1
|
Pillay SB, Gross WL, Heffernan J, Book DS, Binder JR. Semantic network activation facilitates oral word reading in chronic aphasia. BRAIN AND LANGUAGE 2022; 233:105164. [PMID: 35933744 PMCID: PMC9948519 DOI: 10.1016/j.bandl.2022.105164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
People with aphasia often show partial impairments on a given task. This trial-to-trial variability offers a potential window into understanding how damaged language networks function. We test the hypothesis that successful word reading in participants with phonological system damage reflects semantic system recruitment. Residual semantic and phonological networks were defined with fMRI in 21 stroke participants with phonological damage using semantic- and rhyme-matching tasks. Participants performed an oral word reading task, and activation was compared between correct and incorrect trials within the semantic and phonological networks. The results showed a significant interaction between hemisphere, network activation, and reading success. Activation in the left hemisphere semantic network was higher when participants successfully read words. Residual phonological regions showed no difference in activation between correct and incorrect trials on the word reading task. The results provide evidence that semantic processing supports successful phonological retrieval in participants with phonological impairment.
Collapse
Affiliation(s)
- Sara B Pillay
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - William L Gross
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Joseph Heffernan
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Diane S Book
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jeffrey R Binder
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
2
|
Reinvestigating the Neural Bases Involved in Speech Production of Stutterers: An ALE Meta-Analysis. Brain Sci 2022; 12:brainsci12081030. [PMID: 36009093 PMCID: PMC9406059 DOI: 10.3390/brainsci12081030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Stuttering is characterized by dysfluency and difficulty in speech production. Previous research has found abnormalities in the neural function of various brain areas during speech production tasks. However, the cognitive neural mechanism of stuttering has still not been fully determined. Method: Activation likelihood estimation analysis was performed to provide neural imaging evidence on neural bases by reanalyzing published studies. Results: Our analysis revealed overactivation in the bilateral posterior superior temporal gyrus, inferior frontal gyrus, medial frontal gyrus, precentral gyrus, postcentral gyrus, basal ganglia, and cerebellum, and deactivation in the anterior superior temporal gyrus and middle temporal gyrus among the stutterers. The overactivated regions might indicate a greater demand in feedforward planning in speech production, while the deactivated regions might indicate dysfunction in the auditory feedback system among stutterers. Conclusions: Our findings provide updated and direct evidence on the multi-level impairment (feedforward and feedback systems) of stutterers during speech production and show that the corresponding neural bases were differentiated.
Collapse
|
3
|
Partial overlap between holistic processing of words and Gestalt line stimuli at an early perceptual stage. Mem Cognit 2022; 50:1215-1229. [DOI: 10.3758/s13421-022-01333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
|
4
|
McCormick K, Lacey S, Stilla R, Nygaard LC, Sathian K. Neural Basis of the Sound-Symbolic Crossmodal Correspondence Between Auditory Pseudowords and Visual Shapes. Multisens Res 2021; 35:29-78. [PMID: 34384048 PMCID: PMC9196751 DOI: 10.1163/22134808-bja10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Sound symbolism refers to the association between the sounds of words and their meanings, often studied using the crossmodal correspondence between auditory pseudowords, e.g., 'takete' or 'maluma', and pointed or rounded visual shapes, respectively. In a functional magnetic resonance imaging study, participants were presented with pseudoword-shape pairs that were sound-symbolically congruent or incongruent. We found no significant congruency effects in the blood oxygenation level-dependent (BOLD) signal when participants were attending to visual shapes. During attention to auditory pseudowords, however, we observed greater BOLD activity for incongruent compared to congruent audiovisual pairs bilaterally in the intraparietal sulcus and supramarginal gyrus, and in the left middle frontal gyrus. We compared this activity to independent functional contrasts designed to test competing explanations of sound symbolism, but found no evidence for mediation via language, and only limited evidence for accounts based on multisensory integration and a general magnitude system. Instead, we suggest that the observed incongruency effects are likely to reflect phonological processing and/or multisensory attention. These findings advance our understanding of sound-to-meaning mapping in the brain.
