1
|
Donohue B, Gao S, Nichols TE, Adhikari BM, Ma Y, Jahanshad N, Thompson PM, McMahon FJ, Humphries EM, Burroughs W, Ament SA, Mitchell BD, Ma T, Chen S, Medland SE, Blangero J, Hong LE, Kochunov P. Accelerating Heritability, Genetic Correlation, and Genome-Wide Association Imaging Genetic Analyses in Complex Pedigrees. Hum Brain Mapp 2024; 45:e70044. [PMID: 39593222 PMCID: PMC11599162 DOI: 10.1002/hbm.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024] Open
Abstract
National and international biobanking efforts led to the collection of large and inclusive imaging genetics datasets that enable examination of the contribution of genetic and environmental factors to human brains in illness and health. High-resolution neuroimaging (~104-6 voxels) and genetic (106-8 single nucleotide polymorphic [SNP] variants) data are available in statistically powerful (N = 103-5) epidemiological and disorder-focused samples. Performing imaging genetics analyses at full resolution afforded in these datasets is a formidable computational task even under the assumption of unrelatedness among the subjects. The computational complexity rises as ~N2-3 (where N is the sample size), when accounting for relatedness among subjects. We describe fast, non-iterative simplifications to accelerate classical variance component (VC) methods including heritability, genetic correlation, and genome-wide association in dense and complex empirical pedigrees. These approaches linearize (from N2-3 to N~1) computational effort while maintaining fidelity (r ~ 0.95) with the VC results and take advantage of parallel computing provided by central and graphics processing units (CPU and GPU). We show that the new approaches lead to a 104- to 106-fold reduction in computational complexity-making voxel-wise heritability, genetic correlation, and genome-wide association studies (GWAS) analysis practical for large and complex samples such as those provided by the Amish and Human Connectome Projects (N = 406 and 1052 subjects, respectively) and UK Biobank (N = 31,681). These developments are shared in open-source, SOLAR-Eclipse software.
Collapse
Affiliation(s)
- Brian Donohue
- Department of Psychiatry and Behavioral SciencesUniversity of Texas, Health Science Center HoustonHoustonTexasUSA
| | - Si Gao
- Department of Psychiatry and Behavioral SciencesUniversity of Texas, Health Science Center HoustonHoustonTexasUSA
| | - Thomas E. Nichols
- Big Data Science Institute, Department of StatisticsUniversity of OxfordOxfordUK
| | - Bhim M. Adhikari
- Department of Psychiatry and Behavioral SciencesUniversity of Texas, Health Science Center HoustonHoustonTexasUSA
| | - Yizhou Ma
- Department of Psychiatry and Behavioral SciencesUniversity of Texas, Health Science Center HoustonHoustonTexasUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaCaliforniaUSA
| | - Francis J. McMahon
- Human Genetics Branch, Intramural Research Program, National Institute of Mental HealthNational Institutes of HealthBethesdaMarylandUSA
| | - Elizabeth M. Humphries
- Institute for Genome SciencesUniversity of Maryland, School of MedicineBaltimoreMarylandUSA
| | - William Burroughs
- Department of Psychiatry and Behavioral SciencesUniversity of Texas, Health Science Center HoustonHoustonTexasUSA
| | - Seth A. Ament
- Institute for Genome SciencesUniversity of Maryland, School of MedicineBaltimoreMarylandUSA
- Department of PsychiatryUniversity of Maryland, School of MedicineBaltimoreMarylandUSA
| | - Braxton D. Mitchell
- Department of MedicineUniversity of Maryland, School of MedicineBaltimoreMarylandUSA
| | - Tianzhou Ma
- Department of Epidemiology and BiostatisticsUniversity of MarylandMarylandUSA
| | - Shuo Chen
- Department of PsychiatryUniversity of Maryland, School of MedicineBaltimoreMarylandUSA
| | | | - John Blangero
- Department of Human GeneticsUniversity of Texas Rio Grande Valley, School of MedicineBrownsvilleTexasUSA
| | - L. Elliot Hong
- Department of Psychiatry and Behavioral SciencesUniversity of Texas, Health Science Center HoustonHoustonTexasUSA
| | - Peter Kochunov
- Department of Psychiatry and Behavioral SciencesUniversity of Texas, Health Science Center HoustonHoustonTexasUSA
| |
Collapse
|
2
|
Wu Q, Zhang Y, Huang X, Ma T, Hong LE, Kochunov P, Chen S. A multivariate to multivariate approach for voxel-wise genome-wide association analysis. Stat Med 2024; 43:3862-3880. [PMID: 38922949 PMCID: PMC11986643 DOI: 10.1002/sim.10101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/02/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Abstract
The joint analysis of imaging-genetics data facilitates the systematic investigation of genetic effects on brain structures and functions with spatial specificity. We focus on voxel-wise genome-wide association analysis, which may involve trillions of single nucleotide polymorphism (SNP)-voxel pairs. We attempt to identify underlying organized association patterns of SNP-voxel pairs and understand the polygenic and pleiotropic networks on brain imaging traits. We propose a bi-clique graph structure (ie, a set of SNPs highly correlated with a cluster of voxels) for the systematic association pattern. Next, we develop computational strategies to detect latent SNP-voxel bi-cliques and an inference model for statistical testing. We further provide theoretical results to guarantee the accuracy of our computational algorithms and statistical inference. We validate our method by extensive simulation studies, and then apply it to the whole genome genetic and voxel-level white matter integrity data collected from 1052 participants of the human connectome project. The results demonstrate multiple genetic loci influencing white matter integrity measures on splenium and genu of the corpus callosum.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuan Zhang
- Department of Statistics, Ohio State University, Columbus, Ohio, USA
| | - Xiaoqi Huang
- Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - L. Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
- The University of Maryland Institute for Health Computing, University of Maryland, North Bethesda, USA
| |
Collapse
|
3
|
Mondal S, Maji P. Multi-Task Learning and Sparse Discriminant Canonical Correlation Analysis for Identification of Diagnosis-Specific Genotype-Phenotype Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1390-1402. [PMID: 38587960 DOI: 10.1109/tcbb.2024.3386406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The primary objective of imaging genetics research is to investigate the complex genotype-phenotype association for the disease under study. For example, to understand the impact of genetic variations over the brain functions and structure, the genotypic data such as single nucleotide polymorphism (SNP) is integrated with the phenotypic data such as imaging quantitative traits. The sparse models, based on canonical correlation analysis (CCA), are popular in this area to find the complex bi-multivariate genotype-phenotype association, as the number of features in genotypic and/or phenotypic data is significantly higher as compared to the number of samples. However, the sparse CCA based methods are, in general, unsupervised in nature, and fail to identify the diagnose-specific features those play an important role for the diagnosis and prognosis of the disease under study. In this regard, a new supervised model is proposed to study the complex genotype-phenotype association, by judiciously integrating the merits of CCA, linear discriminant analysis (LDA) and multi-task learning. The proposed model can identify the diagnose-specific as well as the diagnose-consistent features with significantly lower computational complexity. The performance of the proposed method, along with a comparison with the state-of-the-art methods, is evaluated on several synthetic data sets and one real imaging genetics data collected from Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. In the current study, the SNP as genetic data and resting state functional MRI ( fMRI) as imaging data are integrated to find the complex genotype-phenotype association. An important finding is that the proposed method has better correlation value, improved noise resistance and stability, and also has better feature selection ability. All the results illustrate the power and capability of the proposed method to find the diagnostic group-specific imaging genetic association, which may help to understand the neurodegenerative disorder in a more comprehensive way.
Collapse
|
4
|
Taş G, Westerdijk T, Postma E, Veldink JH, Schönhuth A, Balvert M. Computing linkage disequilibrium aware genome embeddings using autoencoders. Bioinformatics 2024; 40:btae326. [PMID: 38775680 PMCID: PMC11208726 DOI: 10.1093/bioinformatics/btae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
MOTIVATION The completion of the genome has paved the way for genome-wide association studies (GWAS), which explained certain proportions of heritability. GWAS are not optimally suited to detect non-linear effects in disease risk, possibly hidden in non-additive interactions (epistasis). Alternative methods for epistasis detection using, e.g. deep neural networks (DNNs) are currently under active development. However, DNNs are constrained by finite computational resources, which can be rapidly depleted due to increasing complexity with the sheer size of the genome. Besides, the curse of dimensionality complicates the task of capturing meaningful genetic patterns for DNNs; therefore necessitates dimensionality reduction. RESULTS We propose a method to compress single nucleotide polymorphism (SNP) data, while leveraging the linkage disequilibrium (LD) structure and preserving potential epistasis. This method involves clustering correlated SNPs into haplotype blocks and training per-block autoencoders to learn a compressed representation of the block's genetic content. We provide an adjustable autoencoder design to accommodate diverse blocks and bypass extensive hyperparameter tuning. We applied this method to genotyping data from Project MinE, and achieved 99% average test reconstruction accuracy-i.e. minimal information loss-while compressing the input to nearly 10% of the original size. We demonstrate that haplotype-block based autoencoders outperform linear Principal Component Analysis (PCA) by approximately 3% chromosome-wide accuracy of reconstructed variants. To the extent of our knowledge, our approach is the first to simultaneously leverage haplotype structure and DNNs for dimensionality reduction of genetic data. AVAILABILITY AND IMPLEMENTATION Data are available for academic use through Project MinE at https://www.projectmine.com/research/data-sharing/, contingent upon terms and requirements specified by the source studies. Code is available at https://github.com/gizem-tas/haploblock-autoencoders.
Collapse
Affiliation(s)
- Gizem Taş
- Department of Econometrics and Operations Research, Tilburg University, Tilburg 5037AB, The Netherlands
| | - Timo Westerdijk
- Department of Neurology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - Eric Postma
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg 5037AB, The Netherlands
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | | | - Marleen Balvert
- Department of Econometrics and Operations Research, Tilburg University, Tilburg 5037AB, The Netherlands
| |
Collapse
|
5
|
Cheek CL, Lindner P, Grigorenko EL. Statistical and Machine Learning Analysis in Brain-Imaging Genetics: A Review of Methods. Behav Genet 2024; 54:233-251. [PMID: 38336922 DOI: 10.1007/s10519-024-10177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Brain-imaging-genetic analysis is an emerging field of research that aims at aggregating data from neuroimaging modalities, which characterize brain structure or function, and genetic data, which capture the structure and function of the genome, to explain or predict normal (or abnormal) brain performance. Brain-imaging-genetic studies offer great potential for understanding complex brain-related diseases/disorders of genetic etiology. Still, a combined brain-wide genome-wide analysis is difficult to perform as typical datasets fuse multiple modalities, each with high dimensionality, unique correlational landscapes, and often low statistical signal-to-noise ratios. In this review, we outline the progress in brain-imaging-genetic methodologies starting from early massive univariate to current deep learning approaches, highlighting each approach's strengths and weaknesses and elongating it with the field's development. We conclude by discussing selected remaining challenges and prospects for the field.
