1
|
Everix L, Seane EN, Ebenhan T, Goethals I, Bolcaen J. Introducing HDAC-Targeting Radiopharmaceuticals for Glioblastoma Imaging and Therapy. Pharmaceuticals (Basel) 2023; 16:227. [PMID: 37259375 PMCID: PMC9967489 DOI: 10.3390/ph16020227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 09/29/2023] Open
Abstract
Despite recent advances in multimodality therapy for glioblastoma (GB) incorporating surgery, radiotherapy, chemotherapy and targeted therapy, the overall prognosis remains poor. One of the interesting targets for GB therapy is the histone deacetylase family (HDAC). Due to their pleiotropic effects on, e.g., DNA repair, cell proliferation, differentiation, apoptosis and cell cycle, HDAC inhibitors have gained a lot of attention in the last decade as anti-cancer agents. Despite their known underlying mechanism, their therapeutic activity is not well-defined. In this review, an extensive overview is given of the current status of HDAC inhibitors for GB therapy, followed by an overview of current HDAC-targeting radiopharmaceuticals. Imaging HDAC expression or activity could provide key insights regarding the role of HDAC enzymes in gliomagenesis, thus identifying patients likely to benefit from HDACi-targeted therapy.
Collapse
Affiliation(s)
- Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, 2610 Antwerpen, Belgium
| | - Elsie Neo Seane
- Department of Medical Imaging and Therapeutic Sciences, Cape Peninsula University of Technology, Cape Town 7530, South Africa
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility (PCIF), (NuMeRI) NPC, Pretoria 0001, South Africa
- Department of Science and Technology/Preclinical Drug Development Platform (PCDDP), North West University, Potchefstroom 2520, South Africa
- Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Julie Bolcaen
- Radiation Biophysics Division, SSC laboratory, iThemba LABS, Cape Town 7131, South Africa
| |
Collapse
|
2
|
Clauß O, Schäker-Hübner L, Wenzel B, Toussaint M, Deuther-Conrad W, Gündel D, Teodoro R, Dukić-Stefanović S, Ludwig FA, Kopka K, Brust P, Hansen FK, Scheunemann M. Development and Biological Evaluation of the First Highly Potent and Specific Benzamide-Based Radiotracer [ 18F]BA3 for Imaging of Histone Deacetylases 1 and 2 in Brain. Pharmaceuticals (Basel) 2022; 15:ph15030324. [PMID: 35337122 PMCID: PMC8950173 DOI: 10.3390/ph15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.
Collapse
Affiliation(s)
- Oliver Clauß
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Correspondence: (O.C.); (M.S.)
| | - Linda Schäker-Hübner
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (L.S.-H.); (F.K.H.)
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Sladjana Dukić-Stefanović
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
| | - Finn K. Hansen
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (L.S.-H.); (F.K.H.)
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (B.W.); (M.T.); (W.D.-C.); (D.G.); (R.T.); (S.D.-S.); (F.-A.L.); (K.K.); (P.B.)
- Correspondence: (O.C.); (M.S.)
| |
Collapse
|
3
|
In Vivo Evaluation of the Combined Anticancer Effects of Cisplatin and SAHA in Nonsmall Cell Lung Carcinoma Using [ 18F]FAHA and [ 18F]FDG PET/CT Imaging. Mol Imaging 2021; 2021:6660358. [PMID: 33867871 PMCID: PMC8032518 DOI: 10.1155/2021/6660358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/12/2021] [Indexed: 01/27/2023] Open
Abstract
Combining standard drugs with low doses of histone deacetylase inhibitors (HDACIs) is a promising strategy to increase the efficacy of chemotherapy. The ability of well-tolerated doses of HDACIs that act as chemosensitizers for platinum-based chemotherapeutics has recently been proven in many types and stages of cancer in vitro and in vivo. Detection of changes in HDAC activity/expression may provide important prognostic and predictive information and influence treatment decision-making. Use of [18F] FAHA, a HDAC IIa-specific radionuclide, for molecular imaging may enable longitudinal, noninvasive assessment of HDAC activity/expression in metastatic cancer. We evaluated the synergistic anticancer effects of cisplatin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in xenograft models of nonsmall cell lung cancer (NSCLC) using [18F] FAHA and [18F] FDG PET/CT imaging. Cisplatin alone significantly increased [18F] FAHA accumulation and reduced [18F] FDG accumulation in H441 and PC14 xenografts; coadministration of cisplatin and SAHA resulted in the opposite effects. Immunochemical staining for acetyl-histone H3 confirmed the PET/CT imaging findings. Moreover, SAHA had a more significant effect on the acetylome in PC14 (EGFR exon 19 deletion mutation) xenografts than H441 (wild-type EGFR and KRAS codon 12 mutant) xenografts. In conclusion, [18F] FAHA enables quantitative visualization of HDAC activity/expression in vivo, thus, may represent a clinically useful, noninvasive tool for the management of patients who may benefit from synergistic anticancer therapy.
