1
|
Miranda GG, Gonen C, Kraft JN, Rodrigue KM, Kennedy KM. Lifespan longitudinal changes in mesocortical thickness and executive function: Role of dopaminergic genetic predisposition. Neurobiol Aging 2025; 146:58-73. [PMID: 39613505 PMCID: PMC12024007 DOI: 10.1016/j.neurobiolaging.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive aging, especially in prefrontal-parietal and fronto-striatal networks. Single nucleotide polymorphisms associated with dopamine regulation, COMTVal158Met and DRD2C957T, stand to exert influence on executive function performance via neural properties. The current study investigated whether longitudinal thinning of mesocortical regions is related to COMT and DRD2 genetic predisposition and associated with decline in executive function over four-years. N=235 healthy adults aged 20-94 years were recruited, with n=124 returning 4-years later. Latent mixed effects modeling revealed dopamine-related thinning in several frontal, parietal, and cingulate regions as well as decline in verbal fluency category switching across 4-years. Mesocortical thinning was also related to switching performance. Greater cortical thinning interacted with DA-genotype risk for lower DA-availability to predict poorer switching performance in parietal and posterior cingulate cortex. These findings lend support to the notion that early-life factors, such as genetic influence on neurotransmitter function, play a role in cognitive and brain aging and their linked association.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Chen Gonen
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Jessica N Kraft
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Karen M Rodrigue
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Kristen M Kennedy
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States.
| |
Collapse
|
2
|
Wang C, Zhu L, Zheng W, Peng H, Wang J, Cui Y, Liu B, Jiang T. Effects of childhood trauma on aggressive behaviors and hippocampal function: the modulation of COMT haplotypes. PSYCHORADIOLOGY 2023; 3:kkad013. [PMID: 38666110 PMCID: PMC11003423 DOI: 10.1093/psyrad/kkad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 04/28/2024]
Abstract
Background Aggression is a commonly hostile behavior linked to the hippocampal activity. Childhood trauma (CT) exposure has been associated with altered sensitization of the hypothalamic-pituitary-adrenal (HPA) axis and hippocampal volume,which could increase violent aggressive behaviors. Additionally, Catechol-O-methyltransferase (COMT), the major dopamine metabolism enzyme, is implicated in stress responsivity, including aggression. Hence, CT exposure may affect aggression through the effect on the hippocampal function, which might also be modulated by the COMT variations. Objectives This study examined whether both CT and haplotypes of COMT moderate hippocampal function and thus affect human aggressive behavior. Methods We obtained bilateral hippocampal functional connectivity maps using resting state functional magnetic resonance imaging (MRI) data. COMT haplotype estimation was performed using Haploview 4.2 and PHASE 2.1. Then we constructed a moderated mediation model to study the effect of the CTQ × COMT on aggressive behavior. Results Three major haplotypes were generated from thirteen single nucleotide polymorphisms (SNPs) within the COMT gene and formed three haplotypes corresponding to high, medium, and low enzymatic activity of COMT. The results showed interactive relationships between the Childhood Trauma Questionnaire (CTQ) and COMT with respect to the functional connectivity (FC) of the bilateral hippocampus (HIP)-orbital frontal cortex (OFC). Specifically, CT experience predicted lower negative HIP-OFC coupling in the APS and HPS haplotypes corresponding to the medium and high enzymatic activity of COMT, but greater FC in the LPS haplotypes corresponding to the low enzymatic activity. We also observed a conditional mediation effect of the right HIP-OFC coupling in the link between COMT and aggressive behavior that was moderated by CT experience. Conclusions These results suggest that CT and COMT have a combined effect on aggressive behavior through hippocampal function. This mediation analysis sheds light on the influence of childhood experience on aggressive behavior in different genetic backgrounds.
Collapse
Affiliation(s)
- Chao Wang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Linfei Zhu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Hanyuzhu Peng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yue Cui
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Tianzi Jiang
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Deciphering the Effect of Different Genetic Variants on Hippocampal Subfield Volumes in the General Population. Int J Mol Sci 2023; 24:ijms24021120. [PMID: 36674637 PMCID: PMC9861136 DOI: 10.3390/ijms24021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to disentangle the effects of various genetic factors on hippocampal subfield volumes using three different approaches: a biologically driven candidate gene approach, a hypothesis-free GWAS approach, and a polygenic approach, where AD risk alleles are combined with a polygenic risk score (PRS). The impact of these genetic factors was investigated in a large dementia-free general population cohort from the Study of Health in Pomerania (SHIP, n = 1806). Analyses were performed using linear regression models adjusted for biological and environmental risk factors. Hippocampus subfield volume alterations were found for APOE ε4, BDNF Val, and 5-HTTLPR L allele carriers. In addition, we were able to replicate GWAS findings, especially for rs17178139 (MSRB3), rs1861979 (DPP4), rs7873551 (ASTN2), and rs572246240 (MAST4). Interaction analyses between the significant SNPs as well as the PRS for AD revealed no significant results. Our results confirm that hippocampal volume reductions are influenced by genetic variation, and that different variants reveal different association patterns that can be linked to biological processes in neurodegeneration. Thus, this study underlines the importance of specific genetic analyses in the quest for acquiring deeper insights into the biology of hippocampal volume loss, memory impairment, depression, and neurodegenerative diseases.
Collapse
|
4
|
Vulser H, Lemaître HS, Guldner S, Bezivin-Frère P, Löffler M, Sarvasmaa AS, Massicotte-Marquez J, Artiges E, Paillère Martinot ML, Filippi I, Miranda R, Stringaris A, van Noort BM, Penttilä J, Grimmer Y, Becker A, Banaschewski T, Bokde ALW, Desrivières S, Fröhner JH, Garavan H, Grigis A, Gowland PA, Heinz A, Papadopoulos Orfanos D, Poustka L, Smolka MN, Spechler PA, Walter H, Whelan R, Schumann G, Flor H, Martinot JL, Nees F. Chronotype, Longitudinal Volumetric Brain Variations Throughout Adolescence, and Depressive Symptom Development. J Am Acad Child Adolesc Psychiatry 2023; 62:48-58. [PMID: 35714839 DOI: 10.1016/j.jaac.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2022] [Accepted: 06/03/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Adolescence is a critical period for circadian rhythm, with a strong shift toward eveningness around age 14. Also, eveningness in adolescence has been found to predict later onset of depressive symptoms. However, no previous study has investigated structural variations associated with chronotype in early adolescence and how this adds to the development of depressive symptoms. METHOD Assessment of 128 community-based adolescents (51% girls) at age 14 and 19 years was performed. Using whole-brain voxel-based morphometry, baseline (at age 14) regional gray matter volumes (GMVs), follow-up (at age 19) regional GMVs, and longitudinal changes (between 14 and 19) associated with Morningness/Eveningness Scale in Children score and sleep habits at baseline were measured. The association of GMV with depressive symptoms at 19 years was studied, and the role of potential clinical and genetic factors as mediators and moderators was assessed. RESULTS Higher eveningness was associated with larger GMV in the right medial prefrontal cortex at ages 14 and 19 in the whole sample. GMV in this region related to depressive symptoms at age 19 in catechol-O-methyltransferase (COMT) Val/Val, but not in Met COMT, carriers. Larger GMV also was observed in the right fusiform gyrus at age 14, which was explained by later wake-up time during weekends. CONCLUSION In adolescence, eveningness and its related sleep habits correlated with distinct developmental patterns. Eveningness was specifically associated with GMV changes in the medial prefrontal cortex; this could serve as a brain vulnerability factor for later self-reported depressive symptoms in COMT Val/Val carriers.
Collapse
Affiliation(s)
- Hélène Vulser
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, France.
| | - Hervé S Lemaître
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Stella Guldner
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Pauline Bezivin-Frère
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 A10 "Trajectoires développementales en psychiatrie," Ecole Normale supérieure Paris-Saclay, Université Paris-Saclay, Université de Paris, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
| | - Martin Löffler
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Anna S Sarvasmaa
- National Institute for Health and Welfare, Mental Health Unit, Helsinki, Finland, and the University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jessica Massicotte-Marquez
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 A10 "Trajectoires développementales en psychiatrie," Ecole Normale supérieure Paris-Saclay, Université Paris-Saclay, Université de Paris, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 A10 "Trajectoires développementales en psychiatrie," Ecole Normale supérieure Paris-Saclay, Université Paris-Saclay, Université de Paris, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France; EPS Barthélémy Durand, Etampes, France
| | - Marie-Laure Paillère Martinot
- AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, France; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 A10 "Trajectoires développementales en psychiatrie," Ecole Normale supérieure Paris-Saclay, Université Paris-Saclay, Université de Paris, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
| | - Irina Filippi
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 A10 "Trajectoires développementales en psychiatrie," Ecole Normale supérieure Paris-Saclay, Université Paris-Saclay, Université de Paris, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
| | - Ruben Miranda
- AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, France
| | | | | | - Jani Penttilä
- Psychosocial Services Adolescent Outpatient Clinic, Lahti, Finland
| | - Yvonne Grimmer
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Tobias Banaschewski
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, United Kingdom
| | | | | | - Antoine Grigis
- NeuroSpin, Commissariat à l'Energie Atomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Luise Poustka
- University Medical Centre Göttingen, Göttingen, Germany
| | | | | | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, United Kingdom, the PONS Research Group, Campus Charite Mitte, Humboldt University, Berlin, Leibniz Institute for Neurobiology, Magdeburg, Germany and the Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P.R. China
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; School of Social Sciences, University of Mannheim, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 A10 "Trajectoires développementales en psychiatrie," Ecole Normale supérieure Paris-Saclay, Université Paris-Saclay, Université de Paris, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
| | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany, and the Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
5
|
Cha E, Ahn HJ, Kang W, Jung KI, Ohn SH, Bashir S, Yoo WK. Correlations between COMT polymorphism and brain structure and cognition in elderly subjects: An observational study. Medicine (Baltimore) 2022; 101:e29214. [PMID: 35550471 PMCID: PMC9276462 DOI: 10.1097/md.0000000000029214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT The catechol-O-methyltransferase (COMT) gene has been noted to play an important role in individual variations in the aging process. We investigated whether COMT polymorphism could influence cognition related to white matter networks. More specifically, we examined whether methionine (Met) allele loading is associated with better individual cognitive performance. Thirty-four healthy elderly participants were recruited; each participant's COMT genotype was determined, and Korean version of Montreal Cognitive Assessment scores and a diffusion tensor image were obtained for all participants. The Met carrier group showed significantly lower mean diffusivity, axial diffusivity, and radial diffusivity values for the right hippocampus, thalamus, uncinate fasciculus, and left caudate nucleus than the valine homozygote group. The Met carrier group also scored higher for executive function and attention on the Korean version of Montreal Cognitive Assessment. Based on these results, we can assume that the COMT Met allele has a protective effect on cognitive decline contributing to individual differences in cognitive function in late life period.
