1
|
Carr JMJR, Koep J, Brewster LM, Getu A, Dizon JC, Isaak D, Steele A, Howe CA, Ainslie PN. Acute selective serotonin-reuptake inhibition elevates basal ventilation and attenuates the rebreathing ventilatory response, independent of cerebral perfusion. J Appl Physiol (1985) 2025; 138:592-602. [PMID: 39819056 DOI: 10.1152/japplphysiol.00751.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Serotonin (5-HT) is integral to signaling in areas of the brainstem controlling ventilation and is involved in central chemoreception. Selective serotonin reuptake inhibitors (SSRIs), used to effectively increase 5-HT concentrations, are commonly prescribed for depression. The effects of SSRIs on the control of breathing and the potential influence of cerebral blood flow (CBF) have not been directly assessed. We hypothesized that a single SSRI dose in healthy adults would not impact resting ventilation, global CBF, or brainstem blood flow reactivity to CO2 but would steepen the slope of the hypercapnic ventilatory response (HCVR). In 15 young, healthy adults (6 females, 25 [Formula: see text] 5 yr, 70 [Formula: see text] 10 kg, 172 [Formula: see text] 15 cm, 24 [Formula: see text] 4 kg/cm2), using a placebo-controlled, double-blind, randomized design, we assessed baseline cardiorespiratory and CBF (duplex ultrasound) responses to SSRI (40 mg citalopram), as well as to hyperoxic hypercapnic rebreathing (as an index of central chemoreception). Baseline measures of mean arterial pressure, heart rate, minute ventilation, CBF, and the pressures of end-tidal oxygen and carbon dioxide were all not influenced by SSRI. Likewise, the sum of blood flowing through both vertebral arteries (as an index of brainstem blood flow) during hypercapnia was also unchanged. In contrast, basal ventilation (during rebreathing following hyperventilation and during hyperoxia) was elevated from 9.5 [Formula: see text] 4.1 to 11.5 [Formula: see text] 5.5 L/min (interaction P = 0.023); and counter to our hypothesis, the central chemoreceptor-mediated ventilatory response to CO2 was reduced following SSRI from 7.5 [Formula: see text] 5.3 to 5.1 [Formula: see text] 4.1 L/min/mmHg (interaction P = 0.027). The implications of these findings in health and pathology remain to be determined.NEW & NOTEWORTHY Acute inhibition of serotonin reuptake with citalopram diminishes the ventilatory response to hyperoxic hypercapnic rebreathing, possibly indicating decreased sensitivity of the central chemoreceptors and respiratory control centers. Additionally, ventilation during minimal chemoreceptor activation-i.e., following hypocapnia during hyperoxia-is elevated, perhaps signifying an increased tonic activity of the respiratory control areas. These changes appear to be independent of brainstem blood flow. These findings may have implications for antidepressant drug use.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jodie Koep
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - L Madden Brewster
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ayechew Getu
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jonah C Dizon
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Declan Isaak
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrew Steele
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Harastova-Pavlova I, Drazanova E, Kratka L, Amchova P, Hrickova M, Macicek O, Vitous J, Jirik R, Ruda-Kucerova J. Chronic citalopram effects on the brain neurochemical profile and perfusion in a rat model of depression detected by the NMR techniques - spectroscopy and perfusion. Biomed Pharmacother 2024; 181:117656. [PMID: 39486369 DOI: 10.1016/j.biopha.2024.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a mental illness with a high worldwide prevalence and suboptimal pharmacological treatment, which necessitates the development of novel, more efficacious MDD medication. Nuclear magnetic resonance (NMR) can non-invasively provide insight into the neurochemical state of the brain using proton magnetic resonance spectroscopy (1H MRS), and an assessment of regional cerebral blood flow (rCBF) by perfusion imaging. These methods may provide valuable in vivo markers of the pathological processes underlying MDD. METHODS This study examined the effects of the chronic antidepressant medication, citalopram, in a well-validated MDD model induced by bilateral olfactory bulbectomy (OB) in rats. 1H MRS was utilized to assess key metabolite ratios in the dorsal hippocampus and sensorimotor cortex bilaterally, and arterial spin labelling was employed to estimate rCBF in several additional brain regions. RESULTS The 1H MRS data results suggest lower hippocampal Cho/tCr and lower cortical NAA/tCr levels as a characteristic of the OB phenotype. Spectroscopy revealed lower hippocampal Tau/tCr in citalopram-treated rats, indicating a potentially deleterious effect of the drug. However, the significant OB model-citalopram treatment interaction was observed using 1H MRS in hippocampal mI/tCr, Glx/tCr and Gln/tCr, indicating differential treatment effects in the OB and control groups. The perfusion data revealed higher rCBF in the whole brain, hippocampus and thalamus in the OB rats, while citalopram appeared to normalise it without affecting the control group. CONCLUSION Collectively, 1H MRS and rCBF approaches demonstrated their capacity to capture an OB-induced phenotype and chronic antidepressant treatment effect in multiple brain regions.
