, namely, to: (1) visualize the raw time series, (2) describe the overall distributional structure of temporal events (Burstiness calculation), (3) characterize the non-linear dynamics over multiple timescales with Chromatic and Anisotropic Cross-Recurrence Quantification Analysis (CRQA), (4) and quantify the directional relations among a set of interdependent multimodal behavioral variables with Granger Causality. Each technique is introduced in a module with conceptual background, sample data drawn from empirical studies and ready-to-use Matlab scripts. The code modules showcase each technique's application with detailed documentation to allow more advanced users to adapt them to their own datasets. Additionally, to make our modules more accessible to beginner programmers, we provide a "Programming Basics" module that introduces common functions for working with behavioral timeseries data in Matlab. Together, the materials provide a practical introduction to a range of analyses that psychologists can use to discover temporal structure in high-density behavioral data.
Collapse
Affiliation(s)
- Tian Linger Xu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Kaya de Barbaro
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Drew H. Abney
- Department of Psychology, Center for Cognition, Action & Perception, University of Cincinnati, Cincinnati, OH, United States
| | - Ralf F. A. Cox
- Department of Psychology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
Chen JE, Lewis LD, Chang C, Tian Q, Fultz NE, Ohringer NA, Rosen BR, Polimeni JR. Resting-state "physiological networks". Neuroimage 2020; 213:116707. [PMID: 32145437 PMCID: PMC7165049 DOI: 10.1016/j.neuroimage.2020.116707] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Slow changes in systemic brain physiology can elicit large fluctuations in fMRI time series, which manifest as structured spatial patterns of temporal correlations between distant brain regions. Here, we investigated whether such "physiological networks"-sets of segregated brain regions that exhibit similar responses following slow changes in systemic physiology-resemble patterns associated with large-scale networks typically attributed to remotely synchronized neuronal activity. By analyzing a large group of subjects from the 3T Human Connectome Project (HCP) database, we demonstrate brain-wide and noticeably heterogenous dynamics tightly coupled to either respiratory variation or heart rate changes. We show, using synthesized data generated from physiological recordings across subjects, that these physiologically-coupled fluctuations alone can produce networks that strongly resemble previously reported resting-state networks, suggesting that, in some cases, the "physiological networks" seem to mimic the neuronal networks. Further, we show that such physiologically-relevant connectivity estimates appear to dominate the overall connectivity observations in multiple HCP subjects, and that this apparent "physiological connectivity" cannot be removed by the use of a single nuisance regressor for the entire brain (such as global signal regression) due to the clear regional heterogeneity of the physiologically-coupled responses. Our results challenge previous notions that physiological confounds are either localized to large veins or globally coherent across the cortex, therefore emphasizing the necessity to consider potential physiological contributions in fMRI-based functional connectivity studies. The rich spatiotemporal patterns carried by such "physiological" dynamics also suggest great potential for clinical biomarkers that are complementary to large-scale neuronal networks.
Collapse
Affiliation(s)
- Jingyuan E Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Nina E Fultz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Decoding Task-Specific Cognitive States with Slow, Directed Functional Networks in the Human Brain. eNeuro 2020; 7:ENEURO.0512-19.2019. [PMID: 32265196 PMCID: PMC7358332 DOI: 10.1523/eneuro.0512-19.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/02/2022] Open
Abstract
Flexible functional interactions among brain regions mediate critical cognitive functions. Such interactions can be measured using functional magnetic resonance imaging (fMRI) data either with instantaneous (zero-lag) or lag-based (time-lagged) functional connectivity. Because the fMRI hemodynamic response is slow, and is sampled at a timescale (seconds) several orders of magnitude slower than the underlying neural dynamics (milliseconds), simulation studies have shown that lag-based fMRI functional connectivity, measured with approaches like Granger–Geweke causality (GC), provides spurious and unreliable estimates of underlying neural interactions. Experimental verification of this claim is challenging because neural ground truth connectivity is often unavailable concurrently with fMRI recordings. Here we demonstrate that, despite these widely held caveats, GC networks estimated from fMRI recordings contain useful information for classifying task-specific cognitive states. We estimated instantaneous and lag-based GC functional connectivity networks using fMRI data from 1000 participants (Human Connectome Project database). A linear classifier, trained on either instantaneous or lag-based GC, reliably discriminated among seven different task and resting brain states, with >80% cross-validation accuracy. With network simulations, we demonstrate that instantaneous and lag-based GC exploited interactions at fast and slow timescales, respectively, to achieve robust classification. With human fMRI data, instantaneous and lag-based GC identified complementary, task–core networks. Finally, variations in GC connectivity explained inter-individual variations in a variety of cognitive scores. Our findings show that instantaneous and lag-based methods reveal complementary aspects of functional connectivity in the brain, and suggest that slow, directed functional interactions, estimated with fMRI, may provide useful markers of behaviorally relevant cognitive states.