Collapse
Affiliation(s)
- Eunsil Cha
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hyun Jung Ahn
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Wonil Kang
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Kwang-Ik Jung
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| |
Collapse
|
6
|
Xavier J, Bastos CR, Camerini L, Amaral PB, Jansen K, de Mattos Souza LD, da Silva RA, Pinheiro RT, Lara DR, Ghisleni G. Interaction between COMT Val 158 Met polymorphism and childhood trauma predicts risk for depression in men. Int J Dev Neurosci 2022; 82:385-396. [PMID: 35441426 DOI: 10.1002/jdn.10186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/28/2022] [Accepted: 04/03/2022] [Indexed: 11/08/2022] Open
Abstract
Depression is a disabling illness with complex etiology. While the Catechol-O-Methyltransferase (COMT) gene, in particular the functional Val158 Met polymorphism, has been related to depression, the mechanisms underlying this gene-disease association are not completely understood. Therefore, we explore the association of COMT Val158 Met polymorphism with depression as well as its interaction with childhood trauma in 1,136 young adults from a population-based study carried out in the city of Pelotas-Brazil. The diagnosis was performed through the Mini International Neuropsychiatric Interview 5.0 (MINI 5.0), and trauma was assessed with the childhood trauma questionnaire (CTQ). Total DNA was extracted and genotyped by real-time PCR and the QTLbase dataset was queried to perform large-scale quantitative trait locus (QTL) analysis. Our research showed no direct association between the Val158 Met polymorphism and the diagnosis of depression (women: χ2=0.10, d=1, p=0.751 and men: χ2=0.003, df=1 p=0.956). However, the Met-allele of the Val158 Met polymorphism modified the effect of childhood trauma in men [OR=2.58 (95% CI:1.05-6.29); p=0.038] conferring risk for depression only on those who suffer from trauma. The conditional effect from moderation analysis showed that trauma impacts the risk of depression only in men carrying the Met-allele (Effect: 0.9490, Standard Error (SE): 0.2570; p=0.0002). QTLbase and dataset for Val158 Met polymorphism were consistent for markers that influence chromatin accessibility transcription capacity including histone methylation and acetylation. The changes caused in gene regulation by childhood trauma exposure and polymorphism may serve as evidence of the mechanism whereby the interaction increases susceptibility to this disorder in men.
Collapse
Affiliation(s)
- Janaína Xavier
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Clarissa Ribeiro Bastos
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Laísa Camerini
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Paola Bajadares Amaral
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karen Jansen
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciano Dias de Mattos Souza
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Azevedo da Silva
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Tavares Pinheiro
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Diogo Rizzato Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Center of Health Sciences, Post-Graduation Program of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Yin Y, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. COMT Val158Met Polymorphism Influences the Cerebral Blood Flow Changes Related to Psychomotor Retardation in Major Depressive Disorder. Neuropsychiatr Dis Treat 2022; 18:2159-2169. [PMID: 36187559 PMCID: PMC9521236 DOI: 10.2147/ndt.s379146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous studies revealed different cerebral blood flow (CBF) changes of major depressive disorder (MDD) patients with psychomotor retardation (PMR). These different changes might result from the modulation of other factors, such as genes. This study aimed to investigate the influence of COMT Val158Met polymorphism on the CBF alterations in MDD patients with PMR. METHODS COMT Val158Met genotypes and arterial spin labeling-magnetic resonance imaging (ASL-MRI) data of 103 Chinese Han participants (63 MDD, 40 NCs) were collected in this study. MDD patients were divided into PMR group (N = 23) and NPMR group (N = 40) according to the Salpetriere Retardation Rating Scale score. PMR, NPMR and NCs groups were further divided into two subgroups, respectively, based on the COMT Val158Met genotype. CBF throughout the whole brain was calculated based on the ASL-MRI data. A two-way factorial analysis of covariance was used to investigate the main effects of PMR, COMT Met allele, as well as the interactions between COMT genotype and PMR on the CBF in a voxel-wise manner. Partial correlation analyses were also applied to evaluate the association between the CBF of significant brain regions and the PMR severity. RESULTS Main effect of PMR mainly influenced the CBF of the prefrontal cortex (PFC). Main effect of COMT Met allele mainly influenced the CBF of the thalamus. The interaction between PMR and COMT Met allele primarily influenced the CBF of left precuneus and right caudate. The CBF of PFC was positively correlated with the PMR severity. CONCLUSION Our findings indicate that the COMT Met allele could modulate the CBF changes of the left precuneus and right caudate in MDD patients with PMR, providing additional layer of information regarding earlier reports for different CBF changes of MDD patients with psychomotor retardation in the literature, which were assessed irrespective of polymorphisms among patients.
Collapse
Affiliation(s)
- Yingying Yin
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.,Institute of Psychosomatics, Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Haisan Zhang
- Departments of Clinical Magnetic Resonance Imaging, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, People's Republic of China
| | - Hongxing Zhang
- Departments of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, People's Republic of China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.,Institute of Psychosomatics, Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
8
|
Qi Y, Wei Y, Yu F, Lin Q, Yin J, Fu J, Xiong S, Lv D, Dai Z, Peng Q, Wang Y, Zhang D, Wang L, Ye X, Lin Z, Lin J, Ma G, Li K, Luo X. Association study of a genetic variant in the long intergenic noncoding RNA (linc01080) with schizophrenia in Han Chinese. BMC Psychiatry 2021; 21:613. [PMID: 34879837 PMCID: PMC8653569 DOI: 10.1186/s12888-021-03623-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Schizophrenia is currently considered to be a polygene-related disease with unknown etiology. This research will verify whether the single nucleotide polymorphism (SNP) of the long intergenic noncoding RNA01080 (linc01080) contributes to the susceptibility and phenotypic heterogeneity of schizophrenia, with a view to providing data support for the prevention and individualized treatment of this disease. METHOD The SNP rs7990916 in linc01080 were genotyped in 1139 schizophrenic and 1039 controls in a Southern Chinese Han population by the improved multiplex ligation detection reaction (imLDR) technique. Meanwhile, we assessed and analyzed the association between this SNP and schizophrenics' clinical symptoms, and the cognitive function. RESULT There was no significant difference in genotype distribution, allele frequency distribution, gender stratification analysis between the two groups. However, the SNP of rs7990916 was significantly associated with the age of onset in patients with schizophrenia (P = 8.22E-07), patients with T allele had earlier onset age compared with CC genotype carriers. In terms of cognitive function, patients with T allele scored lower than CC genotype carriers in the Tower of London score and symbol coding score in the Brief assessment of Cognition (BACS), and the difference was statistically significant (P = 0.014, P = 0.022, respectively). CONCLUSION Our data show for the first time that linc01080 polymorphism may affect the age of onset and neurocognitive function in patients with schizophrenia.
Collapse
Affiliation(s)
- Yi Qi
- grid.410560.60000 0004 1760 3078The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023 China
| | - Yaxue Wei
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China ,grid.410652.40000 0004 6003 7358Psychiatric and Psychological Clinical Rehabilitation Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021 China
| | - Fengyan Yu
- grid.410560.60000 0004 1760 3078The Second Clinical School, Guangdong Medical University, Dongguan, 523808 China
| | - Qianxing Lin
- grid.410560.60000 0004 1760 3078The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023 China
| | - Jingwen Yin
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Jiawu Fu
- grid.410560.60000 0004 1760 3078Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Susu Xiong
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Dong Lv
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Zhun Dai
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Qian Peng
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Ying Wang
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Dandan Zhang
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Lulu Wang
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Xiaoqing Ye
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Zhixiong Lin
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Juda Lin
- grid.410560.60000 0004 1760 3078Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 China
| | - Guoda Ma
- grid.410560.60000 0004 1760 3078Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Foshan, 528300 China
| | - Keshen Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China. .,Clinical Neuroscience Institute of Jinan University, Guangzhou, 510630, China.
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
9
|
Madzarac Z, Tudor L, Sagud M, Nedic Erjavec G, Mihaljevic Peles A, Pivac N. The Associations between COMT and MAO-B Genetic Variants with Negative Symptoms in Patients with Schizophrenia. Curr Issues Mol Biol 2021; 43:618-636. [PMID: 34287249 PMCID: PMC8928957 DOI: 10.3390/cimb43020045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Negative symptoms of schizophrenia, including anhedonia, represent a heavy burden on patients and their relatives. These symptoms are associated with cortical hypodopamynergia and impaired striatal dopamine release in response to reward stimuli. Catechol-O-methyltransferase (COMT) and monoamine oxidase type B (MAO-B) degrade dopamine and affect its neurotransmission. The study determined the association between COMT rs4680 and rs4818, MAO-B rs1799836 and rs6651806 polymorphisms, the severity of negative symptoms, and physical and social anhedonia in schizophrenia. Sex-dependent associations were detected in a research sample of 302 patients with schizophrenia. In female patients with schizophrenia, the presence of the G allele or GG genotype of COMT rs4680 and rs4818, as well as GG haplotype rs4818-rs4680, which were all related to higher COMT activity, was associated with an increase in several dimensions of negative symptoms and anhedonia. In male patients with schizophrenia, carriers of the MAO-B rs1799836 A allele, presumably associated with higher MAO-B activity, had a higher severity of alogia, while carriers of the A allele of the MAO-B rs6651806 had a higher severity of negative symptoms. These findings suggest that higher dopamine degradation, associated with COMT and MAO-B genetic variants, is associated with a sex-specific increase in the severity of negative symptoms in schizophrenia patients.
Collapse
Affiliation(s)
- Zoran Madzarac
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
| | - Lucija Tudor
- Ruder Boskovic Institute, 10 000 Zagreb, Croatia; (L.T.); (G.N.E.)
| | - Marina Sagud
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | | | - Alma Mihaljevic Peles
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nela Pivac
- Ruder Boskovic Institute, 10 000 Zagreb, Croatia; (L.T.); (G.N.E.)
- Correspondence: ; Tel.: +385-915-371-810
| |
Collapse
|
10
|
Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108396. [PMID: 34893161 DOI: 10.1016/j.mrrev.2021.108396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Enzymatic methylation catalyzed by methyltransferases has a significant impact on many human biochemical reactions. As the second most ubiquitous cofactor in humans, S-adenosyl-l-methionine (SAM or AdoMet) serves as a methyl donor for SAM-dependent methyltransferases (MTases), which transfer a methyl group to a nucleophilic acceptor such as O, As, N, S, or C as the byproduct. SAM-dependent methyltransferases can be grouped into different types based on the substrates. Here we systematically reviewed eight types of methyltransferases associated with human diseases. Catechol O-methyltransferase (COMT), As(III) S-adenosylmethionine methyltransferase (AS3MT), indolethylamine N-methyltransferase (INMT), phenylethanolamine N-methyltransferase (PNMT), histamine N-methyltransferase (HNMT), nicotinamide N-methyltransferase (NNMT), thiopurine S-methyltransferase (TPMT) and DNA methyltansferase (DNMT) are classic SAM-dependent MTases. Correlations between genotypes and disease susceptibility can be partially explained by genetic polymorphisms. The physiological function, substrate specificity, genetic variants and disease susceptibility associated with these eight SAM-dependent methyltransferases are discussed in this review.