Collapse
Affiliation(s)
- Kelly McCormick
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Simon Lacey
- Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - Randall Stilla
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lynne C. Nygaard
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - K. Sathian
- Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Psychology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| |
Collapse
|
5
|
Wang Y, Jiang M, Huang Y, Qiu P. An ERP Study on the Role of Phonological Processing in Reading Two-Character Compound Chinese Words of High and Low Frequency. Front Psychol 2021; 12:637238. [PMID: 33716906 PMCID: PMC7947322 DOI: 10.3389/fpsyg.2021.637238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Unlike in English, the role of phonology in word recognition in Chinese is unclear. In this event-related potential experiment, we investigated the role of phonology in reading both high- and low-frequency two-character compound Chinese words. Participants executed semantic and homophone judgment tasks of the same precede-target pairs. Each pair of either high- or low-frequency words were either unrelated (control condition) or related semantically or phonologically (homophones). The induced P200 component was greater for low- than for high-frequency word-pairs both in semantic and phonological tasks. Homophones in the semantic judgment task and semantically-related words in the phonology task both elicited a smaller N400 than the control condition, word frequency-independently. However, for low-frequency words in the phonological judgment task, it was found that the semantically related pairs released a significantly larger P200 than the control condition. Thus, the semantic activation of both high- and low-frequency words may be no later than phonological activation.
Collapse
Affiliation(s)
- Yuling Wang
- Center for Psychology and Cognitive Science, Tsinghua University, Beijing, China
| | - Minghu Jiang
- Center for Psychology and Cognitive Science, Tsinghua University, Beijing, China
| | - Yunlong Huang
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
| | - Peijun Qiu
- Laboratory of Cognitive Linguistics, Department of Foreign Languages and Literature, Tsinghua University, Beijing, China.,College of International Sport Organizations, Beijing Sport University, Beijing, China
| |
Collapse
|
6
|
Berkovitch L, Dehaene S. Subliminal syntactic priming. Cogn Psychol 2018; 109:26-46. [PMID: 30593889 DOI: 10.1016/j.cogpsych.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/18/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Abstract
Subliminally presented words have been shown to cause priming at orthographic and semantic levels. Here, we investigate whether subliminal priming can also occur at the syntactic level, and use such priming as a tool to probe the architecture for processing the syntactic features of written words. We studied the impact of masked and unmasked written word primes on response times to a subsequent visible target that shared or did not share syntactic features such as grammatical category and grammatical number. Methodological precautions included the use of distinct lists of subliminal primes that were never consciously seen, and the verification that participants were at chance in a prime-classification task. Across five experiments, subliminal priming could be induced by the repetition of the same grammatical category (e.g. a noun followed by another noun), by the transition between two categories (e.g. a determiner followed by a noun), or by the repetition of a single grammatical feature, even if syntax is violated (e.g. "they lemons", where the expression is ungrammatical but the plural feature is repeated). The orthographic endings of prime words also provided unconscious cues to their grammatical category. Those results indicate the existence of a representation of abstract syntactic features, shared between several categories of words, and which is quickly and unconsciously extracted from a flashed visual word.
Collapse
Affiliation(s)
- Lucie Berkovitch
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, 75252 Paris cedex 05, France.
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The aim of the study is to assess historical anatomical and functional definitions of Wernicke's area in light of modern lesion and neuroimaging data. RECENT FINDINGS "Wernicke's area" has become an anatomical label usually applied to the left posterior superior temporal gyrus and adjacent supramarginal gyrus. Recent evidence shows that this region is not critical for speech perception or for word comprehension. Rather, it supports retrieval of phonological forms (mental representations of phoneme sequences), which are used for speech output and short-term memory tasks. Focal damage to this region produces phonemic paraphasia without impairing word comprehension, i.e., conduction aphasia. Neuroimaging studies in recent decades provide evidence for a widely distributed temporal, parietal, and frontal network supporting language comprehension, which does not include the anatomically defined Wernicke area. The term Wernicke's area, if used at all, should not be used to refer to a zone critical for speech comprehension.