Collapse
Affiliation(s)
- Connor L Cheek
- Texas Institute for Evaluation, Measurement, and Statistics, University of Houston, Houston, TX, USA.
- Department of Physics, University of Houston, Houston, TX, USA.
| | - Peggy Lindner
- Texas Institute for Evaluation, Measurement, and Statistics, University of Houston, Houston, TX, USA
- Department of Information Science Technology, University of Houston, Houston, TX, USA
| | - Elena L Grigorenko
- Texas Institute for Evaluation, Measurement, and Statistics, University of Houston, Houston, TX, USA
- Department of Psychology, University of Houston, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
- Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
6
|
Pan W, Shan Y, Li C, Huang S, Li T, Li Y, Zhu H. FPLS-DC: functional partial least squares through distance covariance for imaging genetics. Bioinformatics 2024; 40:btae173. [PMID: 38552322 PMCID: PMC11034987 DOI: 10.1093/bioinformatics/btae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/24/2024] Open
Abstract
MOTIVATION Imaging genetics integrates imaging and genetic techniques to examine how genetic variations influence the function and structure of organs like the brain or heart, providing insights into their impact on behavior and disease phenotypes. The use of organ-wide imaging endophenotypes has increasingly been used to identify potential genes associated with complex disorders. However, analyzing organ-wide imaging data alongside genetic data presents two significant challenges: high dimensionality and complex relationships. To address these challenges, we propose a novel, nonlinear inference framework designed to partially mitigate these issues. RESULTS We propose a functional partial least squares through distance covariance (FPLS-DC) framework for efficient genome wide analyses of imaging phenotypes. It consists of two components. The first component utilizes the FPLS-derived base functions to reduce image dimensionality while screening genetic markers. The second component maximizes the distance correlation between genetic markers and projected imaging data, which is a linear combination of the FPLS-basis functions, using simulated annealing algorithm. In addition, we proposed an iterative FPLS-DC method based on FPLS-DC framework, which effectively overcomes the influence of inter-gene correlation on inference analysis. We efficiently approximate the null distribution of test statistics using a gamma approximation. Compared to existing methods, FPLS-DC offers computational and statistical efficiency for handling large-scale imaging genetics. In real-world applications, our method successfully detected genetic variants associated with the hippocampus, demonstrating its value as a statistical toolbox for imaging genetic studies. AVAILABILITY AND IMPLEMENTATION The FPLS-DC method we propose opens up new research avenues and offers valuable insights for analyzing functional and high-dimensional data. In addition, it serves as a useful tool for scientific analysis in practical applications within the field of imaging genetics research. The R package FPLS-DC is available in Github: https://github.com/BIG-S2/FPLSDC.
Collapse
Affiliation(s)
- Wenliang Pan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Shan
- Departments of Biostatistics, Statistics, Genetics, and Computer Science and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chuang Li
- Department of Statistical Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuai Huang
- Departments of Biostatistics, Statistics, Genetics, and Computer Science and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tengfei Li
- Departments of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yun Li
- Departments of Biostatistics, Statistics, Genetics, and Computer Science and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Departments of Biostatistics, Statistics, Genetics, and Computer Science and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Departments of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Cruciani F, Aparo A, Brusini L, Combi C, Storti SF, Giugno R, Menegaz G, Boscolo Galazzo I. Identifying the joint signature of brain atrophy and gene variant scores in Alzheimer's Disease. J Biomed Inform 2024; 149:104569. [PMID: 38104851 DOI: 10.1016/j.jbi.2023.104569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The joint modeling of genetic data and brain imaging information allows for determining the pathophysiological pathways of neurodegenerative diseases such as Alzheimer's disease (AD). This task has typically been approached using mass-univariate methods that rely on a complete set of Single Nucleotide Polymorphisms (SNPs) to assess their association with selected image-derived phenotypes (IDPs). However, such methods are prone to multiple comparisons bias and, most importantly, fail to account for potential cross-feature interactions, resulting in insufficient detection of significant associations. Ways to overcome these limitations while reducing the number of traits aim at conveying genetic information at the gene level and capturing the integrated genetic effects of a set of genetic variants, rather than looking at each SNP individually. Their associations with brain IDPs are still largely unexplored in the current literature, though they can uncover new potential genetic determinants for brain modulations in the AD continuum. In this work, we explored an explainable multivariate model to analyze the genetic basis of the grey matter modulations, relying on the AD Neuroimaging Initiative (ADNI) phase 3 dataset. Cortical thicknesses and subcortical volumes derived from T1-weighted Magnetic Resonance were considered to describe the imaging phenotypes. At the same time the genetic counterpart was represented by gene variant scores extracted by the Sequence Kernel Association Test (SKAT) filtering model. Moreover, transcriptomic analysis was carried on to assess the expression of the resulting genes in the main brain structures as a form of validation. Results highlighted meaningful genotype-phenotype interactionsas defined by three latent components showing a significant difference in the projection scores between patients and controls. Among the significant associations, the model highlighted EPHX1 and BCAS1 gene variant scores involved in neurodegenerative and myelination processes, hence relevant for AD. In particular, the first was associated with decreased subcortical volumes and the second with decreasedtemporal lobe thickness. Noteworthy, BCAS1 is particularly expressed in the dentate gyrus. Overall, the proposed approach allowed capturing genotype-phenotype interactions in a restricted study cohort that was confirmed by transcriptomic analysis, offering insights into the underlying mechanisms of neurodegeneration in AD in line with previous findings and suggesting new potential disease biomarkers.
Collapse
Affiliation(s)
- Federica Cruciani
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| | - Antonino Aparo
- Department of Computer Science, University of Verona, Verona, Italy
| | - Lorenza Brusini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Carlo Combi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Silvia F Storti
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
8
|
Beaulac C, Wu S, Gibson E, Miranda MF, Cao J, Rocha L, Beg MF, Nathoo FS. Neuroimaging feature extraction using a neural network classifier for imaging genetics. BMC Bioinformatics 2023; 24:271. [PMID: 37391692 DOI: 10.1186/s12859-023-05394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Dealing with the high dimension of both neuroimaging data and genetic data is a difficult problem in the association of genetic data to neuroimaging. In this article, we tackle the latter problem with an eye toward developing solutions that are relevant for disease prediction. Supported by a vast literature on the predictive power of neural networks, our proposed solution uses neural networks to extract from neuroimaging data features that are relevant for predicting Alzheimer's Disease (AD) for subsequent relation to genetics. The neuroimaging-genetic pipeline we propose is comprised of image processing, neuroimaging feature extraction and genetic association steps. We present a neural network classifier for extracting neuroimaging features that are related with the disease. The proposed method is data-driven and requires no expert advice or a priori selection of regions of interest. We further propose a multivariate regression with priors specified in the Bayesian framework that allows for group sparsity at multiple levels including SNPs and genes. RESULTS We find the features extracted with our proposed method are better predictors of AD than features used previously in the literature suggesting that single nucleotide polymorphisms (SNPs) related to the features extracted by our proposed method are also more relevant for AD. Our neuroimaging-genetic pipeline lead to the identification of some overlapping and more importantly some different SNPs when compared to those identified with previously used features. CONCLUSIONS The pipeline we propose combines machine learning and statistical methods to benefit from the strong predictive performance of blackbox models to extract relevant features while preserving the interpretation provided by Bayesian models for genetic association. Finally, we argue in favour of using automatic feature extraction, such as the method we propose, in addition to ROI or voxelwise analysis to find potentially novel disease-relevant SNPs that may not be detected when using ROIs or voxels alone.
Collapse
Affiliation(s)
- Cédric Beaulac
- School of Engineering Science, Simon Fraser University, Burnaby, Canada.
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada.
| | - Sidi Wu
- Department of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, Canada
| | - Erin Gibson
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Michelle F Miranda
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, Canada
| | - Leno Rocha
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| |
Collapse
|
9
|
Moon SW. Neuroimaging Genetics and Network Analysis in Alzheimer's Disease. Curr Alzheimer Res 2023; 20:526-538. [PMID: 37957920 DOI: 10.2174/0115672050265188231107072215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 11/15/2023]
Abstract
The issue of the genetics in brain imaging phenotypes serves as a crucial link between two distinct scientific fields: neuroimaging genetics (NG). The articles included here provide solid proof that this NG link has considerable synergy. There is a suitable collection of articles that offer a wide range of viewpoints on how genetic variations affect brain structure and function. They serve as illustrations of several study approaches used in contemporary genetics and neuroscience. Genome-wide association studies and candidate-gene association are two examples of genetic techniques. Cortical gray matter structural/volumetric measures from magnetic resonance imaging (MRI) are sources of information on brain phenotypes. Together, they show how various scientific disciplines have benefited from significant technological advances, such as the single-nucleotide polymorphism array in genetics and the development of increasingly higher-resolution MRI imaging. Moreover, we discuss NG's contribution to expanding our knowledge about the heterogeneity within Alzheimer's disease as well as the benefits of different network analyses.
Collapse
Affiliation(s)
- Seok Woo Moon
- Department of Psychiatry, Institute of Medical Science, Konkuk University School of Medicine, Chungju, Republic of Korea
| |
Collapse
|
10
|
Hu Z, Wang X, Meng L, Liu W, Wu F, Meng X. Detection of Association Features Based on Gene Eigenvalues and MRI Imaging Using Genetic Weighted Random Forest. Genes (Basel) 2022; 13:2344. [PMID: 36553611 PMCID: PMC9777775 DOI: 10.3390/genes13122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
In the studies of Alzheimer's disease (AD), jointly analyzing imaging data and genetic data provides an effective method to explore the potential biomarkers of AD. AD can be separated into healthy controls (HC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and AD. In the meantime, identifying the important biomarkers of AD progression, and analyzing these biomarkers in AD provide valuable insights into understanding the mechanism of AD. In this paper, we present a novel data fusion method and a genetic weighted random forest method to mine important features. Specifically, we amplify the difference among AD, LMCI, EMCI and HC by introducing eigenvalues calculated from the gene p-value matrix for feature fusion. Furthermore, we construct the genetic weighted random forest using the resulting fused features. Genetic evolution is used to increase the diversity among decision trees and the decision trees generated are weighted by weights. After training, the genetic weighted random forest is analyzed further to detect the significant fused features. The validation experiments highlight the performance and generalization of our proposed model. We analyze the biological significance of the results and identify some significant genes (CSMD1, CDH13, PTPRD, MACROD2 and WWOX). Furthermore, the calcium signaling pathway, arrhythmogenic right ventricular cardiomyopathy and the glutamatergic synapse pathway were identified. The investigational findings demonstrate that our proposed model presents an accurate and efficient approach to identifying significant biomarkers in AD.