Collapse
|
35
|
Lee IS, Necka EA, Atlas LY. Distinguishing pain from nociception, salience, and arousal: How autonomic nervous system activity can improve neuroimaging tests of specificity. Neuroimage 2020; 204:116254. [PMID: 31604122 PMCID: PMC6911655 DOI: 10.1016/j.neuroimage.2019.116254] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Pain is a subjective, multidimensional experience that is distinct from nociception. A large body of work has focused on whether pain processing is supported by specific, dedicated brain circuits. Despite advances in human neuroscience and neuroimaging analysis, dissociating acute pain from other sensations has been challenging since both pain and non-pain stimuli evoke salience and arousal responses throughout the body and in overlapping brain circuits. In this review, we discuss these challenges and propose that brain-body interactions in pain can be leveraged in order to improve tests for pain specificity. We review brain and bodily responses to pain and nociception and extant efforts toward identifying pain-specific brain networks. We propose that autonomic nervous system activity should be used as a surrogate measure of salience and arousal to improve these efforts and enable researchers to parse out pain-specific responses in the brain, and demonstrate the feasibility of this approach using example fMRI data from a thermal pain paradigm. This new approach will improve the accuracy and specificity of functional neuroimaging analyses and help to overcome current difficulties in assessing pain specific responses in the human brain.
Collapse
Affiliation(s)
- In-Seon Lee
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Necka
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Naturalistic Stimuli in Neuroscience: Critically Acclaimed. Trends Cogn Sci 2019; 23:699-714. [PMID: 31257145 DOI: 10.1016/j.tics.2019.05.004] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023]
Abstract
Cognitive neuroscience has traditionally focused on simple tasks, presented sparsely and using abstract stimuli. While this approach has yielded fundamental insights into functional specialisation in the brain, its ecological validity remains uncertain. Do these tasks capture how brains function 'in the wild', where stimuli are dynamic, multimodal, and crowded? Ecologically valid paradigms that approximate real life scenarios, using stimuli such as films, spoken narratives, music, and multiperson games emerged in response to these concerns over a decade ago. We critically appraise whether this approach has delivered on its promise to deliver new insights into brain function. We highlight the challenges, technological innovations, and clinical opportunities that are required should this field meet its full potential.
Collapse
|
37
|
Sundaresan M, Nabeel A, Sridharan D. Mapping distinct timescales of functional interactions among brain networks. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2019; 30:6999. [PMID: 31285649 PMCID: PMC6614036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brain processes occur at various timescales, ranging from milliseconds (neurons) to minutes and hours (behavior). Characterizing functional coupling among brain regions at these diverse timescales is key to understanding how the brain produces behavior. Here, we apply instantaneous and lag-based measures of conditional linear dependence, based on Granger-Geweke causality (GC), to infer network connections at distinct timescales from functional magnetic resonance imaging (fMRI) data. Due to the slow sampling rate of fMRI, it is widely held that GC produces spurious and unreliable estimates of functional connectivity when applied to fMRI data. We challenge this claim with simulations and a novel machine learning approach. First, we show, with simulated fMRI data, that instantaneous and lag-based GC identify distinct timescales and complementary patterns of functional connectivity. Next, we analyze fMRI scans from 500 subjects and show that a linear classifier trained on either instantaneous or lag-based GC connectivity reliably distinguishes task versus rest brain states, with ~80-85% cross-validation accuracy. Importantly, instantaneous and lag-based GC exploit markedly different spatial and temporal patterns of connectivity to achieve robust classification. Our approach enables identifying functionally connected networks that operate at distinct timescales in the brain.