Collapse
Affiliation(s)
- Iveta Harastova-Pavlova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Drazanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Hrickova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Macicek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Vitous
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Radovan Jirik
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
3
|
Rieser NM, Gubser LP, Moujaes F, Duerler P, Lewis CR, Michels L, Vollenweider FX, Preller KH. Psilocybin-induced changes in cerebral blood flow are associated with acute and baseline inter-individual differences. Sci Rep 2023; 13:17475. [PMID: 37838755 PMCID: PMC10576760 DOI: 10.1038/s41598-023-44153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Research into the use of psilocybin for the treatment of psychiatric disorders is a growing field. Nevertheless, robust brain-behavior relationships linking psilocybin-induced brain changes to subjective drug-induced effects have not been established. Furthermore, it is unclear if the acute neural effects are dependent on individual heterogeneity in baseline characteristics. To address this, we assessed the effects of three oral doses of psilocybin vs. placebo on cerebral blood flow (CBF) using arterial spin labeling in healthy participants (N = 70; n = 31, 0.16 mg/kg; n = 10, 0.2 mg/kg; n = 29, 0.215 mg/kg). First, we quantified psilocybin-induced changes in relative and absolute CBF. Second, in an exploratory analysis, we assessed whether individual baseline characteristics and subjective psychedelic experience are associated with changes in CBF. Psychological and neurobiological baseline characteristics correlated with the psilocybin-induced reduction in relative CBF and the psilocybin-induced subjective experience. Furthermore, the psilocybin-induced subjective experience was associated with acute changes in relative and absolute CBF. The results demonstrated that inter-individual heterogeneity in the neural response to psilocybin is associated with baseline characteristics and shed light on the mechanisms underlying the psychedelic-induced altered state. Overall, these findings help guide the search for biomarkers, paving the way for a personalized medicine approach within the framework of psychedelic-assisted therapy.
Collapse
Affiliation(s)
- Nathalie M Rieser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland.
| | - Ladina P Gubser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
| | - Flora Moujaes
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Patricia Duerler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
| | - Candace R Lewis
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
| |
Collapse
|
4
|
Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, Zelaya F, Turkheimer FE, Mehta MA, Howes OD. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med 2023; 53:5235-5245. [PMID: 36004510 PMCID: PMC10476071 DOI: 10.1017/s0033291722002288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been found in people at risk for psychosis, with first-episode psychosis (FEP) and with chronic schizophrenia (SCZ). Studies using arterial spin labelling (ASL) have shown reduction of cortical CBF and increased subcortical CBF in SCZ. Previous studies have investigated CBF using ASL in FEP, reporting increased CBF in striatum and reduced CBF in frontal cortex. However, as these people were taking antipsychotics, it is unclear whether these changes are related to the disorder or antipsychotic treatment and how they relate to treatment response. METHODS We examined CBF in FEP free from antipsychotic medication (N = 21), compared to healthy controls (N = 22). Both absolute and relative-to-global CBF were assessed. We also investigated the association between baseline CBF and treatment response in a partially nested follow-up study (N = 14). RESULTS There was significantly lower absolute CBF in frontal cortex (Cohen's d = 0.84, p = 0.009) and no differences in striatum or hippocampus. Whole brain voxel-wise analysis revealed widespread cortical reductions in absolute CBF in large cortical clusters that encompassed occipital, parietal and frontal cortices (Threshold-Free Cluster Enhancement (TFCE)-corrected <0.05). No differences were found in relative-to-global CBF in the selected region of interests and in voxel-wise analysis. Relative-to-global frontal CBF was correlated with percentage change in total Positive and Negative Syndrome Scale after antipsychotic treatment (r = 0.67, p = 0.008). CONCLUSIONS These results show lower cortical absolute perfusion in FEP prior to starting antipsychotic treatment and suggest relative-to-global frontal CBF as assessed with magnetic resonance imaging could potentially serve as a biomarker for antipsychotic response.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Foundation Trust, London, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
5
|
Chiappelli J, Adhikari BM, Kvarta MD, Bruce HA, Goldwaser EL, Ma Y, Chen S, Ament S, Shuldiner AR, Mitchell BD, Kochunov P, Wang DJJ, Hong LE. Depression, stress and regional cerebral blood flow. J Cereb Blood Flow Metab 2023; 43:791-800. [PMID: 36606600 PMCID: PMC10108192 DOI: 10.1177/0271678x221148979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023]
Abstract
Decreased cerebral blood flow (CBF) may be an important mechanism associated with depression. In this study we aimed to determine if the association of CBF and depression is dependent on current level of depression or the tendency to experience depression over time (trait depression), and if CBF is influenced by depression-related factors such as stressful life experiences and antidepressant medication use. CBF was measured in 254 participants from the Amish Connectome Project (age 18-76, 99 men and 154 women) using arterial spin labeling. All participants underwent assessment of symptoms of depression measured with the Beck Depression Inventory and Maryland Trait and State Depression scales. Individuals diagnosed with a unipolar depressive disorder had significantly lower average gray matter CBF compared to individuals with no history of depression or to individuals with a history of depression that was in remission at time of study. Trait depression was significantly associated with lower CBF, with the associations strongest in cingulate gyrus and frontal white matter. Use of antidepressant medication and more stressful life experiences were also associated with significantly lower CBF. Resting CBF in specific brain regions is associated with trait depression, experience of stressful life events, and current antidepressant use, and may provide a valuable biomarker for further studies.