Collapse
Affiliation(s)
- Jeffrey R Binder
- Departments of Neurology and Biophysics, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI, 53226, USA.
| |
Collapse
|
8
|
Ostrolenk A, Forgeot d’Arc B, Jelenic P, Samson F, Mottron L. Hyperlexia: Systematic review, neurocognitive modelling, and outcome. Neurosci Biobehav Rev 2017; 79:134-149. [DOI: 10.1016/j.neubiorev.2017.04.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/04/2017] [Accepted: 04/30/2017] [Indexed: 01/01/2023]
|
9
|
Pattamadilok C, Chanoine V, Pallier C, Anton JL, Nazarian B, Belin P, Ziegler JC. Automaticity of phonological and semantic processing during visual word recognition. Neuroimage 2017; 149:244-255. [PMID: 28163139 DOI: 10.1016/j.neuroimage.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 11/25/2022] Open
Abstract
Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner.
Collapse
Affiliation(s)
| | - Valérie Chanoine
- Labex Brain and Language Research Institute, Aix-en-Provence, France
| | - Christophe Pallier
- INSERM-CEA Cognitive Neuroimaging Unit, Neurospin center, Gif-sur-Yvette, France
| | - Jean-Luc Anton
- Aix Marseille Univ, CNRS, INT Inst Neurosci Timone, UMR 7289, Centre IRM Fonctionnelle Cérébrale, Marseille, France
| | - Bruno Nazarian
- Aix Marseille Univ, CNRS, INT Inst Neurosci Timone, UMR 7289, Centre IRM Fonctionnelle Cérébrale, Marseille, France
| | - Pascal Belin
- Aix Marseille Univ, CNRS, INT Inst Neurosci Timone, UMR 7289, Centre IRM Fonctionnelle Cérébrale, Marseille, France
| | | |
Collapse
|
10
|
Macedonia M, Mueller K. Exploring the Neural Representation of Novel Words Learned through Enactment in a Word Recognition Task. Front Psychol 2016; 7:953. [PMID: 27445918 PMCID: PMC4923151 DOI: 10.3389/fpsyg.2016.00953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/09/2016] [Indexed: 01/03/2023] Open
Abstract
Vocabulary learning in a second language is enhanced if learners enrich the learning experience with self-performed iconic gestures. This learning strategy is called enactment. Here we explore how enacted words are functionally represented in the brain and which brain regions contribute to enhance retention. After an enactment training lasting 4 days, participants performed a word recognition task in the functional Magnetic Resonance Imaging (fMRI) scanner. Data analysis suggests the participation of different and partially intertwined networks that are engaged in higher cognitive processes, i.e., enhanced attention and word recognition. Also, an experience-related network seems to map word representation. Besides core language regions, this latter network includes sensory and motor cortices, the basal ganglia, and the cerebellum. On the basis of its complexity and the involvement of the motor system, this sensorimotor network might explain superior retention for enactment.