Collapse
Affiliation(s)
- Mali Sundaresan
- Center for Neuroscience, Indian Institute of Science, Bangalore
| | - Arshed Nabeel
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore
| | - Devarajan Sridharan
- Center for Neuroscience, Indian Institute of Science, Bangalore
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore
| |
Collapse
|
38
|
Lolli V, Rovai A, Trotta N, Bourguignon M, Goldman S, Sadeghi N, Jousmäki V, De Tiège X. MRI-compatible pneumatic stimulator for sensorimotor mapping. J Neurosci Methods 2019; 313:29-36. [DOI: 10.1016/j.jneumeth.2018.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022]
|
39
|
Lewis LD, Setsompop K, Rosen BR, Polimeni JR. Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI. Neuroimage 2018; 181:279-291. [PMID: 29935223 PMCID: PMC6245599 DOI: 10.1016/j.neuroimage.2018.06.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/25/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022] Open
Abstract
Recent developments in fMRI acquisition techniques now enable fast sampling with whole-brain coverage, suggesting fMRI can be used to track changes in neural activity at increasingly rapid timescales. When images are acquired at fast rates, the limiting factor for fMRI temporal resolution is the speed of the hemodynamic response. Given that HRFs may vary substantially in subcortical structures, characterizing the speed of subcortical hemodynamic responses, and how the hemodynamic response shape changes with stimulus duration (i.e. the hemodynamic nonlinearity), is needed for designing and interpreting fast fMRI studies of these regions. We studied the temporal properties and nonlinearities of the hemodynamic response function (HRF) across the human subcortical visual system, imaging superior colliculus (SC), lateral geniculate nucleus of the thalamus (LGN) and primary visual cortex (V1) with high spatiotemporal resolution 7 Tesla fMRI. By presenting stimuli of varying durations, we mapped the timing and nonlinearity of hemodynamic responses in these structures at high spatiotemporal resolution. We found that the hemodynamic response is consistently faster and narrower in subcortical structures than in cortex. However, the nonlinearity in LGN is similar to that in cortex, with shorter duration stimuli eliciting larger and faster responses than would have been predicted by a linear model. Using oscillatory visual stimuli, we tested the frequency response in LGN and found that its BOLD response tracked high-frequency (0.5 Hz) oscillations. The LGN response magnitudes were comparable to V1, allowing oscillatory BOLD signals to be detected in LGN despite the small size of this structure. These results suggest that the increase in the speed and amplitude of the hemodynamic response when neural activity is brief may be the key physiological driver of fast fMRI signals, enabling detection of high-frequency oscillations with fMRI. We conclude that subcortical visual structures exhibit fast and nonlinear hemodynamic responses, and that these dynamics enable detection of fast BOLD signals even within small deep brain structures when imaging is performed at ultra-high field.
