1
|
Poh JH, Vu MAT, Stanek JK, Hsiung A, Egner T, Adcock RA. Hippocampal convergence during anticipatory midbrain activation promotes subsequent memory formation. Nat Commun 2022; 13:6729. [PMID: 36344524 PMCID: PMC9640528 DOI: 10.1038/s41467-022-34459-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The hippocampus has been a focus of memory research since H.M's surgery abolished his ability to form new memories, yet its mechanistic role in memory remains debated. Here, we identify a candidate memory mechanism: an anticipatory hippocampal "convergence state", observed while awaiting valuable information, and which predicts subsequent learning. During fMRI, participants viewed trivia questions eliciting high or low curiosity, followed seconds later by its answer. We reasoned that encoding success requires a confluence of conditions, so that hippocampal states more conducive to memory formation should converge in state space. To operationalize convergence of neural states, we quantified the typicality of multivoxel patterns in the medial temporal lobes during anticipation and encoding of trivia answers. We found that the typicality of anticipatory hippocampal patterns increased during high curiosity. Crucially, anticipatory hippocampal pattern typicality increased with dopaminergic midbrain activation and uniquely accounted for the association between midbrain activation and subsequent recall. We propose that hippocampal convergence states may complete a cascade from motivation and midbrain activation to memory enhancement, and may be a general predictor of memory formation.
Collapse
Affiliation(s)
- Jia-Hou Poh
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| | - Mai-Anh T Vu
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Jessica K Stanek
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Abigail Hsiung
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Tobias Egner
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - R Alison Adcock
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA.
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Liu Q, Ely BA, Simkovic SJ, Tao A, Wolchok R, Alonso CM, Gabbay V. Correlates of C-reactive protein with neural reward circuitry in adolescents with psychiatric symptoms. Brain Behav Immun Health 2020; 9:100153. [PMID: 33381770 PMCID: PMC7771888 DOI: 10.1016/j.bbih.2020.100153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Increased inflammation has been implicated in many psychiatric conditions across ages. We previously reported relationships between blood cytokine levels and anhedonia, the decreased capacity to experience pleasure, as well as with reward brain activation in adolescents with psychiatric symptoms. Here, we sought to extend this work in a larger cohort of adolescents with psychiatric symptoms and assess the relationships of C-Reactive Protein (CRP, inflammation biomarker) with clinical symptoms and reward-related brain activation. METHODS Subjects were 64 psychotropic-medication-free adolescents with psychiatric symptoms (ages: 15.17 ± 2.10, 44 female). All had psychiatric evaluations and dimensional assessments for anxiety, depression, anhedonia, and suicidality. Neuroimaging included the Reward Flanker fMRI Task examining brain activation during reward anticipation, attainment and positive prediction error. Both whole-brain and ROI analyses focusing on reward circuitry were performed. All analyses were controlled for BMI, age, and sex at pFWE < 0.05. RESULTS No relationships were identified between CRP and clinical symptom severity. CRP was positively associated with brain activation during reward attainment in regions of the visual and dorsal attention networks, as well as during positive prediction error in the cerebellum. In ROI analyses, CRP was negatively correlated with brain activation during reward anticipation in dorsal anterior cingulate cortex. When subject with high CRP was excluded, CRP was also positively correlated with positive predication error activation in nucleus accumbens. CONCLUSION Despite lack of associations of CRP with clinical symptomatology, our fMRI findings suggest a relationship between inflammation and brain function early course of psychiatric conditions.
Collapse
Affiliation(s)
- Qi Liu
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Benjamin A. Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sherry J. Simkovic
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Annie Tao
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Wolchok
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carmen M. Alonso
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
3
|
Mitsudo H, Hironaga N, Ogata K, Tobimatsu S. Vertical size disparity induces enhanced neural responses in good stereo observers. Vision Res 2019; 164:24-33. [PMID: 31557605 DOI: 10.1016/j.visres.2019.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022]
Abstract
Stereoscopic three-dimensional vision requires cortical processing for horizontal binocular disparity between the two eyes' retinal images. Behavioral and theoretical studies suggest that vertical size disparity is used to recover the viewing geometry and to generate the slant of a large surface. However, unlike horizontal disparity, the relation between stereopsis and neural responses to vertical disparity remains controversial. To determine the role of cortical processing for vertical size disparity in stereopsis, we measured neuromagnetic responses to disparities in people with good and poor stereopsis, using magnetoencephalography (MEG). Healthy adult participants viewed stereograms with a horizontal or vertical size disparity, and judged the perceived slant of the pattern. We assessed neural activity in response to disparities in the visual cortex and the phase locking of oscillatory responses including the alpha frequency range using MEG. For participants with good stereopsis, activity in the visual areas was significantly higher in response to vertical size disparity than to horizontal size disparity. The time-frequency analysis revealed that early neural responses to vertical size disparity were more phase-locked in good stereo participants than in poor stereo participants. These results provide neuromagnetic evidence that vertical-size disparity processing plays a role in good stereo vision.