Collapse
Affiliation(s)
- Zhixi Hu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xuanyan Wang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Li Meng
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Feng Wu
- School of Electrical & Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| |
Collapse
|
11
|
GC-CNNnet: Diagnosis of Alzheimer’s Disease with PET Images Using Genetic and Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7413081. [PMID: 35983158 PMCID: PMC9381254 DOI: 10.1155/2022/7413081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
There is a wide variety of effects of Alzheimer's disease (AD), a neurodegenerative disease that can lead to cognitive decline, deterioration of daily life, and behavioral and psychological changes. A polymorphism of the ApoE gene ε 4 is considered a genetic risk factor for Alzheimer's disease. The purpose of this paper is to demonstrate that single-nucleotide polymorphic markers (SNPs) have a causal relationship with quantitative PET imaging traits. Additionally, the classification of AD is based on the frequency of brain tissue variations in PET images using a combination of k-nearest-neighbor (KNN), support vector machine (SVM), linear discrimination analysis (LDA), and convolutional neural network (CNN) techniques. According to the results, the suggested SNPs appear to be associated with quantitative traits more strongly than the SNPs in the ApoE genes. Regarding the classification result, the highest accuracy is obtained by the CNN with 91.1%. These results indicate that the KNN and CNN methods are beneficial in diagnosing AD. Nevertheless, the LDA and SVM are demonstrated with a lower level of accuracy.
Collapse
|
12
|
Meng X, Wei Q, Meng L, Liu J, Wu Y, Liu W. Feature Fusion and Detection in Alzheimer's Disease Using a Novel Genetic Multi-Kernel SVM Based on MRI Imaging and Gene Data. Genes (Basel) 2022; 13:837. [PMID: 35627222 PMCID: PMC9140721 DOI: 10.3390/genes13050837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Voxel-based morphometry provides an opportunity to study Alzheimer's disease (AD) at a subtle level. Therefore, identifying the important brain voxels that can classify AD, early mild cognitive impairment (EMCI) and healthy control (HC) and studying the role of these voxels in AD will be crucial to improve our understanding of the neurobiological mechanism of AD. Combining magnetic resonance imaging (MRI) imaging and gene information, we proposed a novel feature construction method and a novel genetic multi-kernel support vector machine (SVM) method to mine important features for AD detection. Specifically, to amplify the differences among AD, EMCI and HC groups, we used the eigenvalues of the top 24 Single Nucleotide Polymorphisms (SNPs) in a p-value matrix of 24 genes associated with AD for feature construction. Furthermore, a genetic multi-kernel SVM was established with the resulting features. The genetic algorithm was used to detect the optimal weights of 3 kernels and the multi-kernel SVM was used after training to explore the significant features. By analyzing the significance of the features, we identified some brain regions affected by AD, such as the right superior frontal gyrus, right inferior temporal gyrus and right superior temporal gyrus. The findings proved the good performance and generalization of the proposed model. Particularly, significant susceptibility genes associated with AD were identified, such as CSMD1, RBFOX1, PTPRD, CDH13 and WWOX. Some significant pathways were further explored, such as the calcium signaling pathway (corrected p-value = 1.35 × 10-6) and cell adhesion molecules (corrected p-value = 5.44 × 10-4). The findings offer new candidate abnormal brain features and demonstrate the contribution of these features to AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| | - Qingpeng Wei
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| | - Li Meng
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Junlong Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| | - Yue Wu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| |
Collapse
|
13
|
Deprez M, Moreira J, Sermesant M, Lorenzi M. Decoding Genetic Markers of Multiple Phenotypic Layers Through Biologically Constrained Genome-To-Phenome Bayesian Sparse Regression. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:830956. [PMID: 39086978 PMCID: PMC11285669 DOI: 10.3389/fmmed.2022.830956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 08/02/2024]
Abstract
The applicability of multivariate approaches for the joint analysis of genomics and phenomics information is currently limited by the lack of scalability, and by the difficulty of interpreting the related findings from a biological perspective. To tackle these limitations, we present Bayesian Genome-to-Phenome Sparse Regression (G2PSR), a novel multivariate regression method based on sparse SNP-gene constraints. The statistical framework of G2PSR is based on a Bayesian neural network, were constraints on SNPs-genes associations are integrated by incorporating a priori knowledge linking variants to their respective genes, to then reconstruct the phenotypic data in the output layer. Interpretability is promoted by inducing sparsity on the genes through variational dropout, allowing to estimate the uncertainty associated with each gene, and related SNPs, in the reconstruction task. Ultimately, G2PSR is conceived to prevent multiple testing correction and to assess the combined effect of SNPs, thus increasing the statistical power in detecting genome-to-phenome associations. The effectiveness of G2PSR was demonstrated on synthetic and real data, with respect to state-of-the-art methods based on group-wise sparsity constraints. The application on real data consisted in an imaging-genetics analysis on the Alzheimer's Disease Neuroimaging Initiative data, relating SNPs from more than 3,500 genes to clinical and multi-variate brain volumetric information. The experimental results show that our method can provide accurate selection of relevant genes in dataset with large SNPs-to-samples ratio, thus overcoming the main limitations of current genome-to-phenome association methods.
Collapse
Affiliation(s)
- Marie Deprez
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Julien Moreira
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Maxime Sermesant
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Marco Lorenzi
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| |
Collapse
|
14
|
Mo C, Ye Z, Ke H, Lu T, Canida T, Liu S, Wu Q, Zhao Z, Ma Y, Elliot Hong L, Kochunov P, Ma T, Chen S. A new Mendelian Randomization method to estimate causal effects of multivariable brain imaging exposures. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2022; 27:73-84. [PMID: 34890138 PMCID: PMC8669774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The advent of simultaneously collected imaging-genetics data in large study cohorts provides an unprecedented opportunity to assess the causal effect of brain imaging traits on externally measured experimental results (e.g., cognitive tests) by treating genetic variants as instrumental variables. However, classic Mendelian Randomization methods are limited when handling high-throughput imaging traits as exposures to identify causal effects. We propose a new Mendelian Randomization framework to jointly select instrumental variables and imaging exposures, and then estimate the causal effect of multivariable imaging data on the outcome. We validate the proposed method with extensive data analyses and compare it with existing methods. We further apply our method to evaluate the causal effect of white matter microstructure integrity (WM) on cognitive function. The findings suggest that our method achieved better performance regarding sensitivity, bias, and false discovery rate compared to individually assessing the causal effect of a single exposure and jointly assessing the causal effect of multiple exposures without dimension reduction. Our application results indicated that WM measures across different tracts have a joint causal effect that significantly impacts the cognitive function among the participants from the UK Biobank.
Collapse
Affiliation(s)
- Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Hongjie Ke
- Department of Mathematics, University of Maryland, College Park, Maryland 20740, United States of America
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, Maryland 20740, United States of America
| | - Travis Canida
- Department of Mathematics, University of Maryland, College Park, Maryland 20740, United States of America
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Qiong Wu
- Department of Mathematics, University of Maryland, College Park, Maryland 20740, United States of America
| | - Zhiwei Zhao
- Department of Mathematics, University of Maryland, College Park, Maryland 20740, United States of America
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland 20740, United States of America
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| |
Collapse
|
15
|
Bao J, Wen Z, Kim M, Zhao X, Lee BN, Jung SH, Davatzikos C, Saykin AJ, Thompson PM, Kim D, Zhao Y, Shen L, Alzheimer’s Disease Neuroimaging Initiative. Identifying highly heritable brain amyloid phenotypes through mining Alzheimer's imaging and sequencing biobank data. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2022; 27:109-120. [PMID: 34890141 PMCID: PMC8730532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain imaging genetics, an emerging and rapidly growing research field, studies the relationship between genetic variations and brain imaging quantitative traits (QTs) to gain new insights into the phenotypic characteristics and genetic mechanisms of the brain. Heritability is an important measurement to quantify the proportion of the observed variance in an imaging QT that is explained by genetic factors, and can often be used to prioritize brain QTs for subsequent imaging genetic association studies. Most existing studies define regional imaging QTs using predefined brain parcellation schemes such as the automated anatomical labeling (AAL) atlas. However, the power to dissect genetic underpinnings under QTs defined in such an unsupervised fashion could be negatively affected by heterogeneity within the regions in the partition. To bridge this gap, we propose a novel method to define highly heritable brain regions. Based on voxelwise heritability estimates, we extract brain regions containing spatially connected voxels with high heritability. We perform an empirical study on the amyloid imaging and whole genome sequencing data from a landmark Alzheimer's disease biobank; and demonstrate the regions defined by our method have much higher estimated heritabilities than the regions defined by the AAL atlas. Our proposed method refines the imaging endophenotype constructions in light of their genetic dissection, and yields more powerful imaging QTs for subsequent detection of genetic risk factors along with better interpretability.
Collapse
Affiliation(s)
- Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zixuan Wen
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mansu Kim
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiwen Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06511, USA
| | - Brian N. Lee
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Department of Radiology University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics University of Southern California School of Medicine, Marina del Rey, CA 90292, USA
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yize Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06511, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
16
|
Li Y, Nan B, Zhu J. A Structured Brain-wide and Genome-wide Association Study Using ADNI PET Images. CAN J STAT 2021; 49:182-202. [PMID: 34566241 DOI: 10.1002/cjs.11605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A multi-stage variable selection method is introduced for detecting association signals in structured brain-wide and genome-wide association studies (brain-GWAS). Compared to conventional single-voxel-to-single-SNP approaches, our approach is more efficient and powerful in selecting the important signals by integrating anatomic and gene grouping structures in the brain and the genome, respectively. It avoids large number of multiple comparisons while effectively controls the false discoveries. Validity of the proposed approach is demonstrated by both theoretical investigation and numerical simulations. We apply the proposed method to a brain-GWAS using ADNI PET imaging and genomic data. We confirm previously reported association signals and also find several novel SNPs and genes that either are associated with brain glucose metabolism or have their association significantly modified by Alzheimer's disease status.