Collapse
Affiliation(s)
- Joshua Chiappelli
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Bhim M Adhikari
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Mark D Kvarta
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Heather A Bruce
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Eric L Goldwaser
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Yizhou Ma
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Seth Ament
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Alan R Shuldiner
- Department of Medicine, University
of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University
of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education
Clinical Center, Baltimore Veterans Administration, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| | - Danny JJ Wang
- Laboratory of Functional MRI
Technology, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck
School of Medicine, University of Southern California, Los Angeles, CA,
USA
| | - L Elliot Hong
- Maryland Psychiatric Research
Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
6
|
Application of a Conducting Poly-Methionine/Gold Nanoparticles-Modified Sensor for the Electrochemical Detection of Paroxetine. Polymers (Basel) 2021; 13:polym13223981. [PMID: 34833279 PMCID: PMC8623231 DOI: 10.3390/polym13223981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022] Open
Abstract
This work demonstrates a facile electropolymerization of a dl-methionine (dl-met) conducting polymeric film on a gold nanoparticle (AuNPs)-modified glassy carbon electrode (GCE). The resulting sensor was successfully applied for the sensitive detection of paroxetine·HCl (PRX), a selective serotonin (5-HT) reuptake inhibitor (SSRIs), in its pharmaceutical formulations. The sensor was characterized morphologically using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) and electrochemical techniques such as differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The proposed sensor, poly (dl-met)/AuNPs-GCE, exhibited a linear response range from 5 × 10−11 to 5 × 10−8 M and from 5 × 10−8 to 1 × 10−4 M using DPV with lowest limit of detection (LOD = 1 × 10−11 M) based on (S/N = 3). The poly (dl-met)/AuNPs-GCE sensor was successfully applied for PRX determination in three different pharmaceutical formulations with percent recoveries between 96.29% and 103.40% ± SD (±0.02 and ±0.58, respectively).
Collapse
|
7
|
Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci 2020; 21:611-624. [PMID: 32929261 DOI: 10.1038/s41583-020-0367-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Renewed interest in the use of psychedelics in the treatment of psychiatric disorders warrants a better understanding of the neurobiological mechanisms underlying the effects of these substances. After a hiatus of about 50 years, state-of-the art studies have recently begun to close important knowledge gaps by elucidating the mechanisms of action of psychedelics with regard to their effects on receptor subsystems, systems-level brain activity and connectivity, and cognitive and emotional processing. In addition, functional studies have shown that changes in self-experience, emotional processing and social cognition may contribute to the potential therapeutic effects of psychedelics. These discoveries provide a scientific road map for the investigation and application of psychedelic substances in psychiatry.
Collapse
|
8
|
Wilcox CE, Adinoff B, Clifford J, Ling J, Witkiewitz K, Mayer AR, Boggs KM, Eck M, Bogenschutz M. Brain activation and subjective anxiety during an anticipatory anxiety task is related to clinical outcome during prazosin treatment for alcohol use disorder. NEUROIMAGE-CLINICAL 2020; 26:102162. [PMID: 32037283 PMCID: PMC7229347 DOI: 10.1016/j.nicl.2020.102162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/15/2019] [Accepted: 01/02/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Higher levels of anxiety, negative affect, and impaired emotion regulation are associated with alcohol use disorder (AUD) and contribute to relapse and worse treatment outcomes. Prazosin, while typically used to treat post-traumatic stress disorder (PTSD) and other anxiety disorders, has shown promise for treating AUD. In order to better understand these underlying neural processes in individuals with AUD, our aims in this study were to measure brain activation during an anticipatory anxiety task before treatment to determine whether observed patterns supported previous work. We then aimed to measure the effects of prazosin on patients with AUD and explore whether greater baseline anticipatory anxiety (as measured by subjective and neural measures) predicts better treatment outcomes. METHODS Thirty-four individuals seeking treatment for AUD participated in a six-week placebo-controlled study of prazosin and underwent an anticipatory anxiety task during fMRI scans at baseline and three weeks. Alcohol use over six weeks was measured. RESULTS Greater levels of subjective anxiety and deactivation in posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC) were observed during high-threat stimuli compared to low-threat stimuli. Compared to placebo, prazosin reduced subjective anxiety to high-threat stimuli but there were no observed significant effects of prazosin on brain activation during the task. However, AUD patients with greater vmPFC deactivation during high threat relative to low threat and patients with low baseline anticipatory anxiety during the task had worse clinical outcomes on prazosin. CONCLUSIONS Deactivation in PCC and vmPFC to high-threat stimuli replicated previous work and shows promise for further study as a marker for AUD. Although prazosin did not affect brain activation in the regions of interest during the anticipatory anxiety task, subjective levels of anxiety and brain activation in vmPFC predicted treatment outcomes in individuals with AUD undergoing treatment with prazosin, highlighting individuals more likely to benefit from prazosin than others.