Collapse
Affiliation(s)
- Hiroyuki Mitsudo
- Division of Psychology, Department of Human Sciences, Faculty of Human-Environment Studies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Naruhito Hironaga
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Fukuoka, Japan
| | - Shozo Tobimatsu
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Fukuoka, Japan
| |
Collapse
|
4
|
Carabalona R. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain-Computer Interfaces. Front Neurosci 2017; 11:363. [PMID: 28713233 PMCID: PMC5492449 DOI: 10.3389/fnins.2017.00363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Visual P300-based Brain-Computer Interface (BCI) spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons), color (factor COLOR: white, green) and timing (factor SPEED: fast, slow). Each BCI session consisted of training (without feedback) and performance phase (with feedback), both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on P z and PO7 during the training phase and on PO8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on P z and PO7 (training), whereas the opposite modulation was observed for PO8 (performance). Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and that icons require more perceptual analysis. Therefore, fast flashing is likely to be more detrimental for end-users' performance in case of icon-spellers. In conclusion, the interplay between stimulus type and timing seems relevant for a satisfactory and efficient end-user's BCI-experience.
Collapse
Affiliation(s)
- Roberta Carabalona
- Biomedical Technological Department, Fondazione Don Carlo Gnocchi Onlus (IRCCS)Milan, Italy
| |
Collapse
|
5
|
Lee SW, Jeong BS, Choi J, Kim JW. Sex differences in interactions between nucleus accumbens and visual cortex by explicit visual erotic stimuli: an fMRI study. Int J Impot Res 2015; 27:161-6. [PMID: 25971857 DOI: 10.1038/ijir.2015.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 01/08/2015] [Accepted: 04/18/2015] [Indexed: 12/15/2022]
Abstract
Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level.
Collapse
Affiliation(s)
- S W Lee
- Korea Advanced Institute of Science and Technology (KAIST), Laboratory of Clinical Neuroscience and Development, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - B S Jeong
- Korea Advanced Institute of Science and Technology (KAIST), Laboratory of Clinical Neuroscience and Development, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - J Choi
- Department of Psychiatry, Daejeon St Mary's Hospital, The Catholic University of Korea, College of Medicine, Daejeon, Republic of Korea
| | - J-W Kim
- Department of Psychiatry, College of Medical Science, Kongyang University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Flores A, Münte TF, Doñamayor N. Event-related EEG responses to anticipation and delivery of monetary and social reward. Biol Psychol 2015; 109:10-9. [PMID: 25910956 DOI: 10.1016/j.biopsycho.2015.04.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 03/10/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Monetary and a social incentive delay tasks were used to characterize reward anticipation and delivery with electroencephalography. During reward anticipation, N1, P2 and P3 components were modulated by both prospective reward value and incentive type (monetary or social), suggesting distinctive allocation of attentional and motivational resources depending not only on whether rewards or non-rewards were cued, but also on the monetary and social nature of the prospective outcomes. In the delivery phase, P2, FRN and P3 components were also modulated by levels of reward value and incentive type, illustrating how distinctive affective and cognitive processes were attached to the different outcomes. Our findings imply that neural processing of both reward anticipation and delivery can be specific to incentive type, which might have implications for basic as well as translational research. These results are discussed in the light of previous electrophysiological and neuroimaging work using similar tasks.