Collapse
Affiliation(s)
- Yanming Li
- Department of Biotatistics & Data Science, University of Kansas Medical Center Kansas City, KS 66160
| | - Bin Nan
- Department of Statistics, University of California at Irvine Irvine, CA 92697
| | - Ji Zhu
- Department of Statistics, University of Michigan Ann Arbor, MI 48109
| |
Collapse
|
17
|
Sheng J, Wang L, Cheng H, Zhang Q, Zhou R, Shi Y. Strategies for multivariate analyses of imaging genetics study in Alzheimer's disease. Neurosci Lett 2021; 762:136147. [PMID: 34332030 DOI: 10.1016/j.neulet.2021.136147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/27/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease primarily affecting the elderly population. Early diagnosis of AD is critical for the management of this disease. Imaging genetics examines the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on brain structure and function and many novel approaches of imaging genetics are proposed for studying AD. We review and synthesize the Alzheimer's Disease Neuroimaging Initiative (ADNI) genetic associations with quantitative disease endophenotypes including structural and functional neuroimaging, diffusion tensor imaging (DTI), positron emission tomography (PET), and fluid biomarker assays. In this review, we survey recent publications using neuroimaging and genetic data of AD, with a focus on methods capturing multivariate effects accommodating the large number variables from both imaging data and genetic data. We review methods focused on bridging the imaging and genetic data by establishing genotype-phenotype association, including sparse canonical correlation analysis, parallel independent component analysis, sparse reduced rank regression, sparse partial least squares, genome-wide association study, and so on. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future pharmaceutical therapy and biomarker development.
Collapse
Affiliation(s)
- Jinhua Sheng
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China.
| | - Luyun Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; College of Information Engineering, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | - Rougang Zhou
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Mstar Technologies Inc., Hangzhou, Zhejiang 310018, China
| | - Yuchen Shi
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
18
|
Zhao Y, Zhao X, Kim M, Bao J, Shen L. A Novel Bayesian Semi-parametric Model for Learning Heritable Imaging Traits. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2021; 12905:678-687. [PMID: 35299630 PMCID: PMC8922551 DOI: 10.1007/978-3-030-87240-3_65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heritability analysis is an important research topic in brain imaging genetics. Its primary motivation is to identify highly heritable imaging quantitative traits (QTs) for subsequent in-depth imaging genetic analyses. Most existing studies perform heritability analyses on regional imaging QTs using predefined brain parcellation schemes such as the AAL atlas. However, the power to dissect genetic underpinnings under QTs defined in such an unsupervised fashion is largely deteriorate with inner partition noise and signal dilution. To bridge the gap, we propose a new semi-parametric Bayesian heritability estimation model to construct highly heritable imaging QTs. Our method leverages the aggregate of genetic signals to imaging QT construction by developing a new brain parcellation driven by voxel-level heritability. To ensure biological plausibility and clinical interpretability of the resulting brain heritability parcellations, hierarchical sparsity and smoothness, coupled with structural connectivity of the brain, are properly imposed on genetic effects to induce spatial contiguity of heritable imaging QTs. Using the ADNI imaging genetic data, we demonstrate the strength of our proposed method, in comparison with the standard GCTA method, in identifying highly heritable and biologically meaningful new imaging QTs.
Collapse
Affiliation(s)
- Yize Zhao
- Department of Biostatistics, Yale University School of Public Health, NJ, USA
| | - Xiwen Zhao
- Department of Biostatistics, Yale University School of Public Health, NJ, USA
| | - Mansu Kim
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
| |
Collapse
|
19
|
Li J, Liu W, Li H, Chen F, Luo H, Bao P, Li Y, Jiang H, Gao Y, Liang H, Fang S. Genome-wide variant-based study of genetic effects with the largest neuroanatomic coverage. BMC Bioinformatics 2021; 22:223. [PMID: 33931008 PMCID: PMC8086096 DOI: 10.1186/s12859-021-04145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain image genetics provides enormous opportunities for examining the effects of genetic variations on the brain. Many studies have shown that the structure, function, and abnormality (e.g., those related to Alzheimer's disease) of the brain are heritable. However, which genetic variations contribute to these phenotypic changes is not completely clear. Advances in neuroimaging and genetics have led us to obtain detailed brain anatomy and genome-wide information. These data offer us new opportunities to identify genetic variations such as single nucleotide polymorphisms (SNPs) that affect brain structure. In this paper, we perform a genome-wide variant-based study, and aim to identify top SNPs or SNP sets which have genetic effects with the largest neuroanotomic coverage at both voxel and region-of-interest (ROI) levels. Based on the voxelwise genome-wide association study (GWAS) results, we used the exhaustive search to find the top SNPs or SNP sets that have the largest voxel-based or ROI-based neuroanatomic coverage. For SNP sets with >2 SNPs, we proposed an efficient genetic algorithm to identify top SNP sets that can cover all ROIs or a specific ROI. RESULTS We identified an ensemble of top SNPs, SNP-pairs and SNP-sets, whose effects have the largest neuroanatomic coverage. Experimental results on real imaging genetics data show that the proposed genetic algorithm is superior to the exhaustive search in terms of computational time for identifying top SNP-sets. CONCLUSIONS We proposed and applied an informatics strategy to identify top SNPs, SNP-pairs and SNP-sets that have genetic effects with the largest neuroanatomic coverage. The proposed genetic algorithm offers an efficient solution to accomplish the task, especially for identifying top SNP-sets.
Collapse
Affiliation(s)
- Jin Li
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Wenjie Liu
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Huang Li
- Computer and Information Science, IUPUI, 723 W Michigan St, Indianapolis, IN 46202 USA
| | - Feng Chen
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Haoran Luo
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Peihua Bao
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Yanzhao Li
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Hailong Jiang
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Yue Gao
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Hong Liang
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Shiaofen Fang
- Computer and Information Science, IUPUI, 723 W Michigan St, Indianapolis, IN 46202 USA
| |
Collapse
|
20
|
Song Y, Ge S, Cao J, Wang L, Nathoo FS. A Bayesian spatial model for imaging genetics. Biometrics 2021; 78:742-753. [PMID: 33765325 DOI: 10.1111/biom.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
We develop a Bayesian bivariate spatial model for multivariate regression analysis applicable to studies examining the influence of genetic variation on brain structure. Our model is motivated by an imaging genetics study of the Alzheimer's Disease Neuroimaging Initiative (ADNI), where the objective is to examine the association between images of volumetric and cortical thickness values summarizing the structure of the brain as measured by magnetic resonance imaging (MRI) and a set of 486 single nucleotide polymorphism (SNPs) from 33 Alzheimer's disease (AD) candidate genes obtained from 632 subjects. A bivariate spatial process model is developed to accommodate the correlation structures typically seen in structural brain imaging data. First, we allow for spatial correlation on a graph structure in the imaging phenotypes obtained from a neighborhood matrix for measures on the same hemisphere of the brain. Second, we allow for correlation in the same measures obtained from different hemispheres (left/right) of the brain. We develop a mean-field variational Bayes algorithm and a Gibbs sampling algorithm to fit the model. We also incorporate Bayesian false discovery rate (FDR) procedures to select SNPs. We implement the methodology in a new release of the R package bgsmtr. We show that the new spatial model demonstrates superior performance over a standard model in our application. Data used in the preparation of this article were obtained from the ADNI database (https://adni.loni.usc.edu).
Collapse
Affiliation(s)
- Yin Song
- Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada
| | - Shufei Ge
- Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China
| | - Jiguo Cao
- Statistics and Actuarial Science, Simon Fraser University, British Columbia, Canada
| | - Liangliang Wang
- Statistics and Actuarial Science, Simon Fraser University, British Columbia, Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada
| |
Collapse
|
21
|
Wen C, Yang Y, Xiao Q, Huang M, Pan W. Genome-wide association studies of brain imaging data via weighted distance correlation. Bioinformatics 2021; 36:4942-4950. [PMID: 32619001 DOI: 10.1093/bioinformatics/btaa612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Imaging genetics is mainly used to reveal the pathogenesis of neuropsychiatric risk genes and understand the relationship between human brain structure, functional and individual differences. Increasingly, the brain-wide imaging phenotypes in voxels are available to test the association with genetic markers. A challenge with analyzing such data is their high dimensionality and complex relationships. RESULTS To tackle this challenge, we introduce a weighed distance correlation (wdCor) that can assess the association between genetic markers and voxel-based imaging data. Importantly, the wdCor test takes the voxel-based data as a whole multivariate phenotype, which preserves the spatial continuity and might enhance the power. Besides, an adaptive permutation procedure is introduced to determine the P-values of the wdCor test and also alleviate the computational burden in GWAS. In extensive simulation studies, wdCor achieves much better performances compared to the original distance correlation. We also successfully apply wdCor to conduct a large-scale analysis on data from the Alzheimer's disease neuroimaging project (ADNI). AVAILABILITY AND IMPLEMENTATION Our wdCor method provides new research directions and ideas for multivariate analysis of high-dimensional data, it can also be used as a tool for scientific analysis of imaging genetics research in practical applications. The R package wdcor, and the code for reproducing all results in this article is available in Github: https://github.com/yangyuhui0129/wdcor. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Canhong Wen
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China
| | - Yuhui Yang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China
| | - Quan Xiao
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China
| | - Meiyan Huang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Wenliang Pan
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | | |
Collapse
|
22
|
Medland SE, Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Thomopoulos SI, Stein JL, Franke B, Martin NG, Thompson PM. Ten years of enhancing neuro-imaging genetics through meta-analysis: An overview from the ENIGMA Genetics Working Group. Hum Brain Mapp 2020; 43:292-299. [PMID: 33300665 PMCID: PMC8675405 DOI: 10.1002/hbm.25311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Here we review the motivation for creating the enhancing neuroimaging genetics through meta-analysis (ENIGMA) Consortium and the genetic analyses undertaken by the consortium so far. We discuss the methodological challenges, findings, and future directions of the genetics working group. A major goal of the working group is tackling the reproducibility crisis affecting "candidate gene" and genome-wide association analyses in neuroimaging. To address this, we developed harmonized analytic methods, and support their use in coordinated analyses across sites worldwide, which also makes it possible to understand heterogeneity in results across sites. These efforts have resulted in the identification of hundreds of common genomic loci robustly associated with brain structure. We have found both pleiotropic and specific genetic effects associated with brain structures, as well as genetic correlations with psychiatric and neurological diseases.