Collapse
|
11
|
Miranda GG, Rodrigue KM, Kennedy KM. Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan. Brain Struct Funct 2021; 226:121-136. [PMID: 33179159 PMCID: PMC7855542 DOI: 10.1007/s00429-020-02169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive performance. Aging is accompanied by a change in the strength of this signaling, with a loss of striatal and extrastriatal D2 binding potential. The reduction in dopamine modulation with age negatively influences various aspects of cognition. DRD2 C957T (rs6277) impacts DA D2 receptor density and availability, with C homozygotes linked to lower striatal DA availability and reduced executive functioning (EF), but also high extrastriatal binding potential. Here, we investigated in 176 participants aged 20-94 years whether: (1) DRD2 C carriers differ from T carriers in cortical thickness or subcortical volume in areas of high concentrations of D2 receptors that receive projections from mesocortical or nigrostriatal dopaminergic pathways; (2) whether the DRD2*COMT relationship has any synergistic effects on cortical thickness; (3) whether the effect of DRD2 on brain structure depends upon age; and (4) whether DRD2-related regional thinning affects executive function performance. We show that DRD2 impacts cortical thickness in the superior parietal lobule, precuneus, and anterior cingulate (marginal after FDR correction), while statistically controlling sex, age, and COMT genotype. Specifically, C homozygotes demonstrated thinner cortices than both heterozygotes and/or T homozygotes in an age-invariant manner. Additionally, DRD2 predicted executive function performance via cortical thickness. The results highlight that genetic influences on dopamine availability impact cognitive performance via the contribution of brain structure in cortical regions influenced by DRD2.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA.
| |
Collapse
|
12
|
Jung M, Mizuno Y, Fujisawa TX, Takiguchi S, Kong J, Kosaka H, Tomoda A. The Effects of COMT Polymorphism on Cortical Thickness and Surface Area Abnormalities in Children with ADHD. Cereb Cortex 2020; 29:3902-3911. [PMID: 30508034 DOI: 10.1093/cercor/bhy269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Indexed: 11/12/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) gene is associated with frontal cortex development and the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, how the COMT gene impacts brain structure and behavior in ADHD remains unknown. In the present study, we identify the effect of COMT on cortical thickness and surface area in children with ADHD and children with typically developing (TD) using a machine learning approach. In a sample of 39 children with ADHD and 34 age- and IQ-matched TD children, we found that cortical thickness and surface area differences were predominantly observed in the frontal cortex. Furthermore, a path analysis revealed that a COMT genotype affected abnormal development of the frontal cortex in terms of both cortical thickness and surface area and was associated with working memory changes in children with ADHD. Our study confirms that the role of COMT in ADHD is not restricted to the development of behavior but may also affect the cortical thickness and surface area. Thus, our findings may help to improve the understanding of the neuroanatomic basis for the relationship between the COMT genotype and ADHD pathogenesis.
Collapse
Affiliation(s)
- Minyoung Jung
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Yoshifumi Mizuno
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Shinichiro Takiguchi
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.,Department of Neuropsychiatry, University of Fukui, University of Fukui, Eiheiji, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
13
|
The importance of identifying functional Val158Met polymorphism in catechol-O- Methyltransferase when assessing MRI-based volumetric measurements in major depressive disorder. Brain Imaging Behav 2020; 14:2762-2770. [PMID: 31898087 DOI: 10.1007/s11682-019-00225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Many studies have shown volumetric differences in the hippocampus between COMT gene polymorphisms and other studies have shown differences between depressed patients and controls; yet, few studies have been completed to identify the volumetric differences when taking both factors into consideration. Using voxel-based morphology (VBM) we investigated, in major depressive disorder (MDD) patients and healthy controls, the relationship between COMT gene polymorphism and volumetric abnormalities. Data from 60 MDD patients and 25 healthy controls were included in this study. Volumetric measurements and genotyping of COMTval158met polymorphism were conducted to determine its impact on gray matter volume (GMV) in the hippocampus and amygdala using a Met dominant model (Val/Val vs Met/Val & Met/Met). In the analysis, a significant difference in the right hippocampus (p = 0.015), right amygdala (p = 0.003) and entire amygdala (p = 0.019) was found between the interaction of diagnosis and genotype after MRI scanner, age and sex correction. Healthy controls (HC) with the Met dominant genotype exhibited a larger right hippocampal, right amygdalar and entire amydgalar volume than MDD patients with the Met dominant genotype. Conversely, HC with the Val/Val genotype displayed a lower right hippocampal, right amygdalar and entire amygdalar volume than their MDD counterparts. This study shows that COMT polymorphism and depression may have a confounding effect on neuroimaging studies.
Collapse
|
14
|
Impact of COMT haplotypes on functional connectivity density and its association with the gene expression of dopamine receptors. Brain Struct Funct 2019; 224:2619-2630. [PMID: 31332515 DOI: 10.1007/s00429-019-01924-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Catechol-O-methyltransferase (COMT) affects brain connectivity via modulating the dopamine system, with an expected greater effect of haplotypes than single-nucleotide polymorphism (SNP). The action pathway from COMT to dopamine to connectivity is theoretically dependent on the gene expression of dopamine receptors. Here, we aimed to investigate the impact of COMT haplotypes on brain functional connectivity density (FCD) in hundreds of healthy young subjects, and to disclose the association between the COMT-FCD statistical map and the spatial expression of the dopamine receptor genes. We found an inverted U-shaped modulation of COMT haplotypes on FCD in the left inferior parietal lobule that is mainly connected to the frontal and parietal cortices, with APS homozygotes exhibiting greater FCD than the other five groups. However, we failed to identify any significant effect of any SNP on FCD. Utilizing gene expression data collected from Allen human brain atlas, we found the COMT-FCD statistical map was significantly associated with the expression patterns of the dopamine receptor genes. Our results suggest that COMT haplotypes have greater impact on functional connectivity than a single genetic variation and that the association between COMT and functional connectivity may be dependent on the gene expression of dopamine receptors.
Collapse
|
15
|
Herrmann FR, Rodriguez C, Haller S, Garibotto V, Montandon ML, Giannakopoulos P. Gray Matter Densities in Limbic Areas and APOE4 Independently Predict Cognitive Decline in Normal Brain Aging. Front Aging Neurosci 2019; 11:157. [PMID: 31316372 PMCID: PMC6609870 DOI: 10.3389/fnagi.2019.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
Cross-sectional magnetic resonance imaging (MRI) studies reported significant associations between gray matter (GM) density changes in various limbic and neocortical areas and worst cognitive performances in elderly controls. Longitudinal studies in this field remain scarce and led to conflicting data. We report a clinico-radiological investigation of 380 cognitively preserved individuals who undergo neuropsychological assessment at baseline and after 18 months. All cases were assessed using a continuous cognitive score taking into account the global evolution of neuropsychological performances. The vast majority of Mini Mental State Examination (MMSE) 29 and 30 cases showed equal or worst performance at follow-up due to a ceiling effect. GM densities, white matter hyperintensities and arterial spin labeling (ASL) values were assessed in the hippocampus, amygdala, mesial temporal and parietal cortex at inclusion using 3 Tesla MRI Scans. Florbetapir positron emission tomography (PET) amyloid was available in a representative subsample of 64 cases. Regional amyloid uptake ratios (SUVr), mean cortical SUVr values (mcSUVr) and corresponding z-scores were calculated. Linear regression models were built to explore the association between the continuous cognitive score and imaging variables. The presence of an APOE-ε4 allele was negatively related to the continuous cognitive score. Among the areas studied, significant associations were found between GM densities in the hippocampus and amygdala but not mesial temporal and parietal areas and continuous cognitive score. Neither ASL values, Fazekas score nor mean and regional PET amyloid load was related to the cognitive score. In multivariate models, the presence of APOE-ε4 allele and GM densities in the hippocampus and amygdala were independently associated with worst cognitive evolution at follow-up. Our data support the idea that early GM damage in the hippocampus and amygdala occur long before the emergence of the very first signs of cognitive failure in brain aging.
Collapse
Affiliation(s)
- François R Herrmann
- Department of Rehabilitation and Geriatrics, Division of Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Sven Haller
- CIRD Centre d'Imagerie Rive Droite, Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Division of Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
16
|
Kawamoto T, Endo T. Sources of variances in personality change during adolescence. PERSONALITY AND INDIVIDUAL DIFFERENCES 2019. [DOI: 10.1016/j.paid.2019.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Miranda GG, Rodrigue KM, Kennedy KM. Frontoparietal cortical thickness mediates the effect of COMT Val 158Met polymorphism on age-associated executive function. Neurobiol Aging 2019; 73:104-114. [PMID: 30342271 PMCID: PMC6251730 DOI: 10.1016/j.neurobiolaging.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Proper dopamine (DA) signaling is likely necessary for maintaining optimal cognitive performance as we age, particularly in prefrontal-parietal networks and in fronto-striatal networks. Thus, reduced DA availability is a salient risk factor for accelerated cognitive aging. A common polymorphism that affects DA D1 receptor dopamine availability, COMT Val158Met (rs4680), influences enzymatic breakdown of DA, with COMT Val carriers having a 3- to 4-fold reduction in synaptic DA compared to COMT Met carriers. Furthermore, dopamine receptors and postsynaptic availability are drastically reduced with aging, as is executive function performance that ostensibly relies on these pathways. Here, we investigated in 176 individuals aged 20-94 years whether: (1) COMT Val carriers differ from their Met counterparts in thickness of regional cortices receiving D1 receptor pathways: prefrontal, parietal, cingulate cortices; (2) this gene-brain association differs across the adult lifespan; and (3) COMT-related regional thinning evidences cognitive consequences. We found that COMT Val carriers evidenced thinner cortex in prefrontal, parietal, and posterior cingulate cortices than COMT Met carriers and this effect was not age-dependent. Further, we demonstrate that thickness of these regions significantly mediates the effect of COMT genotype on an executive function composite measure. These results suggest that poorer executive function performance is due partly to thinner association cortex in dopaminergic-rich regions, and particularly so in individuals who are genetically predisposed to lower postsynaptic dopamine availability, regardless of age.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
18
|
Otsuka Y, Kakeda S, Sugimoto K, Katsuki A, Nguyen LH, Igata R, Watanabe K, Ueda I, Kishi T, Iwata N, Korogi Y, Yoshimura R. COMT polymorphism regulates the hippocampal subfield volumes in first-episode, drug-naive patients with major depressive disorder. Neuropsychiatr Dis Treat 2019; 15:1537-1545. [PMID: 31239688 PMCID: PMC6560253 DOI: 10.2147/ndt.s199598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Compared with healthy subjects (HS), patients with major depressive disorder (MDD) exhibit volume differences that affect the volume changes in several areas such as the limbic, cortical, subcortical, and white matter. Catechol-O-methyltransferase (COMT) is a methylation enzyme that catalyzes endogenous catecholamines. The Val158Met polymorphism of COMT has been reported to affect the dopamine (DA) levels, which plays an important role in psychiatric diseases. However, the relationships among both DA levels, COMT genotype, and brain morphology are complicated and controversial. In previous studies that investigated the hippocampal subfields, the greatest brain abnormalities in MDD patients were observed in Cornu Ammonis (CA)1 and the subiculum, followed by that in CA2-3. We have prospectively demonstrated the relationship between the single-nucleotide polymorphism of the Val158Met COMT gene (rs4680) and the hippocampal subfields in drug-naive MDD patients. Patients and methods: In this study, we compared 27 MDD patients and 42 HS who were divided into groups based on their COMT genotype. The effects of the diagnosis, genotype, and genotype-diagnosis interaction related to CA1 and the subiculum volumes, as well as the whole-brain cortical thickness, were evaluated by performing a FreeSurfer statistical analysis of high-resolution magnetic resonance imaging (MRI) findings. Results: The results revealed that there was a statistically significant interaction between the effects of diagnosis and genotype on the right subiculum (a component of the hippocampus). Conclusion: This Val158Met COMT polymorphism may influence the subiculum volume in drug-naive, first-episode MDD patients.