Collapse
Affiliation(s)
- Amanda Flores
- Instituto de Investigación Biomédica de Málaga (IBIMA), Department of Basic Psychology, Universidad de Málaga, Spain
| | - Thomas F Münte
- Department of Neurology, Universität zu Lübeck, Ratzeburger Allee, Lübeck, 160 23538, Germany; Institute of Psychology II, Universität zu Lübeck, Germany
| | - Nuria Doñamayor
- Department of Neurology, Universität zu Lübeck, Ratzeburger Allee, Lübeck, 160 23538, Germany; Institute of Psychology II, Universität zu Lübeck, Germany.
| |
Collapse
|
7
|
Kesner L. The predictive mind and the experience of visual art work. Front Psychol 2014; 5:1417. [PMID: 25566111 PMCID: PMC4267174 DOI: 10.3389/fpsyg.2014.01417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/19/2014] [Indexed: 11/14/2022] Open
Abstract
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person's mindset, which determines what top-down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art.
Collapse
Affiliation(s)
- Ladislav Kesner
- Department of Art History, Masaryk UniversityBrno, Czech Republic
| |
Collapse
|
8
|
Bigler ED. Effort, symptom validity testing, performance validity testing and traumatic brain injury. Brain Inj 2014; 28:1623-38. [PMID: 25215453 PMCID: PMC4673569 DOI: 10.3109/02699052.2014.947627] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 05/09/2014] [Accepted: 07/20/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND To understand the neurocognitive effects of brain injury, valid neuropsychological test findings are paramount. REVIEW This review examines the research on what has been referred to a symptom validity testing (SVT). Above a designated cut-score signifies a 'passing' SVT performance which is likely the best indicator of valid neuropsychological test findings. Likewise, substantially below cut-point performance that nears chance or is at chance signifies invalid test performance. Significantly below chance is the sine qua non neuropsychological indicator for malingering. However, the interpretative problems with SVT performance below the cut-point yet far above chance are substantial, as pointed out in this review. This intermediate, border-zone performance on SVT measures is where substantial interpretative challenges exist. Case studies are used to highlight the many areas where additional research is needed. Historical perspectives are reviewed along with the neurobiology of effort. Reasons why performance validity testing (PVT) may be better than the SVT term are reviewed. CONCLUSIONS Advances in neuroimaging techniques may be key in better understanding the meaning of border zone SVT failure. The review demonstrates the problems with rigidity in interpretation with established cut-scores. A better understanding of how certain types of neurological, neuropsychiatric and/or even test conditions may affect SVT performance is needed.
Collapse
Affiliation(s)
- Erin D. Bigler
- Department of Psychology
- Neuroscience Center
- Magnetic Resonance Imaging Research Facility, Brigham Young University
Provo, UTUSA
- Department of Psychiatry
- The Brain Institute of Utah, University of Utah
Salt Lake City, UTUSA
| |
Collapse
|
9
|
Hayes DJ, Duncan NW, Xu J, Northoff G. A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 2014; 45:350-68. [PMID: 25010558 DOI: 10.1016/j.neubiorev.2014.06.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 11/30/2022]
Abstract
Distinguishing potentially harmful or beneficial stimuli is necessary for the self-preservation and well-being of all organisms. This assessment requires the ongoing valuation of environmental stimuli. Despite much work on the processing of aversive- and appetitive-related brain signals, it is not clear to what degree these two processes interact across the brain. To help clarify this issue, this report used a cross-species comparative approach in humans (i.e. meta-analysis of imaging data) and other mammals (i.e. targeted review of functional neuroanatomy in rodents and non-human primates). Human meta-analysis results suggest network components that appear selective for appetitive (e.g. ventromedial prefrontal cortex, ventral tegmental area) or aversive (e.g. cingulate/supplementary motor cortex, periaqueductal grey) processing, or that reflect overlapping (e.g. anterior insula, amygdala) or asymmetrical, i.e. apparently lateralized, activity (e.g. orbitofrontal cortex, ventral striatum). However, a closer look at the known value-related mechanisms from the animal literature suggests that all of these macroanatomical regions are involved in the processing of both appetitive and aversive stimuli. Differential spatiotemporal network dynamics may help explain similarities and differences in appetitive- and aversion-related activity.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Toronto Western Research Institute, Brain, Imaging and Behaviour - Systems Neuroscience, University of Toronto, Division of Neurosurgery, 399 Bathurst Street, Toronto, Canada.