Collapse
Affiliation(s)
- Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Psychology, University of Queensland, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA
| | - Jodie N Painter
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lucía Colodro-Conde
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Psychology, University of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Janita Bralten
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA.,Personalized Healthcare, Genentech, Inc., South San Francisco, California, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA
| | | |
Collapse
|
23
|
Yao X, Cong S, Yan J, Risacher SL, Saykin AJ, Moore JH, Shen L. Regional imaging genetic enrichment analysis. Bioinformatics 2020; 36:2554-2560. [PMID: 31860065 DOI: 10.1093/bioinformatics/btz948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/19/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies examine phenotypes defined on anatomical or functional regions of interest (ROIs) given their biologically meaningful interpretation and modest dimensionality compared with voxelwise approaches. Typical ROI-level measures used in these studies are summary statistics from voxelwise measures in the region, without making full use of individual voxel signals. RESULTS In this article, we propose a flexible and powerful framework for mining regional imaging genetic associations via voxelwise enrichment analysis, which embraces the collective effect of weak voxel-level signals and integrates brain anatomical annotation information. Our proposed method achieves three goals at the same time: (i) increase the statistical power by substantially reducing the burden of multiple comparison correction; (ii) employ brain annotation information to enable biologically meaningful interpretation and (iii) make full use of fine-grained voxelwise signals. We demonstrate our method on an imaging genetic analysis using data from the Alzheimer's Disease Neuroimaging Initiative, where we assess the collective regional genetic effects of voxelwise FDG-positron emission tomography measures between 116 ROIs and 565 373 single-nucleotide polymorphisms. Compared with traditional ROI-wise and voxelwise approaches, our method identified 2946 novel imaging genetic associations in addition to 33 ones overlapping with the two benchmark methods. In particular, two newly reported variants were further supported by transcriptome evidences from region-specific expression analysis. This demonstrates the promise of the proposed method as a flexible and powerful framework for exploring imaging genetic effects on the brain. AVAILABILITY AND IMPLEMENTATION The R code and sample data are freely available at https://github.com/lshen/RIGEA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason H Moore
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
24
|
Nie Y, Opoku E, Yasmin L, Song Y, Wang J, Wu S, Scarapicchia V, Gawryluk J, Wang L, Cao J, Nathoo FS. Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics. Stat Appl Genet Mol Biol 2020; 19:/j/sagmb.ahead-of-print/sagmb-2019-0058/sagmb-2019-0058.xml. [PMID: 32866136 DOI: 10.1515/sagmb-2019-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/27/2020] [Indexed: 11/15/2022]
Abstract
We conduct an imaging genetics study to explore how effective brain connectivity in the default mode network (DMN) may be related to genetics within the context of Alzheimer's disease and mild cognitive impairment. We develop an analysis of longitudinal resting-state functional magnetic resonance imaging (rs-fMRI) and genetic data obtained from a sample of 111 subjects with a total of 319 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. A Dynamic Causal Model (DCM) is fit to the rs-fMRI scans to estimate effective brain connectivity within the DMN and related to a set of single nucleotide polymorphisms (SNPs) contained in an empirical disease-constrained set which is obtained out-of-sample from 663 ADNI subjects having only genome-wide data. We relate longitudinal effective brain connectivity estimated using spectral DCM to SNPs using both linear mixed effect (LME) models as well as function-on-scalar regression (FSR). In both cases we implement a parametric bootstrap for testing SNP coefficients and make comparisons with p-values obtained from asymptotic null distributions. In both networks at an initial q-value threshold of 0.1 no effects are found. We report on exploratory patterns of associations with relatively high ranks that exhibit stability to the differing assumptions made by both FSR and LME.
Collapse
Affiliation(s)
- Yunlong Nie
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Eugene Opoku
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Laila Yasmin
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Yin Song
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Jie Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Sidi Wu
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Vanessa Scarapicchia
- Department of Psychology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2Canada
| | - Jodie Gawryluk
- Department of Psychology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2Canada
| | - Liangliang Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| |
Collapse
|
25
|
Kong D, An B, Zhang J, Zhu H. L2RM: Low-rank Linear Regression Models for High-dimensional Matrix Responses. J Am Stat Assoc 2020; 115:403-424. [PMID: 33408427 PMCID: PMC7781207 DOI: 10.1080/01621459.2018.1555092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/11/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The aim of this paper is to develop a low-rank linear regression model (L2RM) to correlate a high-dimensional response matrix with a high dimensional vector of covariates when coefficient matrices have low-rank structures. We propose a fast and efficient screening procedure based on the spectral norm of each coefficient matrix in order to deal with the case when the number of covariates is extremely large. We develop an efficient estimation procedure based on the trace norm regularization, which explicitly imposes the low rank structure of coefficient matrices. When both the dimension of response matrix and that of covariate vector diverge at the exponential order of the sample size, we investigate the sure independence screening property under some mild conditions. We also systematically investigate some theoretical properties of our estimation procedure including estimation consistency, rank consistency and non-asymptotic error bound under some mild conditions. We further establish a theoretical guarantee for the overall solution of our two-step screening and estimation procedure. We examine the finite-sample performance of our screening and estimation methods using simulations and a large-scale imaging genetic dataset collected by the Philadelphia Neurodevelopmental Cohort (PNC) study.
Collapse
Affiliation(s)
- Dehan Kong
- Department of Statistical Sciences, University of Toronto
| | - Baiguo An
- School of Statistics, Capital University of Economics and Business
| | - Jingwen Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill
| |
Collapse
|
26
|
Rodrigue AL, Alexander-Bloch AF, Knowles EEM, Mathias SR, Mollon J, Koenis MMG, Perrone-Bizzozero NI, Almasy L, Turner JA, Calhoun VD, Glahn DC. Genetic Contributions to Multivariate Data-Driven Brain Networks Constructed via Source-Based Morphometry. Cereb Cortex 2020; 30:4899-4913. [PMID: 32318716 DOI: 10.1093/cercor/bhaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical SBM networks constructed on ~ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a disorder commonly associated with neuroanatomic alterations.
Collapse
Affiliation(s)
- Amanda L Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marinka M G Koenis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, and the Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Turner
- Psychology Department, Neurosciences Institute, Georgia State University, Atlanta, GA 30303, USA.,The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Vince D Calhoun
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.,Psychology Department, Neurosciences Institute, Georgia State University, Atlanta, GA 30303, USA.,The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.,Mind Research Network, Department of Psychiatry and Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| |
Collapse
|
27
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|
28
|
Yao X, Cong S, Yan J, Risacher SL, Saykin AJ, Moore JH, Shen L. Mining Regional Imaging Genetic Associations via Voxel-wise Enrichment Analysis. ... IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS. IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2019; 2019. [PMID: 31742256 DOI: 10.1109/bhi.2019.8834450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies examine phenotypes defined on anatomical or functional regions of interest (ROIs) given their biologically meaningful annotation and modest dimensionality compared with voxel-wise approaches. Typical ROI-level measures used in these studies are summary statistics from voxel-wise measures in the region, without making full use of individual voxel signals. In this paper, we propose a flexible and powerful framework for mining regional imaging genetic associations via voxel-wise enrichment analysis, which embraces the collective effect of weak voxel-level signals within an ROI. We demonstrate our method on an imaging genetic analysis using data from the Alzheimers Disease Neuroimaging Initiative, where we assess the collective regional genetic effects of voxel-wise FDGPET measures between 116 ROIs and 19 AD candidate SNPs. Compared with traditional ROI-wise and voxel-wise approaches, our method identified 102 additional significant associations, some of which were further supported by evidences in brain tissue-specific expression analysis. This demonstrates the promise of the proposed method as a flexible and powerful framework for exploring imaging genetic effects on the brain.
Collapse
Affiliation(s)
- Xiaohui Yao
- Biostatistics, Epidemiology and Informatics University of Pennsylvania, Philadelphia, PA
| | - Shan Cong
- Electrical and Computer Engineering Purdue University, West Lafayette, IN
| | - Jingwen Yan
- Informatics and Computing Indiana University, Indianapolis, IN
| | - Shannon L Risacher
- Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, IN
| | - Andrew J Saykin
- Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, IN
| | - Jason H Moore
- Biostatistics, Epidemiology and Informatics University of Pennsylvania, Philadelphia, PA
| | - Li Shen
- Biostatistics, Epidemiology and Informatics University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
29
|
Zhu X, Suk HI, Shen D. Group sparse reduced rank regression for neuroimaging genetic study. WORLD WIDE WEB 2019; 22:673-688. [PMID: 31607788 PMCID: PMC6788769 DOI: 10.1007/s11280-018-0637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/19/2018] [Accepted: 09/07/2018] [Indexed: 06/10/2023]
Abstract
The neuroimaging genetic study usually needs to deal with high dimensionality of both brain imaging data and genetic data, so that often resulting in the issue of curse of dimensionality. In this paper, we propose a group sparse reduced rank regression model to take the relations of both the phenotypes and the genotypes for the neuroimaging genetic study. Specifically, we propose designing a graph sparsity constraint as well as a reduced rank constraint to simultaneously conduct subspace learning and feature selection. The group sparsity constraint conducts feature selection to identify genotypes highly related to neuroimaging data, while the reduced rank constraint considers the relations among neuroimaging data to conduct subspace learning in the feature selection model. Furthermore, an alternative optimization algorithm is proposed to solve the resulting objective function and is proved to achieve fast convergence. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset showed that the proposed method has superiority on predicting the phenotype data by the genotype data, than the alternative methods under comparison.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin 541004, Guangxi, People’s Republic of China
- Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand
- BRIC Center of the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Dinggang Shen
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
- BRIC Center of the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
30
|
Nathoo FS, Kong L, Zhu H. A Review of Statistical Methods in Imaging Genetics. CAN J STAT 2019; 47:108-131. [PMID: 31274952 PMCID: PMC6605768 DOI: 10.1002/cjs.11487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/08/2018] [Indexed: 12/24/2022]
Abstract
With the rapid growth of modern technology, many biomedical studies are being conducted to collect massive datasets with volumes of multi-modality imaging, genetic, neurocognitive, and clinical information from increasingly large cohorts. Simultaneously extracting and integrating rich and diverse heterogeneous information in neuroimaging and/or genomics from these big datasets could transform our understanding of how genetic variants impact brain structure and function, cognitive function, and brain-related disease risk across the lifespan. Such understanding is critical for diagnosis, prevention, and treatment of numerous complex brain-related disorders (e.g., schizophrenia and Alzheimer's disease). However, the development of analytical methods for the joint analysis of both high-dimensional imaging phenotypes and high-dimensional genetic data, a big data squared (BD2) problem, presents major computational and theoretical challenges for existing analytical methods. Besides the high-dimensional nature of BD2, various neuroimaging measures often exhibit strong spatial smoothness and dependence and genetic markers may have a natural dependence structure arising from linkage disequilibrium. We review some recent developments of various statistical techniques for imaging genetics, including massive univariate and voxel-wise approaches, reduced rank regression, mixture models, and group sparse multi-task regression. By doing so, we hope that this review may encourage others in the statistical community to enter into this new and exciting field of research.