Collapse
Affiliation(s)
- Yuka Otsuka
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichiro Sugimoto
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Le Hoa Nguyen
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
19
|
Jiang W, King TZ, Turner JA. Imaging Genetics Towards a Refined Diagnosis of Schizophrenia. Front Psychiatry 2019; 10:494. [PMID: 31354550 PMCID: PMC6639711 DOI: 10.3389/fpsyt.2019.00494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/24/2019] [Indexed: 01/31/2023] Open
Abstract
Current diagnoses of schizophrenia and related psychiatric disorders are classified by phenomenological principles and clinical descriptions while ruling out other symptoms and conditions. Specific biomarkers are needed to assist the current diagnostic system. However, complicated gene and environment interactions induce great disease heterogeneity. This unclear etiology and heterogeneity raise difficulties in distinguishing schizophrenia-related effects. Simultaneously, the overlap in symptoms, genetic variations, and brain alterations in schizophrenia and related psychiatric disorders raises similar difficulties in determining disease-specific effects. Imaging genetics is a unique methodology to assess the impact of genetic factors on both brain structure and function. More importantly, imaging genetics builds a bridge to understand the behavioral and clinical implications of genetics and neuroimaging. By characterizing and quantifying the brain measures affected in psychiatric disorders, imaging genetics is contributing to identifying potential biomarkers for schizophrenia and related disorders. To date, candidate gene analysis, genome-wide association studies, polygenetic risk score analysis, and large-scale collaborative studies have made contributions to the understanding of schizophrenia with the potential to serve as biomarkers. Despite limitations, imaging genetics remains promising as more aggregative, clustering methods and imaging genetics-compatible clinical assessments are employed in future studies. We review imaging genetics' contribution to our understanding of the heterogeneity within schizophrenia and the commonalities across schizophrenia and other diagnostic borders, and we will discuss whether imaging genetics is ready to form its own diagnostic system.
Collapse
Affiliation(s)
- Wenhao Jiang
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jessica A Turner
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Mind Research Network, Albuquerque, NM, United States
| |
Collapse
|
20
|
Hoffmann C, Van Rheenen TE, Mancuso SG, Zalesky A, Bruggemann J, Lenroot RK, Sundram S, Weickert CS, Weickert TW, Pantelis C, Cropley V, Bousman CA. Exploring the moderating effects of dopaminergic polymorphisms and childhood adversity on brain morphology in schizophrenia-spectrum disorders. Psychiatry Res Neuroimaging 2018; 281:61-68. [PMID: 30253269 DOI: 10.1016/j.pscychresns.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Genetic and environmental etiologies may contribute to schizophrenia and its associated neurobiological profile. We examined the interaction between dopaminergic polymorphisms, childhood adversity and diagnosis (schizophrenia/schizoaffective disorder) on dopamine-related brain structures. Childhood adversity histories and structural MRI data were obtained from 249 (153 schizophrenia/schizoaffective, 96 controls) participants registered in the Australian Schizophrenia Research Bank. Polymorphisms in DRD2 and COMT were genotyped and a dopaminergic risk allelic load (RAL) was calculated. Regression analysis was used to test the main and interaction effects of RAL, childhood adversity and diagnosis on volumes of dopamine-related brain structures (caudate, putamen, nucleus accumbens, dorsolateral prefrontal cortex and hippocampus). A schizophrenia/schizoaffective diagnosis showed significant main effects on bilateral hippocampus, left dorsolateral prefrontal cortex and bilateral putamen volumes. RAL showed a significant main effect on left putamen volumes. Furthermore, across the whole sample, a significant two-way interaction between dopaminergic RAL and childhood adversity was found for left putamen volumes. No brain structure volumes were predicted by a three-way interaction that included diagnosis. Our finding suggests the left putamen may be particularly sensitive to dopaminergic gene-environment interactions regardless of diagnosis. However, larger studies are needed to assess whether these interactions are more or less pronounced in those with schizophrenia/schizoaffective disorders.
Collapse
Affiliation(s)
- Cassandra Hoffmann
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Serafino G Mancuso
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Jason Bruggemann
- School of Psychiatry, University of New South Wales, Australia; Neuroscience Research Australia, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales, Australia; Neuroscience Research Australia, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia; Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, USA
| | - Suresh Sundram
- Florey Institute of Neuroscience and Mental Health, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Australia; Mental Health Program, Monash Health, Clayton, Victoria, Australia
| | - Cynthia Shannon Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; School of Psychiatry, University of New South Wales, Australia; Neuroscience Research Australia, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, USA
| | - Thomas W Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; School of Psychiatry, University of New South Wales, Australia; Neuroscience Research Australia, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Australia; Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
21
|
Batalla A, Lorenzetti V, Chye Y, Yücel M, Soriano-Mas C, Bhattacharyya S, Torrens M, Crippa JAS, Martín-Santos R. The Influence of DAT1, COMT, and BDNF Genetic Polymorphisms on Total and Subregional Hippocampal Volumes in Early Onset Heavy Cannabis Users. Cannabis Cannabinoid Res 2018; 3:1-10. [PMID: 29404409 PMCID: PMC5797324 DOI: 10.1089/can.2017.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Hippocampal neuroanatomy is affected by genetic variations in dopaminergic candidate genes and environmental insults, such as early onset of chronic cannabis exposure. Here, we examine how hippocampal total and subregional volumes are affected by cannabis use and functional polymorphisms of dopamine-relevant genes, including the catechol-O-methyltransferase (COMT), dopamine transporter (DAT1), and the brain-derived neurotrophic factor (BDNF) genes. Material and Methods: We manually traced total hippocampal volumes and automatically segmented hippocampal subregions using high-resolution MRI images, and performed COMT, DAT1, and BDNF genotyping in 59 male Caucasian young adults aged 18–30 years. These included 30 chronic cannabis users with early-onset (regular use at <16 years) and 29 age-, education-, and intelligence-matched controls. Results: Cannabis use and dopaminergic gene polymorphism had both distinct and interactive effects on the hippocampus. We found emerging alterations of hippocampal total and specific subregional volumes in cannabis users relative to controls (i.e., CA1, CA2/3, and CA4), and associations between cannabis use levels and total and specific subregional volumes. Furthermore, total hippocampal volume and the fissure subregion were affected by cannabis×DAT1 polymorphism (i.e., 9/9R and in 10/10R alleles), reflecting high and low levels of dopamine availability. Conclusion: These findings suggest that cannabis exposure alters the normal relationship between DAT1 polymorphism and the anatomy of total and subregional hippocampal volumes, and that specific hippocampal subregions may be particularly affected.
Collapse
Affiliation(s)
- Albert Batalla
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, The Netherlands
| | - Valentina Lorenzetti
- School of Psychological Sciences, Institute of Psychology Health and Society, The University of Liverpool, Liverpool, United Kingdom.,Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Yann Chye
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Murat Yücel
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, CIBERSAM G-17, and Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Marta Torrens
- Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José A S Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Rocío Martín-Santos
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| |
Collapse
|
22
|
Abstract
Imaging genetics is a research methodology studying the effect of genetic variation on brain structure, function, behavior, and risk for psychopathology. Since the early 2000s, imaging genetics has been increasingly used in the research of schizophrenia (SZ). SZ is a severe mental disorder with no precise knowledge of its underlying neurobiology, however, new genetic and neurobiological data generate a climate for new avenues. The accumulating data of genome wide association studies (GWAS) continuously decode SZ risk genes. Global neuroimaging consortia produce collections of brain phenotypes from tens of thousands of people. In this context, imaging genetics will be strategically important both for the validation and discovery of SZ related findings. Thus, the study of GWAS supported risk variants as candidate genes to validate by neuroimaging is one trend. The study of epigenetic differences in relation to variations of brain phenotypes and the study of large scale multivariate analysis of genome wide and brain wide associations are other trends. While these studies hold a big potential for understanding the neurobiology of SZ, the problem of reproducibility appears as a major challenge, which requires standardizations in study designs and compensations of methodological limitations such as sensitivity and specificity. On the other hand, advancements of neuroimaging, optical and electron microscopy along with the use of genetically encoded fluorescent probes and robust statistical approaches will not only catalyze integrative methodologies but also will help better design the imaging genetics studies. In this invited paper, I will discuss the current perspective of imaging genetics and emerging opportunities of SZ research.
Collapse
Affiliation(s)
- Ayla Arslan
- Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.
| |
Collapse
|
23
|
Mufford MS, Stein DJ, Dalvie S, Groenewold NA, Thompson PM, Jahanshad N. Neuroimaging genomics in psychiatry-a translational approach. Genome Med 2017; 9:102. [PMID: 29179742 PMCID: PMC5704437 DOI: 10.1186/s13073-017-0496-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuroimaging genomics is a relatively new field focused on integrating genomic and imaging data in order to investigate the mechanisms underlying brain phenotypes and neuropsychiatric disorders. While early work in neuroimaging genomics focused on mapping the associations of candidate gene variants with neuroimaging measures in small cohorts, the lack of reproducible results inspired better-powered and unbiased large-scale approaches. Notably, genome-wide association studies (GWAS) of brain imaging in thousands of individuals around the world have led to a range of promising findings. Extensions of such approaches are now addressing epigenetics, gene–gene epistasis, and gene–environment interactions, not only in brain structure, but also in brain function. Complementary developments in systems biology might facilitate the translation of findings from basic neuroscience and neuroimaging genomics to clinical practice. Here, we review recent approaches in neuroimaging genomics—we highlight the latest discoveries, discuss advantages and limitations of current approaches, and consider directions by which the field can move forward to shed light on brain disorders.
Collapse
Affiliation(s)
- Mary S Mufford
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, 7925
| | - Dan J Stein
- MRC Unit on Risk and Resilience, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, 7925.,Department of Psychiatry and Mental Health, Groote Schuur Hospital, Cape Town, South Africa, 7925
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa, 7925
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Groote Schuur Hospital, Cape Town, South Africa, 7925
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90292, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90292, USA.
| |
Collapse
|
24
|
Moore AA, Sawyers C, Adkins DE, Docherty AR. Opportunities for an enhanced integration of neuroscience and genomics. Brain Imaging Behav 2017; 12:1211-1219. [PMID: 29063506 DOI: 10.1007/s11682-017-9780-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroimaging and genetics are two rapidly expanding fields of research. Thoughtful integration of these areas is critical for ongoing large-scale research into the genetic mechanisms underlying brain structure, function, and development. Neuroimaging genetics has been slow to evolve relative to psychiatric genetics research, and some may be unaware that new statistical methods allow for the genomic analysis of more modestly-sized imaging samples. We present a broad overview of the extant imaging genetics literature, provide an interpretation of the major problems surrounding the integration of neuroimaging and genetics, discuss the influence and impact of genetics consortia, and suggest statistical genetic analyses that expand the repertoire of imaging researchers amassing rich behavioral data in modestly-sized samples. Specific attention is paid to the creative use of polygenic risk scoring in imaging genetic analyses, with primers on the most current risk scoring applications.