Collapse
Affiliation(s)
- Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Society of Fellows, Harvard University, Cambridge, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Chiew M, Graedel NN, Miller KL. Recovering task fMRI signals from highly under-sampled data with low-rank and temporal subspace constraints. Neuroimage 2018; 174:97-110. [PMID: 29501875 PMCID: PMC5953310 DOI: 10.1016/j.neuroimage.2018.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/08/2023] Open
Abstract
Recent developments in highly accelerated fMRI data acquisition have employed low-rank and/or sparsity constraints for image reconstruction, as an alternative to conventional, time-independent parallel imaging. When under-sampling factors are high or the signals of interest are low-variance, however, functional data recovery can be poor or incomplete. We introduce a method for improving reconstruction fidelity using external constraints, like an experimental design matrix, to partially orient the estimated fMRI temporal subspace. Combining these external constraints with low-rank constraints introduces a new image reconstruction model that is analogous to using a mixture of subspace-decomposition (PCA/ICA) and regression (GLM) models in fMRI analysis. We show that this approach improves fMRI reconstruction quality in simulations and experimental data, focusing on the model problem of detecting subtle 1-s latency shifts between brain regions in a block-design task-fMRI experiment. Successful latency discrimination is shown at acceleration factors up to R = 16 in a radial-Cartesian acquisition. We show that this approach works with approximate, or not perfectly informative constraints, where the derived benefit is commensurate with the information content contained in the constraints. The proposed method extends low-rank approximation methods for under-sampled fMRI data acquisition by leveraging knowledge of expected task-based variance in the data, enabling improvements in the speed and efficiency of fMRI data acquisition without the loss of subtle features.
Collapse
Affiliation(s)
- Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
| | - Nadine N Graedel
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
41
|
Chen JE, Rubinov M, Chang C. Methods and Considerations for Dynamic Analysis of Functional MR Imaging Data. Neuroimaging Clin N Am 2017; 27:547-560. [PMID: 28985928 PMCID: PMC5679015 DOI: 10.1016/j.nic.2017.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Functional MR imaging (fMR imaging) studies have recently begun to examine spontaneous changes in interregional interactions (functional connectivity) over seconds to minutes, and their relation to natural shifts in cognitive and physiologic states. This practice opens the potential for uncovering structured, transient configurations of coordinated brain activity whose features may provide novel cognitive and clinical biomarkers. However, analysis of these time-varying phenomena requires careful differentiation between neural and nonneural contributions to the fMR imaging signal and thorough validation and statistical testing. In this article, the authors present an overview of methodological and interpretational considerations in this emerging field.
Collapse
Affiliation(s)
- Jingyuan E Chen
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, 1201 Welch Road, Stanford, CA 94305, USA
| | - Mikail Rubinov
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Catie Chang
- Advanced Magnetic Resonance Imaging Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Costa L, Nichols T, Smith JQ. Studying the effective brain connectivity using multiregression dynamic models. BRAZ J PROBAB STAT 2017. [DOI: 10.1214/17-bjps375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Pang JC, Robinson PA, Aquino KM. Response-mode decomposition of spatio-temporal haemodynamics. J R Soc Interface 2017; 13:rsif.2016.0253. [PMID: 27170653 DOI: 10.1098/rsif.2016.0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
The blood oxygen-level dependent (BOLD) response to a neural stimulus is analysed using the transfer function derived from a physiologically based poroelastic model of cortical tissue. The transfer function is decomposed into components that correspond to distinct poles, each related to a response mode with a natural frequency and dispersion relation; together these yield the total BOLD response. The properties of the decomposed components provide a deeper understanding of the nature of the BOLD response, via the components' frequency dependences, spatial and temporal power spectra, and resonances. The transfer function components are then used to separate the BOLD response to a localized impulse stimulus, termed the Green function or spatio-temporal haemodynamic response function, into component responses that are explicitly related to underlying physiological quantities. The analytical results also provide a quantitative tool to calculate the linear BOLD response to an arbitrary neural drive, which is faster to implement than direct Fourier transform methods. The results of this study can be used to interpret functional magnetic resonance imaging data in new ways based on physiology, to enhance deconvolution methods and to design experimental protocols that can selectively enhance or suppress particular responses, to probe specific physiological phenomena.