Collapse
Affiliation(s)
- Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria
| | - Linglong Kong
- Department of Mathematical and Statistical Sciences, University of Alberta
| | - Hongtu Zhu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
31
|
Vilor-Tejedor N, Alemany S, Cáceres A, Bustamante M, Pujol J, Sunyer J, González JR. Strategies for integrated analysis in imaging genetics studies. Neurosci Biobehav Rev 2018; 93:57-70. [PMID: 29944960 DOI: 10.1016/j.neubiorev.2018.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/30/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Imaging Genetics (IG) integrates neuroimaging and genomic data from the same individual, deepening our knowledge of the biological mechanisms behind neurodevelopmental domains and neurological disorders. Although the literature on IG has exponentially grown over the past years, the majority of studies have mainly analyzed associations between candidate brain regions and individual genetic variants. However, this strategy is not designed to deal with the complexity of neurobiological mechanisms underlying behavioral and neurodevelopmental domains. Moreover, larger sample sizes and increased multidimensionality of this type of data represents a challenge for standardizing modeling procedures in IG research. This review provides a systematic update of the methods and strategies currently used in IG studies, and serves as an analytical framework for researchers working in this field. To complement the functionalities of the Neuroconductor framework, we also describe existing R packages that implement these methodologies. In addition, we present an overview of how these methodological approaches are applied in integrating neuroimaging and genetic data.
Collapse
Affiliation(s)
- Natàlia Vilor-Tejedor
- Barcelona Research Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Beta Brain Research Center (BBRC) - Pasqual Maragall Foundation, Barcelona, Spain.
| | - Silvia Alemany
- Barcelona Research Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alejandro Cáceres
- Barcelona Research Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mariona Bustamante
- Barcelona Research Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jesús Pujol
- MRI Research Unit, Hospital del Mar, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Jordi Sunyer
- Barcelona Research Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Juan R González
- Barcelona Research Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| |
Collapse
|
32
|
Gao X, Liu J, Gong P, Wang J, Fang W, Yan H, Zhu L, Zhou X. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making. Soc Cogn Affect Neurosci 2018; 12:1534-1544. [PMID: 28431168 PMCID: PMC5629826 DOI: 10.1093/scan/nsx062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/17/2017] [Indexed: 01/03/2023] Open
Abstract
The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making.
Collapse
Affiliation(s)
- Xiaoxue Gao
- Center for Brain and Cognitive Sciences.,School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Jinting Liu
- China Center for Special Economic Zone Research.,Research Centre for Brain Function and Psychological Science, Shenzhen University, Guangdong 518060, China
| | - Pingyuan Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Shaanxi 710069, China
| | - Junhui Wang
- Research Institute of Educational Technology, South China Normal University, Guangdong 510631, China
| | - Wan Fang
- Peking-Tsinghua Center for Life Sciences.,School of Life Sciences
| | - Hongming Yan
- Peking-Tsinghua Center for Life Sciences.,School of Life Sciences
| | - Lusha Zhu
- Center for Brain and Cognitive Sciences.,Peking-Tsinghua Center for Life Sciences.,PKU-IDG/McGovern Institute for Brain Research
| | - Xiaolin Zhou
- Center for Brain and Cognitive Sciences.,School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research.,Key Laboratory of Machine Perception (Ministry of Education).,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| |
Collapse
|
33
|
Li Z, Kemppainen P, Rastas P, Merilä J. Linkage disequilibrium clustering‐based approach for association mapping with tightly linked genomewide data. Mol Ecol Resour 2018; 18:809-824. [DOI: 10.1111/1755-0998.12893] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Zitong Li
- Ecological Genetics Research Unit Research Programme in Organismal and Evolutionary Biology Faculty of Biological and Environmental Sciences Department of Biosciences University of Helsinki Helsinki Finland
| | - Petri Kemppainen
- Ecological Genetics Research Unit Research Programme in Organismal and Evolutionary Biology Faculty of Biological and Environmental Sciences Department of Biosciences University of Helsinki Helsinki Finland
| | - Pasi Rastas
- Ecological Genetics Research Unit Research Programme in Organismal and Evolutionary Biology Faculty of Biological and Environmental Sciences Department of Biosciences University of Helsinki Helsinki Finland
| | - Juha Merilä
- Ecological Genetics Research Unit Research Programme in Organismal and Evolutionary Biology Faculty of Biological and Environmental Sciences Department of Biosciences University of Helsinki Helsinki Finland
| |
Collapse
|
34
|
Wen C, Mehta CM, Tan H, Zhang H. Whole genome association study of brain-wide imaging phenotypes: A study of the ping cohort. Genet Epidemiol 2018; 42:265-275. [PMID: 29411414 PMCID: PMC5851842 DOI: 10.1002/gepi.22111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/08/2017] [Accepted: 12/07/2017] [Indexed: 02/05/2023]
Abstract
Neuropsychological disorders have a biological basis rooted in brain function, and neuroimaging data are expected to better illuminate the complex genetic basis of neuropsychological disorders. Because they are biological measures, neuroimaging data avoid biases arising from clinical diagnostic criteria that are subject to human understanding and interpretation. A challenge with analyzing neuroimaging data is their high dimensionality and complex spatial relationships. To tackle this challenge, we introduced a novel distance covariance tests that can assess the association between genetic markers and multivariate diffusion tensor imaging measurements, and analyzed a genome-wide association study (GWAS) dataset collected by the Pediatric Imaging, Neurocognition, and Genetics (PING) study. We also considered existing approaches as comparisons. Our results showed that, after correcting for multiplicity, distance covariance tests of the multivariate phenotype yield significantly greater power at detecting genetic markers affecting brain structure than standard mass univariate GWAS of individual neuroimaging biomarkers. Our results underscore the usefulness of utilizing the distance covariance to incorporate neuroimaging data in GWAS.
Collapse
Affiliation(s)
- Canhong Wen
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, China
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Chintan M. Mehta
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Haizhu Tan
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Department of Physics and Computer Applications, Shantou University Medical College, Shantou, China
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| |
Collapse
|
35
|
Xu Z, Wu C, Pan W. Imaging-wide association study: Integrating imaging endophenotypes in GWAS. Neuroimage 2017; 159:159-169. [PMID: 28736311 PMCID: PMC5671364 DOI: 10.1016/j.neuroimage.2017.07.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022] Open
Abstract
A new and powerful approach, called imaging-wide association study (IWAS), is proposed to integrate imaging endophenotypes with GWAS to boost statistical power and enhance biological interpretation for GWAS discoveries. IWAS extends the promising transcriptome-wide association study (TWAS) from using gene expression endophenotypes to using imaging and other endophenotypes with a much wider range of possible applications. As illustration, we use gray-matter volumes of several brain regions of interest (ROIs) drawn from the ADNI-1 structural MRI data as imaging endophenotypes, which are then applied to the individual-level GWAS data of ADNI-GO/2 and a large meta-analyzed GWAS summary statistics dataset (based on about 74,000 individuals), uncovering some novel genes significantly associated with Alzheimer's disease (AD). We also compare the performance of IWAS with TWAS, showing much larger numbers of significant AD-associated genes discovered by IWAS, presumably due to the stronger link between brain atrophy and AD than that between gene expression of normal individuals and the risk for AD. The proposed IWAS is general and can be applied to other imaging endophenotypes, and GWAS individual-level or summary association data.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chong Wu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Pan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
36
|
Zhu X, Suk HI, Huang H, Shen D. Low-Rank Graph-Regularized Structured Sparse Regression for Identifying Genetic Biomarkers. IEEE TRANSACTIONS ON BIG DATA 2017; 3:405-414. [PMID: 29725610 PMCID: PMC5929142 DOI: 10.1109/tbdata.2017.2735991] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, we propose a novel sparse regression method for Brain-Wide and Genome-Wide association study. Specifically, we impose a low-rank constraint on the weight coefficient matrix and then decompose it into two low-rank matrices, which find relationships in genetic features and in brain imaging features, respectively. We also introduce a sparse acyclic digraph with sparsity-inducing penalty to take further into account the correlations among the genetic variables, by which it can be possible to identify the representative SNPs that are highly associated with the brain imaging features. We optimize our objective function by jointly tackling low-rank regression and variable selection in a framework. In our method, the low-rank constraint allows us to conduct variable selection with the low-rank representations of the data; the learned low-sparsity weight coefficients allow discarding unimportant variables at the end. The experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset showed that the proposed method could select the important SNPs to more accurately estimate the brain imaging features than the state-of-the-art methods.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, and also with the Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, Guangxi 541000, China
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Seoul 03760, Republic of Korea
| | - Heng Huang
- Electrical and Computer Engineering, University of Pittsburgh, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, and also with the Department of Brain and Cognitive Engineering, Korea University, Seoul 03760, Republic of Korea
| |
Collapse
|
37
|
Huang C, Thompson P, Wang Y, Yu Y, Zhang J, Kong D, Colen RR, Knickmeyer RC, Zhu H. FGWAS: Functional genome wide association analysis. Neuroimage 2017; 159:107-121. [PMID: 28735012 PMCID: PMC5984052 DOI: 10.1016/j.neuroimage.2017.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs.