Collapse
Affiliation(s)
- Ashlee A Moore
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23220, USA.,Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23220, USA.,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Daniel E Adkins
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23220, USA.,University Neuropsychiatric Institute, University of Utah School of Medicine, 501 Chipeta Way, Salt Lake City, UT, 84110, USA.,Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84110, USA.,Department of Sociology, University of Utah, Salt Lake City, UT, 84110, USA
| | - Anna R Docherty
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23220, USA. .,University Neuropsychiatric Institute, University of Utah School of Medicine, 501 Chipeta Way, Salt Lake City, UT, 84110, USA. .,Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84110, USA.
| |
Collapse
|
25
|
Cherkasova MV, Faridi N, Casey KF, Larcher K, O'Driscoll GA, Hechtman L, Joober R, Baker GB, Palmer J, Evans AC, Dagher A, Benkelfat C, Leyton M. Differential Associations between Cortical Thickness and Striatal Dopamine in Treatment-Naïve Adults with ADHD vs. Healthy Controls. Front Hum Neurosci 2017; 11:421. [PMID: 28878639 PMCID: PMC5572420 DOI: 10.3389/fnhum.2017.00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Alterations in catecholamine signaling and cortical morphology have both been implicated in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). However, possible links between the two remain unstudied. Here, we report exploratory analyses of cortical thickness and its relation to striatal dopamine transmission in treatment-naïve adults with ADHD and matched healthy controls. All participants had one magnetic resonance imaging (MRI) and two [11C]raclopride positron emission tomography scans. Associations between frontal cortical thickness and the magnitude of d-amphetamine-induced [11C]raclopride binding changes were observed that were divergent in the two groups. In the healthy controls, a thicker cortex was associated with less dopamine release; in the ADHD participants the converse was seen. The same divergence was seen for baseline D2/3 receptor availability. In healthy volunteers, lower D2/3 receptor availability was associated with a thicker cortex, while in the ADHD group lower baseline D2/3 receptor availability was associated with a thinner cortex. Individual differences in cortical thickness in these regions correlated with ADHD symptom severity. Together, these findings add to the evidence of associations between dopamine transmission and cortical morphology, and suggest that these relationships are altered in treatment-naïve adults with ADHD.
Collapse
Affiliation(s)
- Mariya V Cherkasova
- Division of Neurology, Department of Medicine, University of British ColumbiaVancouver, BC, Canada
| | - Nazlie Faridi
- Department of Medicine, Stanford UniversityStanford, CA, United States
| | - Kevin F Casey
- Centre Hospitalier Universitaire Sainte-JustineMontréal, QC, Canada
| | - Kevin Larcher
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Gillian A O'Driscoll
- Department of Psychology, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | - Lily Hechtman
- Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | | | - Glen B Baker
- Department of Psychiatry, University of AlbertaMontréal, QC, Canada
| | | | - Alan C Evans
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Chawki Benkelfat
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | - Marco Leyton
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada.,Department of Psychology, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada.,Center for Studies in Behavioral Neurobiology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
26
|
Sexually divergent effect of COMT Val/met genotype on subcortical volumes in schizophrenia. Brain Imaging Behav 2017; 12:829-836. [DOI: 10.1007/s11682-017-9748-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Gong L, He C, Yin Y, Ye Q, Bai F, Yuan Y, Zhang H, Lv L, Zhang H, Zhang Z, Xie C. Nonlinear modulation of interacting between COMT and depression on brain function. Eur Psychiatry 2017; 45:6-13. [PMID: 28728097 DOI: 10.1016/j.eurpsy.2017.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear. METHODS Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function. RESULTS We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease×COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system). CONCLUSION Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD.
Collapse
Affiliation(s)
- L Gong
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China
| | - C He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China
| | - Y Yin
- Department of Psychology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009 Jiangsu, China
| | - Q Ye
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China
| | - F Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China; Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, 210009 Jiangsu, China
| | - Y Yuan
- Department of Psychology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009 Jiangsu, China; Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, 210009 Jiangsu, China
| | - H Zhang
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan, China
| | - L Lv
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan, China
| | - H Zhang
- Department of Psychiatry, Henan Mental Hospital, the Second Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan, China
| | - Z Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China; Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, 210009 Jiangsu, China
| | - C Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87, DingJiaQiao Road, Nanjing, 210009 Jiangsu, PR China; Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, 210009 Jiangsu, China.
| |
Collapse
|
28
|
Thompson CA, Karelis J, Middleton FA, Gentile K, Coman IL, Radoeva PD, Mehta R, Fremont WP, Antshel KM, Faraone SV, Kates WR. Associations between neurodevelopmental genes, neuroanatomy, and ultra high risk symptoms of psychosis in 22q11.2 deletion syndrome. Am J Med Genet B Neuropsychiatr Genet 2017; 174:295-314. [PMID: 28139055 DOI: 10.1002/ajmg.b.32515] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/07/2016] [Indexed: 11/06/2022]
Abstract
22q11.2 deletion syndrome is a neurogenetic disorder resulting in the deletion of over 40 genes. Up to 40% of individuals with 22q11.2DS develop schizophrenia, though little is known about the underlying mechanisms. We hypothesized that allelic variation in functional polymorphisms in seven genes unique to the deleted region would affect lobar brain volumes, which would predict risk for psychosis in youth with 22q11.2DS. Participants included 56 individuals (30 males) with 22q11.2DS. Anatomic MR images were collected and processed using Freesurfer. Participants were genotyped for 10 SNPs in the COMT, DGCR8, GNB1L, PIK4CA, PRODH, RTN4R, and ZDHHC8 genes. All subjects were assessed for ultra high risk symptoms of psychosis. Allelic variation of the rs701428 SNP of RTN4R was significantly associated with volumetric differences in gray matter of the lingual gyrus and cuneus of the occipital lobe. Moreover, occipital gray matter volumes were robustly associated with ultra high risk symptoms of psychosis in the presence of the G allele of rs701428. Our results suggest that RTN4R, a relatively under-studied gene at the 22q11 locus, constitutes a susceptibility gene for psychosis in individuals with this syndrome through its alteration of the architecture of the brain. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlie A Thompson
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Jason Karelis
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Frank A Middleton
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Neuroscience, SUNY Upstate Medical University, Syracuse, New York
| | - Karen Gentile
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, New York
| | - Ioana L Coman
- Department of Computer Science, SUNY Oswego, Oswego, New York
| | - Petya D Radoeva
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Rashi Mehta
- Department of Radiology, SUNY Upstate Medical University, Syracuse, New York
| | - Wanda P Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Kevin M Antshel
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Psychology, Syracuse University, Syracuse, New York
| | - Stephen V Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
29
|
ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging Behav 2017; 12:13-19. [DOI: 10.1007/s11682-016-9671-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Lin Z, He H, Zhang C, Wang Z, Jiang M, Li Q, Lan X, Zhang M, Huang X. Influence of Val108/158Met COMT Gene Polymorphism on the Efficacy of Modified Electroconvulsive Therapy in Patients with Treatment Resistant Depression. Cell Biochem Biophys 2016; 71:1387-93. [PMID: 25388840 DOI: 10.1007/s12013-014-0361-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Depression is a common emotional disorder associated with increased risk of suicide and rate of disability. In this double-blinded control study, we tested the efficacy of modified electroconvulsive therapy (MECT) in patients with treatment resistant depression (TRD) using the Hamilton Depression Rating Scale for Depression (HAMD). The total scores of HAMD were found to be significantly decreased after the treatment. The genotyping of catechol-O-methyltransferase (COMT) was carried out with polymerase chain reaction-based testing. Our results demonstrated that frequency of mutant COMT alleles in TRD patients was significantly higher than that of the controls indicating a correlation of the enzyme genotype to the occurrence of TRD. Moreover, the patients homozygous for wild-type COMT gene (G/G) were evidenced to be more sensitive to MECT treatment than those with an heterozygous mutant genotype (A/G).
Collapse
Affiliation(s)
- Zhaoyu Lin
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Hongbo He
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Chunping Zhang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Zhijie Wang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Miaoling Jiang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Qirong Li
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Xiaochang Lan
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Minling Zhang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China
| | - Xiong Huang
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical University, 36 Mingxin Rd, Liwan District, Guangzhou, 510370, People's Republic of China.
| |
Collapse
|
31
|
Xu J, Qin W, Li Q, Li W, Liu F, Liu B, Jiang T, Yu C. Prefrontal Volume Mediates Effect ofCOMTPolymorphism on Interference Resolution Capacity in Healthy Male Adults. Cereb Cortex 2016; 27:5211-5221. [DOI: 10.1093/cercor/bhw301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
|
32
|
Udina M, Navinés R, Egmond E, Oriolo G, Langohr K, Gimenez D, Valdés M, Gómez-Gil E, Grande I, Gratacós M, Kapczinski F, Artigas F, Vieta E, Solà R, Martín-Santos R. Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression. Int J Neuropsychopharmacol 2016; 19:pyv135. [PMID: 26721949 PMCID: PMC4851270 DOI: 10.1093/ijnp/pyv135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/24/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. METHODS We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. RESULTS The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1.14), disorderliness (p = 0.0339, HR = 1.11), and low scores on extravagance (p = 0.0040, HR = 0.85). An interaction between HTR1A and COMT genes was found. Patients carrying the G allele of HTR1A plus the Met substitution of the COMT polymorphism had a greater risk for depression during antiviral treatment (HR = 3.83) than patients with the CC (HTR1A) and Met allele (COMT) genotypes. Patients carrying the HTR1A CC genotype and the COMT Val/Val genotype (HR = 3.25) had a higher risk of depression than patients with the G allele (HTR1A) and the Val/Val genotype. Moreover, functional variants of the GCR1 (GG genotype: p = 0.0436, HR = 1.88) and BDNF genes (Val/Val genotype: p = 0.0453, HR = 0.55) were associated with depression. CONCLUSIONS The results of the study support the theory that IFN-induced depression is associated with a complex pathophysiological background, including serotonergic and dopaminergic neurotransmission as well as glucocorticoid and neurotrophic factors. These findings may help to improve the management of patients on antiviral treatment and broaden our understanding of the pathogenesis of mood disorders.