Collapse
Affiliation(s)
- Manuela Macedonia
- Information Engineering, Johannes Kepler University LinzLinz, Austria; Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Karsten Mueller
- Nuclear Magnetic Resonance Unit, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| |
Collapse
|
11
|
Madec S, Le Goff K, Anton JL, Longcamp M, Velay JL, Nazarian B, Roth M, Courrieu P, Grainger J, Rey A. Brain correlates of phonological recoding of visual symbols. Neuroimage 2016; 132:359-372. [DOI: 10.1016/j.neuroimage.2016.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022] Open
|
12
|
Männel C, Meyer L, Wilcke A, Boltze J, Kirsten H, Friederici AD. Working-memory endophenotype and dyslexia-associated genetic variant predict dyslexia phenotype. Cortex 2015; 71:291-305. [PMID: 26283516 DOI: 10.1016/j.cortex.2015.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/28/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia, a severe impairment of literacy acquisition, is known to have a neurological basis and a strong genetic background. However, effects of individual genetic variations on dyslexia-associated deficits are only moderate and call for the assessment of the genotype's impact on mediating neuro-endophenotypes by the imaging genetics approach. Using voxel-based morphometry (VBM) in German participants with and without dyslexia, we investigated gray matter changes and their association with impaired phonological processing, such as reduced verbal working memory. These endophenotypical alterations were, together with dyslexia-associated genetic variations, examined on their suitability as potential predictors of dyslexia. We identified two gray matter clusters in the left posterior temporal cortex related to verbal working memory capacity. Regional cluster differences correlated with genetic risk variants in TNFRSF1B. High-genetic-risk participants exhibit a structural predominance of auditory-association areas relative to auditory-sensory areas, which may partly compensate for deficient early auditory-sensory processing stages of verbal working memory. The reverse regional predominance observed in low-genetic-risk participants may in turn reflect reliance on these early auditory-sensory processing stages. Logistic regression analysis further supported that regional gray matter differences and genetic risk interact in the prediction of individuals' diagnostic status: With increasing genetic risk, the working-memory related structural predominance of auditory-association areas relative to auditory-sensory areas classifies participants with dyslexia versus control participants. Focusing on phonological deficits in dyslexia, our findings suggest endophenotypical changes in the left posterior temporal cortex could comprise novel pathomechanisms for verbal working memory-related processes translating TNFRSF1B genotype into the dyslexia phenotype.
Collapse
Affiliation(s)
- Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arndt Wilcke
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany; Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Holger Kirsten
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany; Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
13
|
Iijima K, Sakai KL. Subliminal enhancement of predictive effects during syntactic processing in the left inferior frontal gyrus: an MEG study. Front Syst Neurosci 2014; 8:217. [PMID: 25404899 PMCID: PMC4217366 DOI: 10.3389/fnsys.2014.00217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022] Open
Abstract
Predictive syntactic processing plays an essential role in language comprehension. In our previous study using Japanese object-verb (OV) sentences, we showed that the left inferior frontal gyrus (IFG) responses to a verb increased at 120-140 ms after the verb onset, indicating predictive effects caused by a preceding object. To further elucidate the automaticity of the predictive effects in the present magnetoencephalography study, we examined whether a subliminally presented verb ("subliminal verb") enhanced the predictive effects on the sentence-final verb ("target verb") unconsciously, i.e., without awareness. By presenting a subliminal verb after the object, enhanced predictive effects on the target verb would be detected in the OV sentences when the transitivity of the target verb matched with that of the subliminal verb ("congruent condition"), because the subliminal verb just after the object could determine the grammaticality of the sentence. For the OV sentences under the congruent condition, we observed significantly increased left IFG responses at 140-160 ms after the target verb onset. In contrast, responses in the precuneus and midcingulate cortex (MCC) were significantly reduced for the OV sentences under the congruent condition at 110-140 and 280-300 ms, respectively. By using partial Granger causality analyses for the OV sentences under the congruent condition, we revealed a bidirectional interaction between the left IFG and MCC at 60-160 ms, as well as a significant influence from the MCC to the precuneus. These results indicate that a top-down influence from the left IFG to the MCC, and then to the precuneus, is critical in syntactic decisions, whereas the MCC shares its task-set information with the left IFG to achieve automatic and predictive processes of syntax.