Collapse
Affiliation(s)
- Chao Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Yang Yu
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jingwen Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rivka R Colen
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Greenlaw K, Szefer E, Graham J, Lesperance M, Nathoo FS, Alzheimer’s Disease Neuroimaging Initiative. A Bayesian group sparse multi-task regression model for imaging genetics. Bioinformatics 2017; 33:2513-2522. [PMID: 28419235 PMCID: PMC5870710 DOI: 10.1093/bioinformatics/btx215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 02/20/2017] [Accepted: 04/12/2017] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Recent advances in technology for brain imaging and high-throughput genotyping have motivated studies examining the influence of genetic variation on brain structure. Wang et al. have developed an approach for the analysis of imaging genomic studies using penalized multi-task regression with regularization based on a novel group l2,1-norm penalty which encourages structured sparsity at both the gene level and SNP level. While incorporating a number of useful features, the proposed method only furnishes a point estimate of the regression coefficients; techniques for conducting statistical inference are not provided. A new Bayesian method is proposed here to overcome this limitation. RESULTS We develop a Bayesian hierarchical modeling formulation where the posterior mode corresponds to the estimator proposed by Wang et al. and an approach that allows for full posterior inference including the construction of interval estimates for the regression parameters. We show that the proposed hierarchical model can be expressed as a three-level Gaussian scale mixture and this representation facilitates the use of a Gibbs sampling algorithm for posterior simulation. Simulation studies demonstrate that the interval estimates obtained using our approach achieve adequate coverage probabilities that outperform those obtained from the nonparametric bootstrap. Our proposed methodology is applied to the analysis of neuroimaging and genetic data collected as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), and this analysis of the ADNI cohort demonstrates clearly the value added of incorporating interval estimation beyond only point estimation when relating SNPs to brain imaging endophenotypes. AVAILABILITY AND IMPLEMENTATION Software and sample data is available as an R package 'bgsmtr' that can be downloaded from The Comprehensive R Archive Network (CRAN). CONTACT nathoo@uvic.ca. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Keelin Greenlaw
- Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Elena Szefer
- Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Jinko Graham
- Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Mary Lesperance
- Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Farouk S Nathoo
- Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
40
|
Blokland GAM, Wallace AK, Hansell NK, Thompson PM, Hickie IB, Montgomery GW, Martin NG, McMahon KL, de Zubicaray GI, Wright MJ. Genome-wide association study of working memory brain activation. Int J Psychophysiol 2017; 115:98-111. [PMID: 27671502 PMCID: PMC5364069 DOI: 10.1016/j.ijpsycho.2016.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
Abstract
In a population-based genome-wide association (GWA) study of n-back working memory task-related brain activation, we extracted the average percent BOLD signal change (2-back minus 0-back) from 46 regions-of-interest (ROIs) in functional MRI scans from 863 healthy twins and siblings. ROIs were obtained by creating spheres around group random effects analysis local maxima, and by thresholding a voxel-based heritability map of working memory brain activation at 50%. Quality control for test-retest reliability and heritability of ROI measures yielded 20 reliable (r>0.7) and heritable (h2>20%) ROIs. For GWA analysis, the cohort was divided into a discovery (n=679) and replication (n=97) sample. No variants survived the stringent multiple-testing-corrected genome-wide significance threshold (p<4.5×10-9), or were replicated (p<0.0016), but several genes were identified that are worthy of further investigation. A search of 529,379 genomic markers resulted in discovery of 31 independent single nucleotide polymorphisms (SNPs) associated with BOLD signal change at a discovery level of p<1×10-5. Two SNPs (rs7917410 and rs7672408) were associated at a significance level of p<1×10-7. Only one, most strongly affecting BOLD signal change in the left supramarginal gyrus (R2=5.5%), had multiple SNPs associated at p<1×10-5 in linkage disequilibrium with it, all located in and around the BANK1 gene. BANK1 encodes a B-cell-specific scaffold protein and has been shown to negatively regulate CD40-mediated AKT activation. AKT is part of the dopamine-signaling pathway, suggesting a mechanism for the involvement of BANK1 in the BOLD response to working memory. Variants identified here may be relevant to (the susceptibility to) common disorders affecting brain function.
Collapse
Affiliation(s)
- Gabriëlla A M Blokland
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Angus K Wallace
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Narelle K Hansell
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, 2001 North Soto Street - Room 102, Marina del Rey, Los Angeles, CA 90032, United States
| | - Ian B Hickie
- Brain & Mind Research Institute, The University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Katie L McMahon
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Greig I de Zubicaray
- School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia; Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Margaret J Wright
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
41
|
Mahfouz A, Huisman SMH, Lelieveldt BPF, Reinders MJT. Brain transcriptome atlases: a computational perspective. Brain Struct Funct 2017; 222:1557-1580. [PMID: 27909802 PMCID: PMC5406417 DOI: 10.1007/s00429-016-1338-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/15/2016] [Indexed: 01/31/2023]
Abstract
The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases allow researchers to probe the molecular mechanisms which define neuronal identities, neuroanatomy, and patterns of connectivity. Despite the immense effort put into generating such atlases, to answer fundamental questions in neuroscience, an even greater effort is needed to develop methods to probe the resulting high-dimensional multivariate data. We provide a comprehensive overview of the various computational methods used to analyze brain transcriptome atlases.
Collapse
Affiliation(s)
- Ahmed Mahfouz
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands.
| | - Sjoerd M H Huisman
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Boudewijn P F Lelieveldt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
42
|
Wang C, Sun J, Guillaume B, Ge T, Hibar DP, Greenwood CMT, Qiu A. A Set-Based Mixed Effect Model for Gene-Environment Interaction and Its Application to Neuroimaging Phenotypes. Front Neurosci 2017; 11:191. [PMID: 28428742 PMCID: PMC5382297 DOI: 10.3389/fnins.2017.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/21/2017] [Indexed: 11/23/2022] Open
Abstract
Imaging genetics is an emerging field for the investigation of neuro-mechanisms linked to genetic variation. Although imaging genetics has recently shown great promise in understanding biological mechanisms for brain development and psychiatric disorders, studying the link between genetic variants and neuroimaging phenotypes remains statistically challenging due to the high-dimensionality of both genetic and neuroimaging data. This becomes even more challenging when studying gene-environment interaction (G×E) on neuroimaging phenotypes. In this study, we proposed a set-based mixed effect model for gene-environment interaction (MixGE) on neuroimaging phenotypes, such as structural volumes and tensor-based morphometry (TBM). MixGE incorporates both fixed and random effects of G×E to investigate homogeneous and heterogeneous contributions of multiple genetic variants and their interaction with environmental risks to phenotypes. We discuss the construction of score statistics for the terms associated with fixed and random effects of G×E to avoid direct parameter estimation in the MixGE model, which would greatly increase computational cost. We also describe how the score statistics can be combined into a single significance value to increase statistical power. We evaluated MixGE using simulated and real Alzheimer's Disease Neuroimaging Initiative (ADNI) data, and showed statistical power superior to other burden and variance component methods. We then demonstrated the use of MixGE for exploring the voxelwise effect of G×E on TBM, made feasible by the computational efficiency of MixGE. Through this, we discovered a potential interaction effect of gene ABCA7 and cardiovascular risk on local volume change of the right superior parietal cortex, which warrants further investigation.
Collapse
Affiliation(s)
- Changqing Wang
- NUS Graduate School for Integrative Sciences and Engineering, National University of SingaporeSingapore, Singapore
| | - Jianping Sun
- Department of Epidemiology, Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill UniversityMontreal, QC, Canada
| | - Bryan Guillaume
- Department of Biomedical Engineering, National University of SingaporeSingapore, Singapore
| | - Tian Ge
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General HospitalBoston, MA, USA.,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General HospitalBoston, MA, USA
| | - Derrek P Hibar
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of the University of Southern CaliforniaLos Angeles, CA, USA
| | - Celia M T Greenwood
- Department of Epidemiology, Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill UniversityMontreal, QC, Canada.,Departments of Oncology, Epidemiology, Biostatistics and Occupational Health, and Human Genetics, McGill UniversityMontreal, QC, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of SingaporeSingapore, Singapore.,Clinical Imaging Research Centre, National University of SingaporeSingapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology, and ResearchSingapore, Singapore
| | | |
Collapse
|
43
|
Lu ZH, Khondker Z, Ibrahim JG, Wang Y, Zhu H. Bayesian longitudinal low-rank regression models for imaging genetic data from longitudinal studies. Neuroimage 2017; 149:305-322. [PMID: 28143775 DOI: 10.1016/j.neuroimage.2017.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/27/2016] [Accepted: 01/22/2017] [Indexed: 12/29/2022] Open
Abstract
To perform a joint analysis of multivariate neuroimaging phenotypes and candidate genetic markers obtained from longitudinal studies, we develop a Bayesian longitudinal low-rank regression (L2R2) model. The L2R2 model integrates three key methodologies: a low-rank matrix for approximating the high-dimensional regression coefficient matrices corresponding to the genetic main effects and their interactions with time, penalized splines for characterizing the overall time effect, and a sparse factor analysis model coupled with random effects for capturing within-subject spatio-temporal correlations of longitudinal phenotypes. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations show that the L2R2 model outperforms several other competing methods. We apply the L2R2 model to investigate the effect of single nucleotide polymorphisms (SNPs) on the top 10 and top 40 previously reported Alzheimer disease-associated genes. We also identify associations between the interactions of these SNPs with patient age and the tissue volumes of 93 regions of interest from patients' brain images obtained from the Alzheimer's Disease Neuroimaging Initiative.
Collapse
Affiliation(s)
- Zhao-Hua Lu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zakaria Khondker
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph G Ibrahim
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
44
|
Zhang W, Li J, Guo Y, Zhang L, Xu L, Gao X, Zhu B, Gao H, Ni H, Chen Y. Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle. Sci Rep 2016; 6:38073. [PMID: 27892541 PMCID: PMC5125095 DOI: 10.1038/srep38073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/04/2016] [Indexed: 01/16/2023] Open
Abstract
Average daily gain (ADG) is the most economically important trait in beef cattle industry. Using genome-wide association study (GWAS) approaches, previous studies have identified several causal variants within the PLAG1, NCAPG and LCORL genes for ADG in cattle. Multi-strategy GWASs were implemented in this study to improve detection and to explore the causal genes and regions. In this study, we conducted GWASs based on the genotypes of 1,173 Simmental cattle. In the SNP-based GWAS, the most significant SNPs (rs109303784 and rs110058857, P = 1.78 × 10−7) were identified in the NCAPG intron on BTA6 and explained 4.01% of the phenotypic variance, and the independent and significant SNP (rs110406669, P = 5.18 × 10−6) explained 3.32% of the phenotypic variance. Similarly, in the haplotype-based GWAS, the most significant haplotype block, Hap-6-N1416 (P = 2.56 × 10−8), spanned 12.7 kb on BTA6 and explained 4.85% of the phenotypic variance. Also, in the gene-based GWAS, seven significant genes were obtained which included DCAF16 and NCAPG. Moreover, analysis of the transcript levels confirmed that transcripts abundance of NCAPG (P = 0.046) and DCAF16 (P = 0.046) were significantly correlated with the ADG trait. Overall, our results from the multi-strategy GWASs revealed the DCAF16-NCAPG region to be a susceptibility locus for ADG in cattle.