Collapse
Affiliation(s)
- Claire E Wilcox
- Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
| | - Bryon Adinoff
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; VA North Texas Health Care System, 4500 S Lancaster Rd, Dallas, TX 75216, USA; Department of Psychiatry, School of Medicine, University of Colorado, 13001 E 17th Place, Aurora, CO 80045, USA
| | - Joshua Clifford
- Department of Psychiatry, University of New Mexico, 2400 Tucker NE, Albuquerque, NM 87131, USA
| | - Josef Ling
- Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA
| | - Katie Witkiewitz
- Department of Psychology, Center on Alcoholism, Substance Abuse & Addictions, University of New Mexico, 2650 Yale Blvd. SE, Albuquerque, NM 87106, USA
| | - Andrew R Mayer
- Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA
| | - Kylar M Boggs
- Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA
| | - Matthew Eck
- Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; University of Southern California, USA
| | - Michael Bogenschutz
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
9
|
Differential effects of psychoactive substances on human wildtype and polymorphic T356M dopamine transporters (DAT). Toxicology 2019; 422:69-75. [PMID: 31009648 DOI: 10.1016/j.tox.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 01/04/2023]
Abstract
Many psychoactive substances affect the human dopamine (DA) reuptake transporter (hDAT). Polymorphisms in the encoding gene could affect the functionality of the transporter and consequently alter effects of psychotropic and recreational drugs. Recently, a T356 M single nucleotide polymorphism in the human SLC6A3 gene was described, which resulted in functional impairments of DA uptake. Therefore, we investigated the effects of 10 psychoactive substances (0.01-1000 μM)) on DA uptake in human embryonic kidney (HEK) 293 cells transiently overexpressing wildtype (WT) or T356 M hDAT. Our data shows that T356 M hDAT has a 3 times lower Vmax and a 3 times higher Km compared to WT hDAT. Additionally, all psychoactive substances inhibited DA uptake by T356 M and WT hDAT. The DA reuptake inhibitors (methylphenidate, cocaine, and bupropion) inhibited DA uptake by WT hDAT most potently, followed by amphetamine-type stimulants [4-fluoroamphetamine (4-FA), amphetamine and MDMA], selective serotonin reuptake inhibitors (SSRI; fluoxetine and citalopram) and arylcyclohexylamines [methoxetamine (MXE) and ketamine]. Compared to DA uptake by WT hDAT, bupropion, methylphenidate, cocaine, and MXE less potently inhibited DA uptake by T356 M hDAT, while citalopram more potently inhibited uptake. The differences in IC50 values between T356 M and WT hDAT were considerable (3-45 fold). As such, the presence of this polymorphism could affect treatment efficiency with these substances as well as susceptibly for toxicity and addiction for individuals carrying this polymorphism.
Collapse
|
10
|
Effects of a brief cognitive behavioural therapy group intervention on baseline brain perfusion in adolescents with major depressive disorder. Neuroreport 2018; 28:348-353. [PMID: 28328739 DOI: 10.1097/wnr.0000000000000770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of neuroimaging studies have identified altered regional cerebral blood flow (rCBF) related to major depressive disorder (MDD) in adult samples, particularly in the lateral prefrontal, cingular and temporal regions. In contrast, neuroimaging investigations in adolescents with MDD are rare, although investigating young patients during a significant period of brain maturation might offer valuable insights into the neural mechanisms of MDD. We acquired perfusion images obtained with continuous arterial spin labelling in 21 medication-naive adolescents with MDD before and after a five-session cognitive behavioural group therapy (group CBT). A control group included medication-naive patients under treatment as usual while waiting for the psychotherapy. We found relatively increased rCBF in the right dorsolateral prefrontal cortex (DLPFC; BA 46), the right caudate nucleus and the left inferior parietal lobe (BA 40) after CBT compared with before CBT. Relatively increased rCBF in the right DLPFC postgroup CBT was confirmed by time (post vs. pre)×group (intervention/waiting list) interaction analyses. In the waiting group, relatively increased rCBF was found in the thalamus and the anterior cingulate cortex (BA 24). The relatively small number of patients included in this pilot study has to be considered. Our findings indicate that noninvasive resting perfusion scanning is suitable to identify CBT-related changes in adolescents with MDD. rCBF increase in the DLPFC following a significant reduction in MDD symptoms in adolescents might represent the core neural correlate of changes in 'top-down' cognitive processing, a possible correlate of improved self-regulation and cognitive control.