Collapse
MESH Headings
- Adult
- Antiviral Agents/therapeutic use
- Brain-Derived Neurotrophic Factor/genetics
- Catechol O-Methyltransferase/genetics
- Depression/chemically induced
- Depression/epidemiology
- Depression/genetics
- Depression/immunology
- Female
- Genetic Predisposition to Disease
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/psychology
- Humans
- Incidence
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Interferon-alpha/adverse effects
- Interferon-alpha/therapeutic use
- Interferons
- Interleukins/genetics
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Prospective Studies
- Receptor, Serotonin, 5-HT1A/genetics
- Receptors, Glucocorticoid/genetics
- Ribavirin/therapeutic use
- Tacrolimus Binding Proteins/genetics
- Treatment Outcome
- White People/genetics
Collapse
Affiliation(s)
- M Udina
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Navinés
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Egmond
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - G Oriolo
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - K Langohr
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - D Gimenez
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - M Valdés
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Gómez-Gil
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - I Grande
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - M Gratacós
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - F Kapczinski
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - F Artigas
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - E Vieta
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Solà
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| | - R Martín-Santos
- Department of Psychiatry, Hospital Clínic, Institut d'Investigacions Biomèdiques de Barcelona (IDIBAPS), Spain (Drs Udina, Navinés, Egmond, Oriolo, Valdés, Gómez-Gil, Grande, Vieta, and Martín-Santos); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain (Drs Navinés, Grande, Artigas, Vieta, and Martín-Santos); Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain (Drs Oriolo, Valdés, Vieta, and Martín-Santos); Liver Section, Parc de Salut Mar, UAB, Barcelona, Spain (Drs Navinés, Gimenez, and Solà); Department of Clinical and Health Psychology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain (Egmond); Departament d'Estadística, Investigació Operativa, Universitat Politècnica de Catalunya and Research programme in Neurosciences, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (Dr Langohr); Center of Genomic Regulation, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain (Dr Gratacós); National Institute for Translational Medicine, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (Dr Kapczinski); Department of Neurochemistry and Neuropharmacology, Institute d'Investigacions Biomèdiques de Barcelona (IBB-CSIC-IDIBAPS), Spain (Dr Artigas)
| |
Collapse
|
33
|
Lee A, Qiu A. Modulative effects of COMT haplotype on age-related associations with brain morphology. Hum Brain Mapp 2016; 37:2068-82. [PMID: 26920810 DOI: 10.1002/hbm.23161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 12/25/2022] Open
Abstract
Catechol-O-methyltransferase (COMT), located on chromosome 22q11.2, encodes an enzyme critical for dopamine flux in the prefrontal cortex. Genetic variants of COMT have been suggested to functionally manipulate prefrontal morphology and function in healthy adults. This study aims to investigate modulative roles of individuals COMT SNPs (rs737865, val158met, rs165599) and its haplotypes in age-related brain morphology using an Asian sample with 174 adults aged from 21 to 80 years. We showed an age-related decline in cortical thickness of the dorsal visual pathway, including the left dorsolateral prefrontal cortex, bilateral angular gyrus, right superior frontal cortex, and age-related shape compression in the basal ganglia as a function of the genotypes of the individual COMT SNPs, especially COMT val158met. Using haplotype trend regression analysis, COMT haplotype probabilities were estimated and further revealed an age-related decline in cortical thickness in the default mode network (DMN), including the posterior cingulate, precuneus, supramarginal and paracentral cortex, and the ventral visual system, including the occipital cortex and left inferior temporal cortex, as a function of the COMT haplotype. Our results provided new evidence on an antagonistic pleiotropic effect in COMT, suggesting that genetically programmed neural benefits in early life may have a potential bearing towards neural susceptibility in later life. Hum Brain Mapp 37:2068-2082, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annie Lee
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore.,Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, 117609, Singapore
| |
Collapse
|
34
|
Won E, Ham BJ. Imaging genetics studies on monoaminergic genes in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:311-9. [PMID: 25828849 DOI: 10.1016/j.pnpbp.2015.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
Although depression is the leading cause of disability worldwide, current understanding of the neurobiology of depression has failed to be translated into clinical practice. Major depressive disorder (MDD) pathogenesis is considered to be significantly influenced by multiple risk genes, however genetic effects are not simply expressed at a behavioral level. Therefore the concept of endophenotype has been applied in psychiatric genetics. Imaging genetics applies anatomical or functional imaging technologies as phenotypic assays to evaluate genetic variation and their impact on behavior. This paper attempts to provide a comprehensive review of available imaging genetics studies, including reports on genetic variants that have most frequently been linked to MDD, such as the monoaminergic genes (serotonin transporter gene, monoamine oxidase A gene, tryptophan hydroxylase-2 gene, serotonin receptor 1A gene and catechol-O-methyl transferase gene), with regard to key structures involved in emotion processing, such as the hippocampus, amygdala, anterior cingulate cortex and orbitofrontal cortex.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Kabukcu Basay B, Buber A, Basay O, Alacam H, Ozturk O, Suren S, Izci Ay O, Acikel C, Agladıoglu K, Erdal ME, Ercan ES, Herken H. White matter alterations related to attention-deficit hyperactivity disorder and COMT val(158)met polymorphism: children with valine homozygote attention-deficit hyperactivity disorder have altered white matter connectivity in the right cingulum (cingulate gyrus). Neuropsychiatr Dis Treat 2016; 12:969-81. [PMID: 27143897 PMCID: PMC4844431 DOI: 10.2147/ndt.s104450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION In this article, the COMT gene val(158)met polymorphism and attention-deficit hyperactivity disorder (ADHD)-related differences in diffusion-tensor-imaging-measured white matter (WM) structure in children with ADHD and controls were investigated. PATIENTS AND METHODS A total of 71 children diagnosed with ADHD and 24 controls aged 8-15 years were recruited. Using diffusion tensor imaging, COMT polymorphism and ADHD-related WM alterations were investigated, and any interaction effect between the COMT polymorphism and ADHD was also examined. The effects of age, sex, and estimated total IQ were controlled by multivariate analysis of covariance (MANCOVA). RESULTS First, an interaction between the COMT val(158)met polymorphism and ADHD in the right (R) cingulum (cingulate gyrus) (CGC) was found. According to this, valine (val) homozygote ADHD-diagnosed children had significantly lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the R-CGC than ADHD-diagnosed methionine (met) carriers, and val homozygote controls had higher FA and lower RD in the R-CGC than val homozygote ADHD patients. Second, met carriers had higher FA and axial diffusivity in the left (L)-uncinate fasciculus and lower RD in the L-posterior corona radiata and L-posterior thalamic radiation (include optic radiation) than the val homozygotes, independent of ADHD diagnosis. Third, children with ADHD had lower FA in the L-CGC and R-retrolenticular part of the internal capsule than the controls, independent of the COMT polymorphism. CONCLUSION Significant differences reported here may be evidence that the COMT gene val(158)met polymorphism variants, as well as ADHD, could affect brain development. ADHD and the COMT polymorphism might be interactively affecting WM development in the R-CGC to alter the WM connectivity in children with val homozygote ADHD.
Collapse
Affiliation(s)
- Burge Kabukcu Basay
- Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Ahmet Buber
- Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Omer Basay
- Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Huseyin Alacam
- Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Onder Ozturk
- Child and Adolescent Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | | | - Ozlem Izci Ay
- Medical Biology and Genetics Department, Mersin University Medical Faculty, Mersin, Turkey
| | | | - Kadir Agladıoglu
- Radiology Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Mehmet Emin Erdal
- Medical Biology and Genetics Department, Mersin University Medical Faculty, Mersin, Turkey
| | - Eyup Sabri Ercan
- Child and Adolescent Psychiatry Department, Ege University Medical Faculty, Izmir, Turkey
| | - Hasan Herken
- Psychiatry Department, Pamukkale University Medical Faculty, Denizli, Turkey
| |
Collapse
|
36
|
Hashimoto R, Ohi K, Yamamori H, Yasuda Y, Fujimoto M, Umeda-Yano S, Watanabe Y, Fukunaga M, Takeda M. Imaging genetics and psychiatric disorders. Curr Mol Med 2015; 15:168-75. [PMID: 25732148 PMCID: PMC4460286 DOI: 10.2174/1566524015666150303104159] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 12/20/2014] [Accepted: 01/18/2015] [Indexed: 02/01/2023]
Abstract
Imaging genetics is an integrated research method that uses neuroimaging and genetics to assess the impact of genetic variation on brain function and structure. Imaging genetics is both a tool for the discovery of risk genes for psychiatric disorders and a strategy for characterizing the neural systems affected by risk gene variants to elucidate quantitative and mechanistic aspects of brain function implicated in psychiatric disease. Early studies of imaging genetics included association analyses between brain morphology and single nucleotide polymorphisms whose function is well known, such as catechol-Omethyltransferase (COMT) and brain-derived neurotrophic factor (BDNF). GWAS of psychiatric disorders have identified genes with unknown functions, such as ZNF804A, and imaging genetics has been used to investigate clues of the biological function of these genes. The difficulty in replicating the findings of studies with small sample sizes has motivated the creation of largescale collaborative consortiums, such as ENIGMA, CHARGE and IMAGEN, to collect thousands of images. In a genome-wide association study, the ENIGMA consortium successfully identified common variants in the genome associated with hippocampal volume at 12q24, and the CHARGE consortium replicated this finding. The new era of imaging genetics has just begun, and the next challenge we face is the discovery of small effect size signals from large data sets obtained from genetics and neuroimaging. New methods and technologies for data reduction with appropriate statistical thresholds, such as polygenic analysis and parallel independent component analysis (ICA), are warranted. Future advances in imaging genetics will aid in the discovery of genes and provide mechanistic insight into psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - M Takeda
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.
| |
Collapse
|
37
|
Watanabe K, Kakeda S, Yoshimura R, Ide S, Hayashi K, Katsuki A, Umene-Nakano W, Watanabe R, Abe O, Korogi Y. Genetic Variation in the Catechol-O-Methyl Transferase Val108/158Met Is Linked to the Caudate and Posterior Cingulate Cortex Volume in Healthy Subjects: Voxel-Based Morphometry Analysis of Brain Magnetic Resonance Imaging. PLoS One 2015; 10:e0142862. [PMID: 26566126 PMCID: PMC4643939 DOI: 10.1371/journal.pone.0142862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
The effect of the catechol-O-methyltransferase (COMT) Val158Met polymorphism on brain morphology has been investigated but remains controversial. We hypothesized that a comparison between Val/Val and Val/Met individuals, which may represent the most different combinations concerning the effects of the COMT genotype, may reveal new findings. We investigated the brain morphology using 3-Tesla magnetic resonance imaging in 27 Val/Val and 22 Val/Met individuals. Voxel-based morphometry revealed that the volumes of the bilateral caudate and posterior cingulate cortex were significantly smaller in Val/Val individuals than in Val/Met individuals [right caudate: false discovery rate (FDR)-corrected p = 0.048; left caudate: FDR-corrected p = 0.048; and bilateral posterior cingulate cortex: FDR-corrected p = 0.048]. This study demonstrates that interacting functional variants of COMT affect gray matter regional volumes in healthy subjects.
Collapse
Affiliation(s)
- Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Kenji Hayashi
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Wakako Umene-Nakano
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Rieko Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Osamu Abe
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yukunori Korogi
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Xu J, Qin W, Liu B, Jiang T, Yu C. Interactions of genetic variants reveal inverse modulation patterns of dopamine system on brain gray matter volume and resting-state functional connectivity in healthy young adults. Brain Struct Funct 2015; 221:3891-3901. [PMID: 26498330 PMCID: PMC5065899 DOI: 10.1007/s00429-015-1134-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022]
Abstract
Different genotypic combinations of COMT and DRD2 can generate multiple subgroups with different levels of dopamine signaling. Its modulations on brain properties can be investigated by analyzing the combined gene effects of COMT and DRD2. However, the inherent association between modulation patterns of the dopamine system on structural and functional properties of the brain remains unknown. In 294 healthy young adults, we investigated both additive and non-additive interactions of COMT and DRD2 on gray matter volume (GMV) and resting-state functional connectivity (rsFC) using a voxel-based analysis. We found a significant non-additive COMT × DRD2 interaction in the right dorsal anterior cingulate cortex (dACC), exhibiting an inverted U-shape modulation by dopamine signaling. We also found a significant non-additive COMT × DRD2 interaction in the rsFC between the right dACC and precuneus, displaying a U-shape modulation by dopamine signaling. Moreover, this rsFC was negatively correlated with the GMV of the right dACC. Although the additive interaction did not pass corrections for multiple comparisons, we also found a trend towards an inverse modulation pattern and a negative correlation between the GMV and rsFC of the right inferior frontal gyrus. No genotypic differences were detected in any assessments of the cognition, mood and personality. These findings suggest that healthy young adults without optimal dopamine signaling may maintain their normal behavioral performance via a functional compensatory mechanism in response to structural deficit due to genetic variation.