Collapse
Affiliation(s)
- Wengang Zhang
- Cattle Genetics and Breeding Group, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Junya Li
- Cattle Genetics and Breeding Group, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture (BUA), Beijing 102206, China
| | - Lupei Zhang
- Cattle Genetics and Breeding Group, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lingyang Xu
- Cattle Genetics and Breeding Group, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xue Gao
- Cattle Genetics and Breeding Group, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Bo Zhu
- Cattle Genetics and Breeding Group, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Huijiang Gao
- Cattle Genetics and Breeding Group, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture (BUA), Beijing 102206, China
| | - Yan Chen
- Cattle Genetics and Breeding Group, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
45
|
Lee S, Habeck C, Razlighi Q, Salthouse T, Stern Y. Selective association between cortical thickness and reference abilities in normal aging. Neuroimage 2016; 142:293-300. [PMID: 27353567 PMCID: PMC5159226 DOI: 10.1016/j.neuroimage.2016.06.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/02/2016] [Accepted: 06/22/2016] [Indexed: 01/05/2023] Open
Abstract
A previous study of reference abilities and cortical thickness reported that association between reference abilities and cortical thickness summarized over large ROIs suppressed was suppressed after controlling for mean cortical thickness and global cognition. In this manuscript, we showed that preserving detailed spatial patterns of cortical thickness can identify reference-ability-specific association besides the association explained by global cognition and mean cortical thickness. We identified associations between cortical thickness and 3 cognitive reference abilities after controlling for mean thickness, global cognition, and linear chronological age: (1) memory, (2) perceptual speed, and (3) vocabulary. Global cognition was correlated with mean overall thickness but also was found to have a regionally specific pattern of associations. Nonlinear associations between cortical thickness and cognition were not observed, neither were nonlinear age effects. Age-by-thickness interactions were also absent. This implies that all thickness-cognition relations and age associations are independent of age and that consequently no age range is inherently special, since brain-behavioral findings are invariant across the whole age range.
Collapse
Affiliation(s)
- Seonjoo Lee
- Division of Biostatistics, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA
| | - Christian Habeck
- Division of Cognitive Neuroscience, Department of Neurology, Columbia University, New York, NY, USA
| | - Qolamreza Razlighi
- Division of Cognitive Neuroscience, Department of Neurology, Columbia University, New York, NY, USA
| | - Timothy Salthouse
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yaakov Stern
- Division of Cognitive Neuroscience, Department of Neurology, Columbia University, New York, NY, USA.
| |
Collapse
|
46
|
Tao C, Nichols TE, Hua X, Ching CRK, Rolls ET, Thompson PM, Feng J. Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications. Neuroimage 2016; 144:35-57. [PMID: 27666385 DOI: 10.1016/j.neuroimage.2016.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 08/01/2016] [Accepted: 08/14/2016] [Indexed: 11/18/2022] Open
Abstract
We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches.
Collapse
Affiliation(s)
- Chenyang Tao
- Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, PR China; Department of Computer Science, Warwick University, Coventry, UK
| | | | - Xue Hua
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Interdepartmental Neuroscience Graduate Program, UCLA School of Medicine, Los Angeles, CA, USA
| | - Edmund T Rolls
- Department of Computer Science, Warwick University, Coventry, UK; Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Jianfeng Feng
- Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, PR China; Department of Computer Science, Warwick University, Coventry, UK; School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
47
|
Grellmann C, Neumann J, Bitzer S, Kovacs P, Tönjes A, Westlye LT, Andreassen OA, Stumvoll M, Villringer A, Horstmann A. Random Projection for Fast and Efficient Multivariate Correlation Analysis of High-Dimensional Data: A New Approach. Front Genet 2016; 7:102. [PMID: 27375677 PMCID: PMC4894907 DOI: 10.3389/fgene.2016.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/23/2016] [Indexed: 01/12/2023] Open
Abstract
In recent years, the advent of great technological advances has produced a wealth of very high-dimensional data, and combining high-dimensional information from multiple sources is becoming increasingly important in an extending range of scientific disciplines. Partial Least Squares Correlation (PLSC) is a frequently used method for multivariate multimodal data integration. It is, however, computationally expensive in applications involving large numbers of variables, as required, for example, in genetic neuroimaging. To handle high-dimensional problems, dimension reduction might be implemented as pre-processing step. We propose a new approach that incorporates Random Projection (RP) for dimensionality reduction into PLSC to efficiently solve high-dimensional multimodal problems like genotype-phenotype associations. We name our new method PLSC-RP. Using simulated and experimental data sets containing whole genome SNP measures as genotypes and whole brain neuroimaging measures as phenotypes, we demonstrate that PLSC-RP is drastically faster than traditional PLSC while providing statistically equivalent results. We also provide evidence that dimensionality reduction using RP is data type independent. Therefore, PLSC-RP opens up a wide range of possible applications. It can be used for any integrative analysis that combines information from multiple sources.
Collapse
Affiliation(s)
- Claudia Grellmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany
| | - Jane Neumann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany; Collaborative Research Center 1052-A5, University of LeipzigLeipzig, Germany
| | - Sebastian Bitzer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Department of Psychology, Dresden University of TechnologyDresden, Germany
| | - Peter Kovacs
- IFB Adiposity Diseases, Leipzig University Medical Center Leipzig, Germany
| | - Anke Tönjes
- Hospital for Endocrinology and Nephrology, University Hospital Leipzig Leipzig, Germany
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, University Hospital OsloOslo, Norway; Department of Psychology, University of OsloOslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, University Hospital Oslo Oslo, Norway
| | - Michael Stumvoll
- IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany; Hospital for Endocrinology and Nephrology, University Hospital LeipzigLeipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany; Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany; Mind and Brain Institute, Berlin School of Mind and Brain, Humboldt-University and CharitéBerlin, Germany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; IFB Adiposity Diseases, Leipzig University Medical CenterLeipzig, Germany; Collaborative Research Center 1052-A5, University of LeipzigLeipzig, Germany
| |
Collapse
|
48
|
Jack CR, Barnes J, Bernstein MA, Borowski BJ, Brewer J, Clegg S, Dale AM, Carmichael O, Ching C, DeCarli C, Desikan RS, Fennema-Notestine C, Fjell AM, Fletcher E, Fox NC, Gunter J, Gutman BA, Holland D, Hua X, Insel P, Kantarci K, Killiany RJ, Krueger G, Leung KK, Mackin S, Maillard P, Malone IB, Mattsson N, McEvoy L, Modat M, Mueller S, Nosheny R, Ourselin S, Schuff N, Senjem ML, Simonson A, Thompson PM, Rettmann D, Vemuri P, Walhovd K, Zhao Y, Zuk S, Weiner M. Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimers Dement 2016; 11:740-56. [PMID: 26194310 DOI: 10.1016/j.jalz.2015.05.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Alzheimer's Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The primary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods for clinical trials in Alzheimer's disease (AD) and related disorders. METHODS We review the contributions of the MRI core from present and past cycles of ADNI (ADNI-1, -Grand Opportunity and -2). We also review plans for the future-ADNI-3. RESULTS Contributions of the MRI core include creating standardized acquisition protocols and quality control methods; examining the effect of technical features of image acquisition and analysis on outcome metrics; deriving sample size estimates for future trials based on those outcomes; and piloting the potential utility of MR perfusion, diffusion, and functional connectivity measures in multicenter clinical trials. DISCUSSION Over the past decade the MRI core of ADNI has fulfilled its mandate of improving methods for clinical trials in AD and will continue to do so in the future.
Collapse
Affiliation(s)
| | - Josephine Barnes
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | | | | | - James Brewer
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Shona Clegg
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Anders M Dale
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Owen Carmichael
- Department of Neurology, University of California at Davis, Davis, CA, USA
| | - Christopher Ching
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Rahul S Desikan
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA
| | - Christine Fennema-Notestine
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Anders M Fjell
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Evan Fletcher
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Jeff Gunter
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Boris A Gutman
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Dominic Holland
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Xue Hua
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Philip Insel
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ron J Killiany
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Kelvin K Leung
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Scott Mackin
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
| | - Pauline Maillard
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Ian B Malone
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Linda McEvoy
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA
| | - Marc Modat
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Susanne Mueller
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | - Rachel Nosheny
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | - Sebastien Ourselin
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Norbert Schuff
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Alix Simonson
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Paul M Thompson
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Dan Rettmann
- MR Applications and Workflow, GE Healthcare, Rochester, MN, USA
| | | | | | | | - Samantha Zuk
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Weiner
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA; Department of Medicine, University of California at San Francisco, San Francisco, CA, USA; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Begum F, Sharker MH, Sherman SL, Tseng GC, Feingold E. Regionally Smoothed Meta-Analysis Methods for GWAS Datasets. Genet Epidemiol 2015; 40:154-60. [PMID: 26707090 DOI: 10.1002/gepi.21949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/01/2015] [Accepted: 11/16/2015] [Indexed: 01/20/2023]
Abstract
Genome-wide association studies are proven tools for finding disease genes, but it is often necessary to combine many cohorts into a meta-analysis to detect statistically significant genetic effects. Often the component studies are performed by different investigators on different populations, using different chips with minimal SNPs overlap. In some cases, raw data are not available for imputation so that only the genotyped single nucleotide polymorphisms (SNPs) results can be used in meta-analysis. Even when SNP sets are comparable, different cohorts may have peak association signals at different SNPs within the same gene due to population differences in linkage disequilibrium or environmental interactions. We hypothesize that the power to detect statistical signals in these situations will improve by using a method that simultaneously meta-analyzes and smooths the signal over nearby markers. In this study, we propose regionally smoothed meta-analysis methods and compare their performance on real and simulated data.
Collapse
Affiliation(s)
- Ferdouse Begum
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Monir H Sharker
- Department of Information Science and Technology, University of Pittsburgh, Pennsylvania, United States of America
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - George C Tseng
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
50
|
Dumancas GG, Ramasahayam S, Bello G, Hughes J, Kramer R. Chemometric regression techniques as emerging, powerful tools in genetic association studies. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|