Collapse
|
11
|
Lewis CR, Preller KH, Kraehenmann R, Michels L, Staempfli P, Vollenweider FX. Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow. Neuroimage 2017; 159:70-78. [PMID: 28711736 DOI: 10.1016/j.neuroimage.2017.07.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022] Open
Abstract
Psilocybin, the active compound in psychedelic mushrooms, is an agonist of various serotonin receptors. Seminal psilocybin positron emission tomography (PET) research suggested regional increases in glucose metabolism in frontal cortex (hyperfrontality). However, a recent arterial spin labeling (ASL) study suggests psilocybin may lead to hypo-perfusion in various brain regions. In this placebo-controlled, double-blind study we used pseudo-continuous ASL (pCASL) to measure perfusion changes, with and without adjustment for global brain perfusion, after two doses of oral psilocybin (low dose: 0.160 mg/kg; high dose: 0.215 mg/kg) in two groups of healthy controls (n = 29 in both groups, total N = 58) during rest. We controlled for sex and age and used family-wise error corrected p values in all neuroimaging analyses. Both dose groups reported profound subjective drug effects as measured by the Altered States of Consciousness Rating Scale (5D-ASC) with the high dose inducing significantly larger effects in four out of the 11 scales. After adjusting for global brain perfusion, psilocybin increased relative perfusion in distinct right hemispheric frontal and temporal regions and bilaterally in the anterior insula and decreased perfusion in left hemispheric parietal and temporal cortices and left subcortical regions. Whereas, psilocybin significantly reduced absolute perfusion in frontal, temporal, parietal, and occipital lobes, and bilateral amygdalae, anterior cingulate, insula, striatal regions, and hippocampi. Our analyses demonstrate consistency with both the hyperfrontal hypothesis of psilocybin and the more recent study demonstrating decreased perfusion, depending on analysis method. Importantly, our data illustrate that relative changes in perfusion should be understood and interpreted in relation to absolute signal variations.
Collapse
Affiliation(s)
- Candace R Lewis
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032, Zurich, Switzerland.
| | - Katrin H Preller
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032, Zurich, Switzerland
| | - Rainer Kraehenmann
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032, Zurich, Switzerland
| | - Lars Michels
- Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland Center of MR-Research, University Children's Hospital Zurich, Ramistr. 100, 8091, Zurich, Switzerland
| | - Philipp Staempfli
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032, Zurich, Switzerland
| | - Franz X Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, 8032, Zurich, Switzerland
| |
Collapse
|
12
|
Paloyelis Y, Doyle OM, Zelaya FO, Maltezos S, Williams SC, Fotopoulou A, Howard MA. A Spatiotemporal Profile of In Vivo Cerebral Blood Flow Changes Following Intranasal Oxytocin in Humans. Biol Psychiatry 2016; 79:693-705. [PMID: 25499958 DOI: 10.1016/j.biopsych.2014.10.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/21/2014] [Accepted: 10/07/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Animal and human studies highlight the role of oxytocin in social cognition and behavior and the potential of intranasal oxytocin (IN-OT) to treat social impairment in individuals with neuropsychiatric disorders such as autism. However, extensive efforts to evaluate the central actions and therapeutic efficacy of IN-OT may be marred by the absence of data regarding its temporal dynamics and sites of action in the living human brain. METHODS In a placebo-controlled study, we used arterial spin labeling to measure IN-OT-induced changes in resting regional cerebral blood flow (rCBF) in 32 healthy men. Volunteers were blinded regarding the nature of the compound they received. The rCBF data were acquired 15 min before and up to 78 min after onset of treatment onset (40 IU of IN-OT or placebo). The data were analyzed using mass univariate and multivariate pattern recognition techniques. RESULTS We obtained robust evidence delineating an oxytocinergic network comprising regions expected to express oxytocin receptors, based on histologic evidence, and including core regions of the brain circuitry underpinning social cognition and emotion processing. Pattern recognition on rCBF maps indicated that IN-OT-induced changes were sustained over the entire posttreatment observation interval (25-78 min) and consistent with a pharmacodynamic profile showing a peak response at 39-51 min. CONCLUSIONS Our study provides the first visualization and quantification of IN-OT-induced changes in rCBF in the living human brain unaffected by cognitive, affective, or social manipulations. Our findings can inform theoretical and mechanistic models regarding IN-OT effects on typical and atypical social behavior and guide future experiments (e.g., regarding the timing of experimental manipulations).