Collapse
Affiliation(s)
- J C Pang
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| | - K M Aquino
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
44
|
Aso T, Jiang G, Urayama SI, Fukuyama H. A Resilient, Non-neuronal Source of the Spatiotemporal Lag Structure Detected by BOLD Signal-Based Blood Flow Tracking. Front Neurosci 2017; 11:256. [PMID: 28553198 PMCID: PMC5425609 DOI: 10.3389/fnins.2017.00256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Recent evidence has suggested that blood oxygenation level-dependent (BOLD) signals convey information about brain circulation via low frequency oscillation of systemic origin (sLFO) that travels through the vascular structure ("lag mapping"). Prompted by its promising application in both physiology and pathology, we examined this signal component using multiple approaches. A total of 30 healthy volunteers were recruited to perform two reproducibility experiments at 3 Tesla using multiband echo planar imaging. The first experiment investigated the effect of denoising and the second was designed to study the effect of subject behavior on lag mapping. The lag map's intersession test-retest reproducibility and image contrast were both diminished by removal of either the neuronal or the non-neuronal (e.g., cardiac, respiratory) components by independent component analysis-based denoising, suggesting that the neurovascular coupling also comprises a part of the BOLD lag structure. The lag maps were, at the same time, robust against local perfusion increases due to visuomotor task and global changes in perfusion induced by breath-holding at the same level as the intrasession reliability. The lag structure was preserved after time-locked averaging to the visuomotor task and breath-holding events, while any preceding signal changes were canceled out for the visuomotor task, consistent with the passive effect of neurovascular coupling in the venous side of the vasculature. These findings support the current assumption that lag mapping primarily reflects vascular structure despite the presence of sLFO perturbation of neuronal or non-neuronal origin and, thus, emphasize the vascular origin of the lag map, encouraging application of BOLD-based blood flow tracking.
Collapse
Affiliation(s)
- Toshihiko Aso
- Human Brain Research Center, Kyoto University Graduate School of MedicineKyoto, Japan
| | - Guanhua Jiang
- Human Brain Research Center, Kyoto University Graduate School of MedicineKyoto, Japan
| | - Shin-Ichi Urayama
- Human Brain Research Center, Kyoto University Graduate School of MedicineKyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of MedicineKyoto, Japan
| |
Collapse
|
45
|
Wei Y, Liao X, Yan C, He Y, Xia M. Identifying topological motif patterns of human brain functional networks. Hum Brain Mapp 2017; 38:2734-2750. [PMID: 28256774 DOI: 10.1002/hbm.23557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
Abstract
Recent imaging connectome studies demonstrated that the human functional brain network follows an efficient small-world topology with cohesive functional modules and highly connected hubs. However, the functional motif patterns that represent the underlying information flow remain largely unknown. Here, we investigated motif patterns within directed human functional brain networks, which were derived from resting-state functional magnetic resonance imaging data with controlled confounding hemodynamic latencies. We found several significantly recurring motifs within the network, including the two-node reciprocal motif and five classes of three-node motifs. These recurring motifs were distributed in distinct patterns to support intra- and inter-module functional connectivity, which also promoted integration and segregation in network organization. Moreover, the significant participation of several functional hubs in the recurring motifs exhibited their critical role in global integration. Collectively, our findings highlight the basic architecture governing brain network organization and provide insight into the information flow mechanism underlying intrinsic brain activities. Hum Brain Mapp 38:2734-2750, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yongbin Wei
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xuhong Liao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Chaogan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
46
|
Lin FH, Polimeni JR, Lin JFL, Tsai KWK, Chu YH, Wu PY, Li YT, Hsu YC, Tsai SY, Kuo WJ. Relative latency and temporal variability of hemodynamic responses at the human primary visual cortex. Neuroimage 2017; 164:194-201. [PMID: 28119135 DOI: 10.1016/j.neuroimage.2017.01.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/29/2016] [Accepted: 01/17/2017] [Indexed: 01/07/2023] Open
Abstract
The blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal is a robust surrogate for local neuronal activity. However, it has been shown to vary substantially across subjects, brain regions, and repetitive measurements. This variability represents a limit to the precision of the BOLD response and the ability to reliably discriminate brain hemodynamic responses elicited by external stimuli or behavior that are nearby in time. While the temporal variability of the BOLD signal at human visual cortex has been found in the range of a few hundreds of milliseconds, the spatial distributions of the average and standard deviation of this temporal variability have not been quantitatively characterized. Here we use fMRI measurements with a high sampling rate (10Hz) to map the latency, intra- and inter-subject variability of the evoked BOLD signal in human primary (V1) visual cortices using an event-related fMRI paradigm. The latency relative to the average BOLD signal evoked by 30 stimuli was estimated to be 0.03±0.20s. Within V1, the absolute value of the relative BOLD latency was found correlated to intra- and inter-subject temporal variability. After comparing these measures to retinotopic maps, we found that locations with V1 areas sensitive to smaller eccentricity have later responses and smaller inter-subject variabilities. These correlations were found from data with either short inter-stimulus interval (ISI; average 4s) or long ISI (average 30s). Maps of the relative latency as well as inter-/intra-subject variability were found visually asymmetric between hemispheres. Our results suggest that the latency and variability of regional BOLD signal measured with high spatiotemporal resolution may be used to detect regional differences in hemodynamics to inform fMRI studies. However, the physiological origins of timing index distributions and their hemispheric asymmetry remain to be investigated.