Collapse
Affiliation(s)
- Kazuki Iijima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-ku, Japan
- CREST, Japan Science and Technology AgencyChiyoda-ku, Japan
- Japan Society for the Promotion of ScienceChiyoda-ku, Japan
| | - Kuniyoshi L. Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-ku, Japan
- CREST, Japan Science and Technology AgencyChiyoda-ku, Japan
| |
Collapse
|
14
|
Diaz MT, Hogstrom LJ, Zhuang J, Voyvodic JT, Johnson MA, Camblin CC. Written distractor words influence brain activity during overt picture naming. Front Hum Neurosci 2014; 8:167. [PMID: 24715859 PMCID: PMC3970014 DOI: 10.3389/fnhum.2014.00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/06/2014] [Indexed: 11/16/2022] Open
Abstract
Language production requires multiple stages of processing (e.g., semantic retrieval, lexical selection), each of which may involve distinct brain regions. Distractor words can be combined with picture naming to examine factors that influence language production. Phonologically-related distractors have been found to speed picture naming (facilitation), while slower response times and decreased accuracy (interference) generally occur when a distractor is categorically related to the target image. However, other types of semantically-related distractors have been reported to produce a facilitative effect (e.g., associative, part-whole). The different pattern of results for different types of semantically-related distractors raises the question about how the nature of the semantic relation influences the effect of the distractor. To explore the nature of these semantic effects further, we used functional MRI to examine the influence of four types of written distractors on brain activation during overt picture naming. Distractors began with the same sound, were categorically-related, part of the object to be named, or were unrelated to the picture. Phonologically-related trials elicited greater activation than both semantic conditions (categorically-related and part-whole) in left insula and bilateral parietal cortex, regions that have been attributed to phonological aspects of production and encoding, respectively. Semantic conditions elicited greater activation than phonological trials in left posterior MTG, a region that has been linked to concept retrieval and semantic integration. Overall, the two semantic conditions did not differ substantially in their functional activation which suggests a similarity in the semantic demands and lexical competition across these two conditions.
Collapse
Affiliation(s)
- Michele T Diaz
- Brain Imaging and Analysis Center, School of Medicine, Duke University Durham, NC, USA ; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University Durham, NC, USA
| | - Larson J Hogstrom
- Brain Imaging and Analysis Center, School of Medicine, Duke University Durham, NC, USA
| | - Jie Zhuang
- Brain Imaging and Analysis Center, School of Medicine, Duke University Durham, NC, USA
| | - James T Voyvodic
- Brain Imaging and Analysis Center, School of Medicine, Duke University Durham, NC, USA
| | - Micah A Johnson
- Brain Imaging and Analysis Center, School of Medicine, Duke University Durham, NC, USA
| | - C Christine Camblin
- Brain Imaging and Analysis Center, School of Medicine, Duke University Durham, NC, USA
| |
Collapse
|
15
|
Abstract
Syntax is the core computational component of language. A longstanding idea about syntactic processing is that it is generally not available to conscious access, operating autonomously and automatically. However, there is little direct neurocognitive evidence on this issue. By measuring event-related potentials while human observers performed a novel cross-modal distraction task, we demonstrated that syntactic violations that were not consciously detected nonetheless produced a characteristic early neural response pattern, and also significantly delayed reaction times to a concurrent task. This early neural response was distinct from later neural activity that was observed only to syntactic violations that were consciously detected. These findings provide direct evidence that the human brain reacts to violations of syntax even when these violations are not consciously detected, indicating that even highly complex computational processes such as syntactic processing can occur outside the narrow window of conscious awareness.