Collapse
Affiliation(s)
- Yannis Paloyelis
- Departments of Neuroimaging, Institute of Psychiatry, King's College London, London.
| | - Orla M Doyle
- Departments of Neuroimaging, Institute of Psychiatry, King's College London, London
| | - Fernando O Zelaya
- Departments of Neuroimaging, Institute of Psychiatry, King's College London, London
| | - Stefanos Maltezos
- Departments of Forensic and Neurodevelopmental Science, Institute of Psychiatry, King's College London, London
| | - Steven C Williams
- Departments of Neuroimaging, Institute of Psychiatry, King's College London, London
| | - Aikaterini Fotopoulou
- Research Department of Clinical, Educational, and Health Psychology, University College London, London, United Kingdom
| | - Matthew A Howard
- Departments of Neuroimaging, Institute of Psychiatry, King's College London, London
| |
Collapse
|
13
|
Klaassens BL, van Gorsel HC, Khalili-Mahani N, van der Grond J, Wyman BT, Whitcher B, Rombouts SARB, van Gerven JMA. Single-dose serotonergic stimulation shows widespread effects on functional brain connectivity. Neuroimage 2015; 122:440-50. [PMID: 26277774 DOI: 10.1016/j.neuroimage.2015.08.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 12/16/2022] Open
Abstract
The serotonergic system is widely distributed throughout the central nervous system. It is well known as a mood regulating system, although it also contributes to many other functions. With resting state functional magnetic resonance imaging (RS-fMRI) it is possible to investigate whole brain functional connectivity. We used this non-invasive neuroimaging technique to measure acute pharmacological effects of the selective serotonin reuptake inhibitor sertraline (75 mg) in 12 healthy volunteers. In this randomized, double blind, placebo-controlled, crossover study, RS-fMRI scans were repeatedly acquired during both visits (at baseline and 3, 5, 7 and 9h after administering sertraline or placebo). Within-group comparisons of voxelwise functional connectivity with ten functional networks were examined (p<0.005, corrected) using a mixed effects model with cerebrospinal fluid, white matter, motion parameters, heart rate and respiration as covariates. Sertraline induced widespread effects on functional connectivity with multiple networks; the default mode network, the executive control network, visual networks, the sensorimotor network and the auditory network. A common factor among these networks was the involvement of the precuneus and posterior cingulate cortex. Cognitive and subjective measures were taken as well, but yielded no significant treatment effects, emphasizing the sensitivity of RS-fMRI to pharmacological challenges. The results are consistent with the existence of an extensive serotonergic system relating to multiple brain functions with a possible key role for the precuneus and cingulate.
Collapse
Affiliation(s)
- Bernadet L Klaassens
- Leiden University, Institute of Psychology, Leiden, The Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | | | | | - Jeroen van der Grond
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | | | | | - Serge A R B Rombouts
- Leiden University, Institute of Psychology, Leiden, The Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | |
Collapse
|
14
|
“Domain gauges”: A reference system for multivariate profiling of brain fMRI activation patterns induced by psychoactive drugs in rats. Neuroimage 2015. [DOI: 10.1016/j.neuroimage.2015.02.032 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Bruns A, Mueggler T, Künnecke B, Risterucci C, Prinssen EP, Wettstein JG, von Kienlin M. “Domain gauges”: A reference system for multivariate profiling of brain fMRI activation patterns induced by psychoactive drugs in rats. Neuroimage 2015. [DOI: 10.1016/j.neuroimage.2015.02.032 [doi].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Bruns A, Mueggler T, Künnecke B, Risterucci C, Prinssen EP, Wettstein JG, von Kienlin M. "Domain gauges": A reference system for multivariate profiling of brain fMRI activation patterns induced by psychoactive drugs in rats. Neuroimage 2015; 112:70-85. [PMID: 25724758 DOI: 10.1016/j.neuroimage.2015.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 01/01/2023] Open
Abstract
Pharmacological magnetic resonance imaging (phMRI) of the brain has become a widely used tool in both preclinical and clinical drug research. One of its challenges is to condense the observed complex drug-induced brain-activation patterns into semantically meaningful metrics that can then serve as a basis for informed decision making. To aid interpretation of spatially distributed activation patterns, we propose here a set of multivariate metrics termed "domain gauges", which have been calibrated based on different classes of marketed or validated reference drugs. Each class represents a particular "domain" of interest, i.e., a specific therapeutic indication or mode of action. The drug class is empirically characterized by the unique activation pattern it evokes in the brain-the "domain profile". A domain gauge provides, for any tested intervention, a "classifier" as a measure of response strength with respect to the domain in question, and a "differentiator" as a measure of deviation from the domain profile, both along with error ranges. Capitalizing on our in-house database with an unprecedented wealth of standardized perfusion-based phMRI data obtained from rats subjected to various validated treatments, we exemplarily focused on 3 domains based on therapeutic indications: an antipsychotic, an antidepressant and an anxiolytic domain. The domain profiles identified as part of the gauge definition process, as well as the outputs of the gauges when applied to both reference and validation data, were evaluated for their reconcilability with prior biological knowledge and for their performance in drug characterization. The domain profiles provided quantitative activation patterns with high biological plausibility. The antipsychotic profile, for instance, comprised key areas (e.g., cingulate cortex, nucleus accumbens, ventral tegmental area, substantia nigra) which are believed to be strongly involved in mediating an antipsychotic effect, and which are in line with network-level dysfunctions observed in schizophrenia. The domain gauges plausibly positioned the vast majority of the pharmacological and even non-pharmacological treatments. The results also suggest the segregation of sub-domains based on, e.g., the mode of action. Upon judicious selection of domains and careful calibration of the gauges, our approach represents a valuable analytical tool for biological interpretation and decision making in drug discovery.