Collapse
Affiliation(s)
- Fa-Hsuan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jo-Fu Lotus Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Kevin W-K Tsai
- Aim for the Top University Project Office, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Hua Chu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Pu-Yeh Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Tien Li
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shang-Yueh Tsai
- Institute of Applied Physics, National Chengchi University, Taipei, Taiwan; Research Center for Mind Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang-Ming University, 155 Sec. 2, Li-Nung Street, Taipei 112, Taiwan.
| |
Collapse
|
47
|
Abstract
Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity. We hypothesized that the recent development of fast fMRI techniques, combined with the extra sensitivity afforded by ultra-high-field systems, could enable precise localization of neural oscillations. We tested whether fMRI can detect neural oscillations using human visual cortex as a model system. We detected small oscillatory fMRI signals in response to stimuli oscillating at up to 0.75 Hz within single scan sessions, and these responses were an order of magnitude larger than predicted by canonical linear models. Simultaneous EEG-fMRI and simulations based on a biophysical model of the hemodynamic response to neuronal activity suggested that the blood oxygen level-dependent response becomes faster for rapidly varying stimuli, enabling the detection of higher frequencies than expected. Accounting for phase delays across voxels further improved detection, demonstrating that identifying vascular delays will be of increasing importance with higher-frequency activity. These results challenge the assumption that the hemodynamic response is slow, and demonstrate that fMRI has the potential to map neural oscillations directly throughout the brain.
Collapse
|
48
|
Ryali S, Chen T, Supekar K, Tu T, Kochalka J, Cai W, Menon V. Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data. J Neurosci Methods 2016; 268:142-53. [PMID: 27015792 DOI: 10.1016/j.jneumeth.2016.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Causal estimation methods are increasingly being used to investigate functional brain networks in fMRI, but there are continuing concerns about the validity of these methods. NEW METHOD Multivariate dynamical systems (MDS) is a state-space method for estimating dynamic causal interactions in fMRI data. Here we validate MDS using benchmark simulations as well as simulations from a more realistic stochastic neurophysiological model. Finally, we applied MDS to investigate dynamic casual interactions in a fronto-cingulate-parietal control network using human connectome project (HCP) data acquired during performance of a working memory task. Crucially, since the ground truth in experimental data is unknown, we conducted novel stability analysis to determine robust causal interactions within this network. RESULTS MDS accurately recovered dynamic causal interactions with an area under receiver operating characteristic (AUC) above 0.7 for benchmark datasets and AUC above 0.9 for datasets generated using the neurophysiological model. In experimental fMRI data, bootstrap procedures revealed a stable pattern of causal influences from the anterior insula to other nodes of the fronto-cingulate-parietal network. COMPARISON WITH EXISTING METHODS MDS is effective in estimating dynamic causal interactions in both the benchmark and neurophysiological model based datasets in terms of AUC, sensitivity and false positive rates. CONCLUSIONS Our findings demonstrate that MDS can accurately estimate causal interactions in fMRI data. Neurophysiological models and stability analysis provide a general framework for validating computational methods designed to estimate causal interactions in fMRI. The right anterior insula functions as a causal hub during working memory.