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
39
|
Cancel A, Comte M, Truillet R, Boukezzi S, Rousseau PF, Zendjidjian XY, Sage T, Lazerges PE, Guedj E, Khalfa S, Azorin JM, Blin O, Fakra E. Childhood neglect predicts disorganization in schizophrenia through grey matter decrease in dorsolateral prefrontal cortex. Acta Psychiatr Scand 2015; 132:244-56. [PMID: 26038817 DOI: 10.1111/acps.12455] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Psychosocial trauma during childhood is associated with schizophrenia vulnerability. The pattern of grey matter decrease is similar to brain alterations seen in schizophrenia. Our objective was to explore the links between childhood trauma, brain morphology and schizophrenia symptoms. METHOD Twenty-one patients with schizophrenia stabilized with atypical antipsychotic monotherapy and 30 healthy control subjects completed the study. Anatomical MRI images were analysed using optimized voxel-based morphometry (VBM). Childhood trauma was assessed with the Childhood Trauma Questionnaire, and symptoms were rated on the Scale for the Assessment of Negative Symptoms (SANS) and Scale for the Assessment of Positive Symptoms (SAPS) (disorganization, positive and negative symptoms). In the schizophrenia group, we used structural equation modelling in a path analysis. RESULTS Total grey matter volume was negatively associated with emotional neglect (EN) in patients with schizophrenia. Whole-brain VBM analyses of grey matter in the schizophrenia group revealed a specific inversed association between EN and the right dorsolateral prefrontal cortex (DLPFC). Path analyses identified a well-fitted model in which EN predicted grey matter density in DLPFC, which in turn predicted the disorganization score. CONCLUSION Our findings suggest that EN during childhood could have an impact on psychopathology in schizophrenia, which would be mediated by developmental effects on brain regions such as the DLPFC.
Collapse
Affiliation(s)
- A Cancel
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France.,Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - M Comte
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France
| | - R Truillet
- Public Assistance for Marseille Hospitals (APHM) Unit for Clinical Pharmacology and Therapeutic Evaluation (CIC-UPCET), CHU Timone Hospital, Marseille, France
| | - S Boukezzi
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France
| | - P-F Rousseau
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France.,Psychiatry Unit, Saint Anne Military Training Hospital, Toulon, France
| | - X Y Zendjidjian
- Department of Psychiatry, La Conception University Hospital, Marseille, France
| | - T Sage
- Clinic of Mental Health, L'escale, Orpea-Clinéa, Saint-Victoret, France
| | - P-E Lazerges
- Department of Psychiatry, Sainte Marguerite University Hospital, Marseille, France
| | - E Guedj
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France.,Biophysics and Nuclear Medicine Department, Timone Hospital, Marseille, France
| | - S Khalfa
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France
| | - J-M Azorin
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France.,Department of Psychiatry, Sainte Marguerite University Hospital, Marseille, France
| | - O Blin
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France.,Public Assistance for Marseille Hospitals (APHM) Unit for Clinical Pharmacology and Therapeutic Evaluation (CIC-UPCET), CHU Timone Hospital, Marseille, France
| | - E Fakra
- Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France.,Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
40
|
Shibata N, Nagata T, Tagai K, Shinagawa S, Ohnuma T, Kawai E, Kasanuki K, Shimazaki H, Toda A, Tagata Y, Nakada T, Nakayama K, Yamada H, Arai H. Association between the catechol-O-methyltransferase polymorphism Val158Met and Alzheimer's disease in a Japanese population. Int J Geriatr Psychiatry 2015; 30:927-33. [PMID: 25491588 DOI: 10.1002/gps.4237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/27/2014] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Catechol-O-methyltransferase (COMT) plays an important role in dopamine degradation, which is associated with the pathophysiology of Alzheimer's disease (AD) and alcoholism. A functional COMT polymorphism, Val158Met (rs4680 G > A), affects the onset of AD and is associated with alcohol dependence through dopamine receptor sensitivity in the prefrontal cortex. METHODS The aim of this case-control study (398 cases and 149 controls) was to investigate whether Val158Met polymorphism influences the onset of AD stratified according to alcohol consumption and apolipoprotein E (APOE) status. We also used single photon-emission computed tomography (SPECT) to analyse 26 patients with AD with the polymorphism. RESULTS As a function of APOE status, the genotypic frequencies of rs4680 in patients with AD did not differ from those in controls. We detected a significant association between high alcohol consumption in patients with AD (HAC-AD group) and the polymorphism in genotypic and allelic frequencies. Logistic regression analyses demonstrated that the presence of the APOE genotype with rs4680 increased the risk for HAC-AD synergistically. Hyperperfusion in the right sub-lobar insula of patients with the G/G genotype was found compared with that of patients with the G/A genotype. SPECT studies showed a relationship between the polymorphism and compensatory reactions for dysfunctions of dopaminergic neurotransmission in AD pathophysiology. CONCLUSION Although genetic association between the polymorphism and the onset of AD in a Japanese population were not observed, the polymorphism affected the risk for HAC-AD.
Collapse
Affiliation(s)
- Nobuto Shibata
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyuki Nagata
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan.,Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Kenji Tagai
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | | | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Eri Kawai
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kasanuki
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromi Shimazaki
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Aiko Toda
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuko Tagata
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoko Nakada
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhiko Nakayama
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Hisashi Yamada
- Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Heii Arai
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Bühler KM, Giné E, Echeverry-Alzate V, Calleja-Conde J, de Fonseca FR, López-Moreno JA. Common single nucleotide variants underlying drug addiction: more than a decade of research. Addict Biol 2015; 20:845-71. [PMID: 25603899 DOI: 10.1111/adb.12204] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-related phenotypes are common complex and highly heritable traits. In the last few years, candidate gene (CGAS) and genome-wide association studies (GWAS) have identified a huge number of single nucleotide polymorphisms (SNPs) associated with drug use, abuse or dependence, mainly related to alcohol or nicotine. Nevertheless, few of these associations have been replicated in independent studies. The aim of this study was to provide a review of the SNPs that have been most significantly associated with alcohol-, nicotine-, cannabis- and cocaine-related phenotypes in humans between the years of 2000 and 2012. To this end, we selected CGAS, GWAS, family-based association and case-only studies published in peer-reviewed international scientific journals (using the PubMed/MEDLINE and Addiction GWAS Resource databases) in which a significant association was reported. A total of 371 studies fit the search criteria. We then filtered SNPs with at least one replication study and performed meta-analysis of the significance of the associations. SNPs in the alcohol metabolizing genes, in the cholinergic gene cluster CHRNA5-CHRNA3-CHRNB4, and in the DRD2 and ANNK1 genes, are, to date, the most replicated and significant gene variants associated with alcohol- and nicotine-related phenotypes. In the case of cannabis and cocaine, a far fewer number of studies and replications have been reported, indicating either a need for further investigation or that the genetics of cannabis/cocaine addiction are more elusive. This review brings a global state-of-the-art vision of the behavioral genetics of addiction and collaborates on formulation of new hypothesis to guide future work.
Collapse
Affiliation(s)
- Kora-Mareen Bühler
- Department of Psychobiology; School of Psychology; Complutense University of Madrid; Málaga Spain
| | - Elena Giné
- Department of Cellular Biology; School of Medicine; Complutense University of Madrid; Málaga Spain
| | - Victor Echeverry-Alzate
- Department of Psychobiology; School of Psychology; Complutense University of Madrid; Málaga Spain
| | - Javier Calleja-Conde
- Department of Psychobiology; School of Psychology; Complutense University of Madrid; Málaga Spain
| | | | | |
Collapse
|
42
|
Lamb YN, Thompson CS, McKay NS, Waldie KE, Kirk IJ. The brain-derived neurotrophic factor (BDNF) val66met polymorphism differentially affects performance on subscales of the Wechsler Memory Scale - Third Edition (WMS-III). Front Psychol 2015; 6:1212. [PMID: 26347681 PMCID: PMC4538220 DOI: 10.3389/fpsyg.2015.01212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/30/2015] [Indexed: 01/02/2023] Open
Abstract
Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and the catechol-O-methyltransferase (COMT) gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC), respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val66met or COMT val158met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale – Third Edition (WMS-III). COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e., met carriers relative to val homozygotes) was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.
Collapse
Affiliation(s)
- Yvette N Lamb
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Christopher S Thompson
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Nicole S McKay
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Karen E Waldie
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| | - Ian J Kirk
- School of Psychology, Faculty of Science, The University of Auckland, Auckland New Zealand
| |
Collapse
|
43
|
The association of RAB18 gene polymorphism (rs3765133) with cerebellar volume in healthy adults. THE CEREBELLUM 2015; 13:616-22. [PMID: 24996981 DOI: 10.1007/s12311-014-0579-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic factors are responsible for the development of the human brain. Certain genetic factors are known to increase the risk of common brain disorders and affect the brain structure. Therefore, even in healthy people, these factors have a role in the development of specific brain regions. Loss-of-function mutations in the RAB18 gene (RAB18) cause Warburg Micro syndrome, which is associated with reduced brain size and deformed brain structures. In this study, we hypothesized that the RAB18 variant might influence regional brain volumes in healthy people. The study participants comprised 246 normal volunteers between 21 and 59 years of age (mean age of 37.8 ± 12.0 years; 115 men, 131 women). Magnetic resonance imaging (MRI) and genotypes of RAB18 rs3765133 were examined for each participant. The differences in regional brain volumes between T homozygotes and A-allele carriers were tested using voxel-based morphometry. The results showed that RAB18 rs3765133 T homozygote group exhibited larger gray matter (GM) volume in the left middle temporal and inferior frontal gyrus of the cerebrum than the A-allele carriers. An opposite effect was observed in both the posterior lobes and right tonsil of the cerebellum, in which the GM volume of RAB18 rs3765133 T homozygotes was smaller than that of the A-allele carriers (all P FWE < 0.05). Our findings suggest that RAB18 rs3765133 polymorphism affects the deve-lopment of specific brain regions, particularly the cerebellum, in healthy people.
Collapse
|
44
|
Vijayakumari AA, John JP, Halahalli HN, Paul P, Thirunavukkarasu P, Purushottam M, Jain S. Effect of polymorphisms of three genes mediating monoamine signalling on brain morphometry in schizophrenia and healthy subjects. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:68-82. [PMID: 25912540 PMCID: PMC4423152 DOI: 10.9758/cpn.2015.13.1.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/18/2014] [Accepted: 10/19/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We examined the effect of risk alleles of polymorphisms of three schizophrenia risk genes that mediate monoamine signalling in the brain on regional brain volumes of schizophrenia and healthy control subjects. The risk alleles and the gene polymorphisms studied were: Val allele of catechol o-methyltransferase (COMT) rs4680 polymorphism; short allele of 5-hydroxy tryptamine transporter linked polymorphic region (5HTTLPR) polymorphism; and T allele of 5-hydroxy tryptamine 2A (5HT2A) rs6314 polymorphism. METHODS The study was carried out on patients with recent onset schizophrenia (n=41) recruited from the outpatient department of National Institute of Mental Health and Neurosciences, Bangalore, India and healthy control subjects (n=39), belonging to South Indian Dravidian ethnicity. Individual and additive effects of risk alleles of the above gene polymorphisms on brain morphometry were explored using voxel-based morphometry. RESULTS Irrespective of phenotypes, individuals with the risk allele T of the rs6314 polymorphism of 5HT2A gene showed greater (at cluster-extent equivalent to family wise error-correction [FWEc] p<0.05) regional brain volumes in the left inferior temporal and left inferior occipital gyri. Those with the risk alleles of the other two polymorphisms showed a trend (at p<0.001, uncorrected) towards lower regional brain volumes. A trend (at p<0.001, uncorrected) towards additive effects of the above 3 risk alleles (subjects with 2 or 3 risk alleles vs. those with 1 or no risk alleles) on brain morphology was also noted. CONCLUSIONS The findings of the present study have implications in understanding the role of individual and additive effects of genetic variants in mediating regional brain morphometry in health and disease.