Collapse
Affiliation(s)
- Andreas Bruns
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland.
| | - Thomas Mueggler
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Basil Künnecke
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Céline Risterucci
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Eric P Prinssen
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Joseph G Wettstein
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Markus von Kienlin
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
17
|
Stingl J, Viviani R. Polymorphism in CYP2D6 and CYP2C19, members of the cytochrome P450 mixed-function oxidase system, in the metabolism of psychotropic drugs. J Intern Med 2015; 277:167-177. [PMID: 25297512 DOI: 10.1111/joim.12317] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous studies in the field of psychopharmacological treatment have investigated the possible contribution of genetic variability between individuals to differences in drug efficacy and safety, motivated by the wide individual variation in treatment response. Genomewide analyses have been conducted in several large-scale studies on antidepressant drug response. However, no consistent findings have emerged from these studies. In a recent meta-analysis of genomewide data from the three studies capturing common variation for association with symptomatic improvement and remission revealed the absence of any strong genetic association and failed to replicate results of individual studies in the pooled data. However, there are good reasons to consider the possible importance of pharmacogenetic variants separately. These variants explain a large portion of the manifold variability in individual drug metabolism. More than 20 psychotropic drugs have now been relabelled by the FDA adding information on polymorphic drug metabolism and therapeutic recommendations. Furthermore, dose recommendations for polymorphisms in drug metabolizing enzymes, first and foremost CYP2D6 and CYP2C19, have been issued with the advice to reduce the dosage in poor metabolizers to 50% or less (in eight cases), or to choose an alternative treatment. Beside the well-described role in hepatic drug metabolism, these enzymes are also expressed in the brain and play a role in biotransformation of endogenous substrates. These polymorphisms may therefore modulate brain metabolism and affect the function of the neural substrates of cognition and emotion.
Collapse
Affiliation(s)
- J Stingl
- Center for Translational Medicine, University of Bonn Medical School, Bonn, Germany
| | - R Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| |
Collapse
|
18
|
In vivo assessment of human brainstem cerebrovascular function: a multi-inversion time pulsed arterial spin labelling study. J Cereb Blood Flow Metab 2014; 34:956-63. [PMID: 24594624 PMCID: PMC4050237 DOI: 10.1038/jcbfm.2014.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/03/2014] [Accepted: 01/27/2014] [Indexed: 11/09/2022]
Abstract
The brainstem (BS) is involved in critical physiologic processes, including control of cardiovascular and respiratory functions. This study implements a multi-inversion time pulsed arterial spin labelling (MTI PASL) imaging sequence that addresses the challenges of BS imaging and aims to measure normal and elevated BS perfusion in healthy volunteers. An initial experiment was performed to obtain the kinetic curve of the label in the BS and consequently to estimate the label arrival times and tissue perfusion in seven participants. A second experiment estimated the BS cerebral vascular reactivity (CVR) to hypercapnia in 10 participants. Images were acquired with a gradient-echo sequence with two spiral interleaves and short echo time (TE=2.7 ms). Data were analyzed with a two-compartment model, including a tissue and arterial component. In both experiments, perfusion in the BS was significantly lower than in cortical gray matter (repeated measures analysis of variance (RM-ANOVA), P<0.05), which is as expected since the BS consists of gray and white matter, the latter typically showing lower perfusion. The BS CVR found here is comparable to previous reports obtained with positron emission tomography (PET) imaging. Multi-inversion time pulsed ASL in combination with a two-compartment signal model can be used to assess BS perfusion and CVR.