Collapse
|
16
|
Wang XD, Liu AP, Wu YY, Wang P. Rapid extraction of lexical tone phonology in Chinese characters: a visual mismatch negativity study. PLoS One 2013; 8:e56778. [PMID: 23437235 PMCID: PMC3577723 DOI: 10.1371/journal.pone.0056778] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Background In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed. Methodology/Principal Findings We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone. Conclusions/Significance We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN), indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, Singapore, Singapore.
| | | | | | | |
Collapse
|
17
|
Wilson LB, Tregellas JR, Slason E, Pasko BE, Hepburn S, Rojas DC. Phonological processing in first-degree relatives of individuals with autism: an fMRI study. Hum Brain Mapp 2012; 34:1447-63. [PMID: 22419478 DOI: 10.1002/hbm.22001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 10/17/2011] [Accepted: 11/01/2011] [Indexed: 11/06/2022] Open
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders. Twin studies have provided heritability estimates as high as 90% for idiopathic ASD. Further evidence for the spectrum's heritability is provided by the presence of the broad autism phenotype (BAP) in unaffected first-degree relatives. Language ability, specifically phonological processing, is proposed to be a core BAP trait. To date, however, no functional neuroimaging investigations of phonological processing in relatives of individuals with ASD have been undertaken. We conducted a functional magnetic resonance imaging (fMRI) study in parents of children with ASD utilizing a priming task probing implicit phonological processing. In our condition that placed heavier demands on phonological recoding, parents exhibited greater hemodynamic responses than controls in a network of cortical regions involved in phonological processing. Across conditions, parents exhibited enhanced priming-induced response suppression suggesting compensatory neural processing. A nonword repetition test used in previous studies of relatives was also administered. Correlations between this measure and our functional measures also suggested compensatory processing in parents. Regions exhibiting atypical responses in parents included regions previously implicated in the spectrum's language impairments and found to exhibit structural abnormalities in a parent study. These results suggest a possible neurobiological substrate of the phonological deficits proposed to be a core BAP trait. However, these results should be considered preliminary. No previous fMRI study has investigated phonological processing in ASD, so replication is required. Furthermore, interpretation of our fMRI results is limited by the fact that the parent group failed to exhibit behavioral evidence of phonological impairments.
Collapse
Affiliation(s)
- Lisa B Wilson
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
18
|
Zarnhofer S, Braunstein V, Ebner F, Koschutnig K, Neuper C, Reishofer G, Ischebeck A. The Influence of verbalization on the pattern of cortical activation during mental arithmetic. Behav Brain Funct 2012; 8:13. [PMID: 22404872 PMCID: PMC3359281 DOI: 10.1186/1744-9081-8-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/12/2012] [Indexed: 11/23/2022] Open
Abstract
Background The aim of the present functional magnetic resonance imaging (fMRI) study at 3 T was to investigate the influence of the verbal-visual cognitive style on cerebral activation patterns during mental arithmetic. In the domain of arithmetic, a visual style might for example mean to visualize numbers and (intermediate) results, and a verbal style might mean, that numbers and (intermediate) results are verbally repeated. In this study, we investigated, first, whether verbalizers show activations in areas for language processing, and whether visualizers show activations in areas for visual processing during mental arithmetic. Some researchers have proposed that the left and right intraparietal sulcus (IPS), and the left angular gyrus (AG), two areas involved in number processing, show some domain or modality specificity. That is, verbal for the left AG, and visual for the left and right IPS. We investigated, second, whether the activation in these areas implied in number processing depended on an individual's cognitive style. Methods 42 young healthy adults participated in the fMRI study. The study comprised two functional sessions. In the first session, subtraction and multiplication problems were presented in an event-related design, and in the second functional session, multiplications were presented in two formats, as Arabic numerals and as written number words, in an event-related design. The individual's habitual use of visualization and verbalization during mental arithmetic was assessed by a short self-report assessment. Results We observed in both functional sessions that the use of verbalization predicts activation in brain areas associated with language (supramarginal gyrus) and auditory processing (Heschl's gyrus, Rolandic operculum). However, we found no modulation of activation in the left AG as a function of verbalization. Conclusions Our results confirm that strong verbalizers use mental speech as a form of mental imagination more strongly than weak verbalizers. Moreover, our results suggest that the left AG has no specific affinity to the verbal domain and subserves number processing in a modality-general way.