Collapse
Affiliation(s)
- Srikanth Ryali
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Tianwen Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Kaustubh Supekar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Tao Tu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - John Kochalka
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States; Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
49
|
Pinto J, Jorge J, Sousa I, Vilela P, Figueiredo P. Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility. Neuroimage 2016; 135:223-31. [PMID: 26908316 DOI: 10.1016/j.neuroimage.2016.02.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/09/2016] [Accepted: 02/12/2016] [Indexed: 11/18/2022] Open
Abstract
Cerebrovascular reactivity (CVR) reflects the capacity of blood vessels to adjust their caliber in order to maintain a steady supply of brain perfusion, and it may provide a sensitive disease biomarker. Measurement of the blood oxygen level dependent (BOLD) response to a hypercapnia-inducing breath-hold (BH) task has been frequently used to map CVR noninvasively using functional magnetic resonance imaging (fMRI). However, the best modeling approach for the accurate quantification of CVR maps remains an open issue. Here, we compare and optimize Fourier models of the BOLD response to a BH task with a preparatory inspiration, and assess the test-retest reproducibility of the associated CVR measurements, in a group of 10 healthy volunteers studied over two fMRI sessions. Linear combinations of sine-cosine pairs at the BH task frequency and its successive harmonics were added sequentially in a nested models approach, and were compared in terms of the adjusted coefficient of determination and corresponding variance explained (VE) of the BOLD signal, as well as the number of voxels exhibiting significant BOLD responses, the estimated CVR values, and their test-retest reproducibility. The brain average VE increased significantly with the Fourier model order, up to the 3rd order. However, the number of responsive voxels increased significantly only up to the 2nd order, and started to decrease from the 3rd order onwards. Moreover, no significant relative underestimation of CVR values was observed beyond the 2nd order. Hence, the 2nd order model was concluded to be the optimal choice for the studied paradigm. This model also yielded the best test-retest reproducibility results, with intra-subject coefficients of variation of 12 and 16% and an intra-class correlation coefficient of 0.74. In conclusion, our results indicate that a Fourier series set consisting of a sine-cosine pair at the BH task frequency and its two harmonics is a suitable model for BOLD-fMRI CVR measurements based on a BH task with preparatory inspiration, yielding robust estimates of this important physiological parameter.
Collapse
Affiliation(s)
- Joana Pinto
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - João Jorge
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Inês Sousa
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Healthcare Sector, Siemens, S.A., Portugal
| | - Pedro Vilela
- Imaging Department, Hospital da Luz, Lisbon, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
50
|
Gao Q, Wang J, Yu C, Chen H. Effect of handedness on brain activity patterns and effective connectivity network during the semantic task of Chinese characters. Sci Rep 2015; 5:18262. [PMID: 26666706 PMCID: PMC4678893 DOI: 10.1038/srep18262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/13/2015] [Indexed: 11/08/2022] Open
Abstract
Increasing efforts have been denoted to elucidating the effective connectivity (EC) among brain regions recruited by certain language task; however, it remains unclear the impact of handedness on the EC network underlying language processing. In particularly, this has not been investigated in Chinese language, which shows several differences from alphabetic language. This study thereby explored the functional activity patterns and the EC network during a Chinese semantic task based on functional MRI data of healthy left handers (LH) and right handers (RH). We found that RH presented a left lateralized activity pattern in cerebral cortex and a right lateralized pattern in cerebellum; while LH were less lateralized than RH in both cerebral and cerebellar areas. The conditional Granger causality method in deconvolved BOLD level further demonstrated more interhemispheric directional connections in LH than RH group, suggesting better bihemispheric coordination and increased interhemispheric communication in LH. Furthermore, we found significantly increased EC from right middle occipital gyrus to bilateral insula (INS) while decreased EC from left INS to left precentral gyrus in LH group comparing to RH group, implying that handedness may differentiate the causal relationship of information processing in integration of visual-spatial analysis and semantic word retrieval of Chinese characters.
Collapse
Affiliation(s)
- Qing Gao
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junping Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Huafu Chen
- Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|