Collapse
|
19
|
Graf H, Walter M, Metzger CD, Abler B. Antidepressant-related sexual dysfunction — Perspectives from neuroimaging. Pharmacol Biochem Behav 2014; 121:138-45. [DOI: 10.1016/j.pbb.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 12/26/2022]
|
20
|
Viviani R, Lehmann ML, Stingl JC. Use of magnetic resonance imaging in pharmacogenomics. Br J Clin Pharmacol 2014; 77:684-94. [PMID: 23802603 PMCID: PMC3971984 DOI: 10.1111/bcp.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023] Open
Abstract
Because of the large variation in the response to psychoactive medication, many studies have attempted to uncover genetic factors that determine response. While considerable knowledge exists on the large effects of genetic polymorphisms on pharmacokinetics and plasma concentrations of drugs, effects of the concentration at the target site and pharmacodynamic effects on brain functions in disease are much less known. This article reviews the role of magnetic resonance imaging (MRI) to visualize response to medication in brain behaviour circuits in vivo in humans and assess the influence of pharmacogenetic factors. Two types of studies have been used to characterize effects of medication and genetic variation. In task-related activation studies the focus is on changes in the activity of a neural circuit associated with a specific psychological process. The second type of study investigates resting state perfusion. These studies provide an assessment of vascular changes associated with bioavailability of drugs in the brain, but may also assess changes in neural activity after binding of centrally active agents. Task-related pharmacogenetic studies of cognitive function have characterized the effects in the prefrontal cortex of genetic polymorphisms of dopamine receptors (DRD2), metabolic enzymes (COMT) and in the post-synaptic signalling cascade under the administration of dopamine agonists and antagonists. In contrast, pharmacogenetic imaging with resting state perfusion is still in its infancy. However, the quantitative nature of perfusion imaging, its non-invasive character and its repeatability might be crucial assets in visualizing the effects of medication in vivo in man during therapy.
Collapse
Affiliation(s)
- Roberto Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany; Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
21
|
Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression. J Am Acad Child Adolesc Psychiatry 2013; 52:1076-1091.e2. [PMID: 24074474 PMCID: PMC3825460 DOI: 10.1016/j.jaac.2013.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/11/2013] [Accepted: 07/19/2013] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Although substantial literature has reported regional cerebral blood flow (rCBF) abnormalities in adults with depression, these studies commonly necessitated the injection of radioisotopes into subjects. The recent development of arterial spin labeling (ASL), however, allows noninvasive measurements of rCBF. Currently, no published ASL studies have examined cerebral perfusion in adolescents with depression. Thus, the aim of the present study was to examine baseline cerebral perfusion in adolescent depression using a newly developed ASL technique: pseudocontinuous arterial spin labeling (PCASL). METHOD A total of 25 medication-naive adolescents (13-17 years of age) diagnosed with major depressive disorder (MDD) and 26 well-matched control subjects underwent functional magnetic resonance imaging. Baseline rCBF was measured via a novel PCASL method that optimizes tagging efficiency. RESULTS Voxel-based whole brain analyses revealed significant frontal, limbic, paralimbic, and cingulate hypoperfusion in the group with depression (p < .05, corrected). Hyperperfusion was also observed within the subcallosal cingulate, putamen, and fusiform gyrus (p < .05, corrected). Similarly, region-of-interest analyses revealed amygdalar and insular hypoperfusion in the group with depression, as well as hyperperfusion in the putamen and superior insula (p < .05, corrected). CONCLUSIONS Adolescents with depression and healthy adolescents appear to differ on rCBF in executive, affective, and motor networks. Dysfunction in these regions may contribute to the cognitive, emotional, and psychomotor symptoms commonly present in adolescent depression. These findings point to possible biomarkers for adolescent depression that could inform early interventions and treatments, and establishes a methodology for using PCASL to noninvasively measure rCBF in clinical and healthy adolescent populations.
Collapse
|
22
|
Effects of amisulpride on human resting cerebral perfusion. Psychopharmacology (Berl) 2013; 229:95-103. [PMID: 23584671 DOI: 10.1007/s00213-013-3091-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/22/2013] [Indexed: 12/12/2022]
Abstract
RATIONALE Quantitative neuroimaging studies show that different neuroleptics have similar effects on resting metabolism/perfusion in the basal ganglia, but vary in their effect on the cortex, especially in the prefrontal and temporal lobes. These differences may represent signatures of the action of medication on distinctive receptor combinations. OBJECTIVES This study seeks to determine the effect on cerebral perfusion at rest of low-dose amisulpride, a neuroleptic with a receptor profile relatively selective to dopaminergic D2-receptors and both antidepressant and antipsychotic efficacy. METHODS Continuous arterial spin labelling in a placebo-controlled, double blind, crossover study at steady state of N = 20 healthy male adults. RESULTS Relative to placebo, amisulpride was associated with extensive and significant cortical decrements in resting perfusion levels, particularly in the prefrontal lobes (p = 0.01, corrected). Decrements spared the basal ganglia, where perfusion was slightly increased. CONCLUSIONS In contrast to earlier reports on other neuroleptics, amisulpride was associated with intense cortical perfusion decrements at rest. These results are consistent with an existing model in which dopaminergic blockade is associated not only with metabolism/perfusion increases in the basal ganglia, but also with decreases in the cerebral cortex that in most neuroleptics are compensated by action on other receptor systems. The selective receptor profile of amisulpride may explain the extensive cortical decrements.
Collapse
|