Collapse
Affiliation(s)
- Sabrina Zarnhofer
- Department of Psychology, University of Graz, Universitaetsplatz 2/III, 8010 Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
19
|
Fisher JE, Cortes CR, Griego JA, Tagamets MA. Repetition of letter strings leads to activation of and connectivity with word-related regions. Neuroimage 2011; 59:2839-49. [PMID: 21982931 DOI: 10.1016/j.neuroimage.2011.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/14/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022] Open
Abstract
Individuals learn to read by gradually recognizing repeated letter combinations. However, it is unclear how or when neural mechanisms associated with repetition of basic stimuli (i.e., strings of letters) shift to involvement of higher-order language networks. The present study investigated this question by repeatedly presenting unfamiliar letter strings in a one-back matching task during an hour-long period. Activation patterns indicated that only brain areas associated with visual processing were activated during the early period, but additional regions that are usually associated with semantic and phonological processing in inferior frontal gyrus were recruited after stimuli became more familiar. Changes in activation were also observed in bilateral superior temporal cortex, also suggestive of a shift toward a more language-based processing strategy. Connectivity analyses reveal two distinct networks that correspond to phonological and visual processing, which may reflect the indirect and direct routes of reading. The phonological route maintained a similar degree of connectivity throughout the experiment, whereas visual areas increased connectivity with language areas as stimuli became more familiar, suggesting early recruitment of the direct route. This study provides insight about plasticity of the brain as individuals become familiar with unfamiliar combinations of letters (i.e., words in a new language, new acronyms) and has implications for engaging these linguistic networks during development of language remediation therapies.
Collapse
Affiliation(s)
- Joscelyn E Fisher
- Maryland Psychiatric Research Center, University of Maryland Baltimore, P.O. Box 21247, Baltimore, MD 21228, USA
| | | | | | | |
Collapse
|
20
|
A supramodal brain substrate of word form processing — An fMRI study on homonym finding with auditory and visual input. Brain Res 2011; 1410:48-63. [DOI: 10.1016/j.brainres.2011.06.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/30/2011] [Accepted: 06/23/2011] [Indexed: 11/27/2022]
|
21
|
Grainger J, Ziegler JC. A dual-route approach to orthographic processing. Front Psychol 2011; 2:54. [PMID: 21716577 PMCID: PMC3110785 DOI: 10.3389/fpsyg.2011.00054] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/22/2011] [Indexed: 11/13/2022] Open
Abstract
In the present theoretical note we examine how different learning constraints, thought to be involved in optimizing the mapping of print to meaning during reading acquisition, might shape the nature of the orthographic code involved in skilled reading. On the one hand, optimization is hypothesized to involve selecting combinations of letters that are the most informative with respect to word identity (diagnosticity constraint), and on the other hand to involve the detection of letter combinations that correspond to pre-existing sublexical phonological and morphological representations (chunking constraint). These two constraints give rise to two different kinds of prelexical orthographic code, a coarse-grained and a fine-grained code, associated with the two routes of a dual-route architecture. Processing along the coarse-grained route optimizes fast access to semantics by using minimal subsets of letters that maximize information with respect to word identity, while coding for approximate within-word letter position independently of letter contiguity. Processing along the fined-grained route, on the other hand, is sensitive to the precise ordering of letters, as well as to position with respect to word beginnings and endings. This enables the chunking of frequently co-occurring contiguous letter combinations that form relevant units for morpho-orthographic processing (prefixes and suffixes) and for the sublexical translation of print to sound (multi-letter graphemes).
Collapse
Affiliation(s)
- Jonathan Grainger
- Laboratoire de Psychologie Cognitive, Centre National de la Recherche Scientifique, Aix-Marseille UniversityMarseille, France
| | - Johannes C. Ziegler
- Laboratoire de Psychologie Cognitive, Centre National de la Recherche Scientifique, Aix-Marseille UniversityMarseille, France
| |
Collapse
|