Collapse
Affiliation(s)
- Anupa A Vijayakumari
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - John P John
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Departments of Clinical Neuroscience, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Harsha N Halahalli
- Departments of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pradip Paul
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Priyadarshini Thirunavukkarasu
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
45
|
Villemonteix T, De Brito SA, Slama H, Kavec M, Balériaux D, Metens T, Baijot S, Mary A, Ramoz N, Septier M, Gorwood P, Peigneux P, Massat I. Structural correlates of COMT Val158Met polymorphism in childhood ADHD: a voxel-based morphometry study. World J Biol Psychiatry 2015; 16:190-9. [PMID: 25495556 DOI: 10.3109/15622975.2014.984629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The Val158-allele of the catechol-O-methyltransferase (COMT) Val158Met (rs4680) functional polymorphism has been identified as a risk factor for antisocial behaviour in attention-deficit/hyperactivity disorder (ADHD). Here, we used voxel-based morphometry to investigate the effects of Val158Met polymorphism on grey matter (GM) volumes in a sample of 7-13-year-old children. METHODS MRI and genotype data were obtained for 38 children with combined-type ADHD and 24 typically developing (TD) children. Four regions of interest were identified: striatum, cerebellum, temporal lobe and inferior frontal gyrus (IFG). RESULTS When compared to TD children, those with ADHD had a significant decrease of GM volume in the IFG. Volume in this region was negatively correlated with ratings of hyperactivity/impulsivity symptoms. Furthermore, the smaller GM volume in the IFG was attributed to the presence of the Met158-allele, as only children with ADHD carrying a Met158-allele exhibited such decrease in the IFG. Children with ADHD homozygotes for the Val158-allele presented increased GM volume in the caudate nucleus when compared with TD children. CONCLUSIONS This study provides the first evidence of a modulation of ADHD-related GM volume alterations by Val158Met in two key regions, possibly mediating the relationship between Val158Met polymorphism and antisocial behaviour in children with ADHD.
Collapse
|
46
|
Brett ZH, Sheridan M, Humphreys K, Smyke A, Gleason MM, Fox N, Zeanah C, Nelson C, Drury S. A neurogenetics approach to defining differential susceptibility to institutional care. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2015; 39:150-160. [PMID: 25663728 PMCID: PMC4317330 DOI: 10.1177/0165025414538557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An individual's neurodevelopmental and cognitive sequelae to negative early experiences may, in part, be explained by genetic susceptibility. We examined whether extreme differences in the early caregiving environment, defined as exposure to severe psychosocial deprivation associated with institutional care compared to normative rearing, interacted with a biologically informed genoset comprising BDNF (rs6265), COMT (rs4680), and SIRT1 (rs3758391) to predict distinct outcomes of neurodevelopment at age 8 (N = 193, 97 males and 96 females). Ethnicity was categorized as Romanian (71%), Roma (21%), unknown (7%), or other (1%). We identified a significant interaction between early caregiving environment (i.e., institutionalized versus never institutionalized children) and the a priori defined genoset for full-scale IQ, two spatial working memory tasks, and prefrontal cortex gray matter volume. Model validation was performed using a bootstrap resampling procedure. Although we hypothesized that the effect of this genoset would operate in a manner consistent with differential susceptibility, our results demonstrate a complex interaction where vantage susceptibility, diathesis stress, and differential susceptibility are implicated.
Collapse
Affiliation(s)
| | | | | | - Anna Smyke
- Tulane University School of Medicine, USA
| | | | | | | | - Charles Nelson
- Boston Children's Hospital and Harvard Medical School, USA
| | | |
Collapse
|
47
|
Liu J, Lan L, Mu J, Zhao L, Yuan K, Zhang Y, Huang L, Liang F, Tian J. Genetic contribution of catechol-O-methyltransferase in hippocampal structural and functional changes of female migraine sufferers. Hum Brain Mapp 2015; 36:1782-95. [PMID: 25598522 DOI: 10.1002/hbm.22737] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/16/2014] [Accepted: 01/02/2015] [Indexed: 02/06/2023] Open
Abstract
Physiological and emotional stressors are associated with or provoke each migraine attack and cause structural and functional changes in the central nervous system. The hippocampus, a limbic structure important in anxiety-related behavior, is vulnerable to long-term stress. Given that catechol-O-methyltransferase (COMT) is widely distributed in the hippocampus and its genetic variation is thought to contribute to the interindividual variability in pain perception and anxiety regulation, whether or not migraine and COMT val(158) met genotype have an interactive effect in the key brain area related to maladaptive stress, the hippocampus, is still poorly understood. Using T1-weighted and resting functional MRI, we evaluated the effect of COMT genetic variations on migraine and possible interactions between COMT and the disease in brain structure and function in 135 females with migraine without aura (MWoA) and 111 matched health controls (HC). Optimized voxel-based morphometry (VBM) and functional connectivity (FC) analyses were applied. From the whole brain VBM analysis, we found a significant disease × genotype interaction in the hippocampus, which overlapped with disease-related increase of gray matter (GM) in val homozygote migraineurs. In our results, increased GM in the hippocampus was only found in val homozygote MWoA compared to val homozygote HC. Moreover, FC between the hippocampus and the medial prefrontal cortex was significantly decreased in val homozygotes, and it was negatively correlated with self-rating anxiety scale values.Our results indicated that brain structure and function of the hippocampus are differentially affected by migraine in val homozygotes compared with met carriers.
Collapse
Affiliation(s)
- Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li ML, Xiang B, Li YF, Hu X, Wang Q, Guo WJ, Lei W, Huang CH, Zhao LS, Li N, Ren HY, Wang HY, Ma XH, Deng W, Li T. Morphological changes in gray matter volume correlate with catechol-O-methyl transferase gene Val158Met polymorphism in first-episode treatment-naïve patients with schizophrenia. Neurosci Bull 2015; 31:31-42. [PMID: 25564193 DOI: 10.1007/s12264-014-1491-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene, Val158/158Met, has been proposed to influence gray matter volume (GMV). However, the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study, we explored the relationship between the Val158Met polymorphism of the COMT gene and the GMV/cortical thickness/cortical surface area in 150 first-episode treatment-naïve patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual, medial temporal, parietal, and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover, a diagnosis × genotype interaction was found for the GMV of the left precuneus, and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition, a pattern of increased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia, and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area.
Collapse
Affiliation(s)
- Ming-Li Li
- The Mental Health Center and the Psychiatric Laboratory, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Boyle CP, Raji CA, Erickson KI, Lopez OL, Becker JT, Gach HM, Longstreth WT, Teverovskiy L, Kuller LH, Carmichael OT, Thompson PM. Physical activity, body mass index, and brain atrophy in Alzheimer's disease. Neurobiol Aging 2015; 36 Suppl 1:S194-S202. [PMID: 25248607 PMCID: PMC4303036 DOI: 10.1016/j.neurobiolaging.2014.05.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/23/2014] [Accepted: 05/08/2014] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to use a novel imaging biomarker to assess associations between physical activity (PA), body mass index (BMI), and brain structure in normal aging, mild cognitive impairment, and Alzheimer's dementia. We studied 963 participants (mean age: 74.1 ± 4.4 years) from the multisite Cardiovascular Health Study including healthy controls (n = 724), Alzheimer's dementia patients (n = 104), and people with mild cognitive impairment (n = 135). Volumetric brain images were processed using tensor-based morphometry to analyze regional brain volumes. We regressed the local brain tissue volume on reported PA and computed BMI, and performed conjunction analyses using both variables. Covariates included age, sex, and study site. PA was independently associated with greater whole brain and regional brain volumes and reduced ventricular dilation. People with higher BMI had lower whole brain and regional brain volumes. A PA-BMI conjunction analysis showed brain preservation with PA and volume loss with increased BMI in overlapping brain regions. In one of the largest voxel-based cross-sectional studies to date, PA and lower BMI may be beneficial to the brain across the spectrum of aging and neurodegeneration.
Collapse
Affiliation(s)
- Christina P. Boyle
- Imaging Genetics Center, and Departments of Neurology, Psychiatry, Pediatrics, Engineering, Radiology, and Ophthalmology, Keck USC School of Medicine, University of Southern California, Los Angeles, CA
| | - Cyrus A. Raji
- Imaging Genetics Center, and Departments of Neurology, Psychiatry, Pediatrics, Engineering, Radiology, and Ophthalmology, Keck USC School of Medicine, University of Southern California, Los Angeles, CA
- Department of Radiology, UCLA School of Medicine, Los Angeles, CA
| | - Kirk I. Erickson
- Department of Psychology University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Oscar L. Lopez
- Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - James T. Becker
- Department of Psychology University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Psychiatry University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - H. Michael Gach
- Department of Radiology at University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - W. T. Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA
| | - Leonid Teverovskiy
- Department of Psychology University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lewis H. Kuller
- Department of Epidemiology at the University of Pittsburgh Graduate School of Public Health at Pittsburgh, PA
| | | | - Paul M. Thompson
- Imaging Genetics Center, and Departments of Neurology, Psychiatry, Pediatrics, Engineering, Radiology, and Ophthalmology, Keck USC School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
50
|
Raffield LM, Cox AJ, Hugenschmidt CE, Freedman BI, Langefeld CD, Williamson JD, Hsu FC, Maldjian JA, Bowden DW. Heritability and genetic association analysis of neuroimaging measures in the Diabetes Heart Study. Neurobiol Aging 2014; 36:1602.e7-15. [PMID: 25523635 DOI: 10.1016/j.neurobiolaging.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/15/2014] [Indexed: 12/24/2022]
Abstract
Patients with type 2 diabetes are at increased risk of age-related cognitive decline and dementia. Neuroimaging measures such as white matter lesion volume, brain volume, and fractional anisotropy may reflect the pathogenesis of these cognitive declines, and genetic factors may contribute to variability in these measures. This study examined multiple neuroimaging measures in 465 participants from 238 families with extensive genotype data in the type 2 diabetes enriched Diabetes Heart Study-Mind cohort. Heritability of these phenotypes and their association with candidate single-nucleotide polymorphisms (SNPs), and SNP data from genome- and exome-wide arrays were explored. All neuroimaging measures analyzed were significantly heritable (ĥ(2) = 0.55-0.99 in unadjusted models). Seventeen candidate SNPs (from 16 genes/regions) associated with neuroimaging phenotypes in prior studies showed no significant evidence of association. A missense variant (rs150706952, A432V) in PLEKHG4B from the exome-wide array was significantly associated with white matter mean diffusivity (p = 3.66 × 10(-7)) and gray matter mean diffusivity (p = 2.14 × 10(-7)). This analysis suggests genetic factors contribute to variation in neuroimaging measures in a population enriched for metabolic disease and other associated comorbidities.
Collapse
Affiliation(s)
- Laura M Raffield
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amanda J Cox
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christina E Hugenschmidt
- Department of Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine-Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff D Williamson
- Department of Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joseph A Maldjian
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|