| | - Niall W Duncan
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Department of Biology, University of Carleton, 1125 Colonel By Drive, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China
| | - Jiameng Xu
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China; Taipei Medical University, Shuang Ho Hospital, Brain and Consciousness Research Center, Graduate Institute of Humanities in Medicine, Taipei, Taiwan; National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan
| |
Collapse
|
10
|
Galer S, Op De Beeck M, Urbain C, Bourguignon M, Ligot N, Wens V, Marty B, Van Bogaert P, Peigneux P, De Tiège X. Investigating the neural correlates of the Stroop effect with magnetoencephalography. Brain Topogr 2014; 28:95-103. [PMID: 24752907 DOI: 10.1007/s10548-014-0367-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 04/07/2014] [Indexed: 11/26/2022]
Abstract
Reporting the ink color of a written word when it is itself a color name incongruent with the ink color (e.g. "red" printed in blue) induces a robust interference known as the Stroop effect. Although this effect has been the subject of numerous functional neuroimaging studies, its neuronal substrate is still a matter of debate. Here, we investigated the spatiotemporal dynamics of interference-related neural events using magnetoencephalography (MEG) and voxel-based analyses (SPM8). Evoked magnetic fields (EMFs) were acquired in 12 right-handed healthy subjects performing a color-word Stroop task. Behavioral results disclosed a classic interference effect with longer mean reaction times for incongruent than congruent stimuli. At the group level, EMFs' differences between incongruent and congruent trials spanned from 380 to 700 ms post-stimulus onset. Underlying neural sources were identified in the left pre-supplementary motor area (pre-SMA) and in the left posterior parietal cortex (PPC) confirming the role of these regions in conflict processing.
Collapse
Affiliation(s)
- Sophie Galer
- LCFC - Laboratoire de Cartographie fonctionnelle du Cerveau ULB-Hôpital Erasme and UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), 808 Route de Lennik, 1070, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rothkirch M, Schmack K, Deserno L, Darmohray D, Sterzer P. Attentional modulation of reward processing in the human brain. Hum Brain Mapp 2013; 35:3036-51. [PMID: 24307490 DOI: 10.1002/hbm.22383] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/07/2022] Open
Abstract
Although neural signals of reward anticipation have been studied extensively, the functional relationship between reward and attention has remained unclear: Neural signals implicated in reward processing could either reflect attentional biases towards motivationally salient stimuli, or proceed independently of attentional processes. Here, we sought to disentangle reward and attention-related neural processes by independently modulating reward value and attentional task demands in a functional magnetic resonance imaging study in healthy human participants. During presentation of a visual reward cue that indicated whether monetary reward could be obtained in a subsequent reaction time task, participants either attended to the reward cue or performed an unrelated attention-demanding task at two different levels of difficulty. In ventral striatum and ventral tegmental area, neural responses were modulated by reward anticipation irrespective of attentional demands, thus indicating attention-independent processing of reward cues. By contrast, additive effects of reward and attention were observed in visual cortex. Critically, reward-related activations in right anterior insula strongly depended on attention to the reward cue. Dynamic causal modelling revealed that the attentional modulation of reward processing in insular cortex was mediated by enhanced effective connectivity from ventral striatum to anterior insula. Our results provide evidence for distinct functional roles of the brain regions involved in the processing of reward-indicating information: While subcortical structures signal the motivational salience of reward cues even when attention is fully engaged elsewhere, reward-related responses in anterior insula depend on available attentional resources, likely reflecting the conscious evaluation of sensory information with respect to motivational value.
Collapse
Affiliation(s)
- Marcus Rothkirch
- Department of Psychiatry, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Richards JM, Plate RC, Ernst M. A systematic review of fMRI reward paradigms used in studies of adolescents vs. adults: the impact of task design and implications for understanding neurodevelopment. Neurosci Biobehav Rev 2013; 37:976-91. [PMID: 23518270 PMCID: PMC3809756 DOI: 10.1016/j.neubiorev.2013.03.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023]
Abstract
The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings.
Collapse
Affiliation(s)
- Jessica M. Richards
- Department of Psychology, University of Maryland College Park, 2103R Cole Field House, University of Maryland College Park, College Park, MD 20741, USA
| | - Rista C. Plate
- University of Wisconsin-Madison, Waisman Center, Room 387, Madison, WI 53705
| | - Monique Ernst
- National Institute of Mental Health, NIMH-Building 15-K, Room 110, MSC-2670, Bethesda, MD 20817-2670, USA
| |
Collapse
|