Collapse
|
4
|
Zhou X, Dong G, Song T, Wang G, Li Z, Qin X, Du L, Li M. Environment-sensitive fluorescent inhibitors of histone deacetylase. Bioorg Med Chem Lett 2020; 30:127128. [DOI: 10.1016/j.bmcl.2020.127128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/02/2023]
|
5
|
Laws MT, Bonomi RE, Gelovani DJ, Llaniguez J, Lu X, Mangner T, Gelovani JG. Noninvasive quantification of SIRT1 expression-activity and pharmacologic inhibition in a rat model of intracerebral glioma using 2-[ 18F]BzAHA PET/CT/MRI. Neurooncol Adv 2020; 2:vdaa006. [PMID: 32118205 PMCID: PMC7034639 DOI: 10.1093/noajnl/vdaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Several studies demonstrated that glioblastoma multiforme progression and recurrence is linked to epigenetic regulatory mechanisms. Sirtuin 1 (SIRT1) plays an important role in glioma progression, invasion, and treatment response and is a potential therapeutic target. The aim of this study is to test the feasibility of 2-[18F]BzAHA for quantitative imaging of SIRT1 expression–activity and monitoring pharmacologic inhibition in a rat model of intracerebral glioma. Methods Sprague Dawley rats bearing 9L (N = 12) intracerebral gliomas were injected with 2-[18F]BzAHA (300–500 µCi/animal i.v.) and dynamic positron-emission tomography (PET) imaging was performed for 60 min. Then, SIRT1 expression in 9L tumors (N = 6) was studied by immunofluorescence microscopy (IF). Two days later, rats with 9L gliomas were treated either with SIRT1 specific inhibitor EX-527 (5 mg/kg, i.p.; N = 3) or with histone deacetylases class IIa specific inhibitor MC1568 (30 mg/kg, i.p.; N = 3) and 30 min later were injected i.v. with 2-[18F]BzAHA. PET-computerized tomography-magnetic resonance (PET/CT/MR) images acquired after EX-527 and MC1568 treatments were co-registered with baseline images. Results Standard uptake values (SUVs) of 2-[18F]BzAHA in 9L tumors measured at 20 min post-radiotracer administration were 1.11 ± 0.058 and had a tumor-to-brainstem SUV ratio of 2.73 ± 0.141. IF of 9L gliomas revealed heterogeneous upregulation of SIRT1, especially in hypoxic and peri-necrotic regions. Significant reduction in 2-[18F]BzAHA SUV and distribution volume in 9L tumors was observed after administration of EX-527, but not MC1568. Conclusions PET/CT/MRI with 2-[18F]BzAHA can facilitate studies to elucidate the roles of SIRT1 in gliomagenesis and progression, as well as to optimize therapeutic doses of novel SIRT1 inhibitors.
Collapse
Affiliation(s)
- Maxwell T Laws
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Robin E Bonomi
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - David J Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jeremy Llaniguez
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Xin Lu
- Positron Emission Tomography Center, Wayne State University, Detroit, Michigan, USA
| | - Thomas Mangner
- Positron Emission Tomography Center, Wayne State University, Detroit, Michigan, USA
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
6
|
Evaluation of [11C]KB631 as a PET tracer for in vivo visualisation of HDAC6 in B16.F10 melanoma. Nucl Med Biol 2019; 74-75:1-11. [DOI: 10.1016/j.nucmedbio.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
7
|
Molecular imaging HDACs class IIa expression-activity and pharmacologic inhibition in intracerebral glioma models in rats using PET/CT/(MRI) with [ 18F]TFAHA. Sci Rep 2019; 9:3595. [PMID: 30837601 PMCID: PMC6401080 DOI: 10.1038/s41598-019-40054-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
HDAC class IIa enzymes (HDAC4, 5, 7, 9) are important for glioma progression, invasion, responses to TMZ and radiotherapy, and prognosis. In this study, we demonstrated the efficacy of PET/CT/(MRI) with [18F]TFAHA for non-invasive and quantitative imaging of HDAC class IIa expression-activity in intracerebral 9L and U87-MG gliomas in rats. Increased accumulation of [18F]TFAHA in 9L and U87-MG tumors was observed at 20 min post radiotracer administration with SUV of 1.45 ± 0.05 and 1.08 ± 0.05, respectively, and tumor-to-cortex SUV ratios of 1.74 ± 0.07 and 1.44 ± 0.03, respectively. [18F]TFAHA accumulation was also observed in normal brain structures known to overexpress HDACs class IIa: hippocampus, n.accumbens, PAG, and cerebellum. These results were confirmed by immunohistochemical staining of brain tissue sections revealing the upregulation of HDACs 4, 5, and 9, and HIF-1α, hypoacetylation of H2AK5ac, H2BK5ac, H3K9ac, H4K8ac, and downregulation of KLF4. Significant reduction in [18F]TFAHA accumulation in 9L tumors was observed after administration of HDACs class IIa specific inhibitor MC1568, but not the SIRT1 specific inhibitor EX-527. Thus, PET/CT/(MRI) with [18F]TFAHA can facilitate studies to elucidate the roles of HDAC class IIa enzymes in gliomagenesis and progression and to optimize therapeutic doses of novel HDACs class IIa inhibitors in gliomas.
Collapse
|
8
|
A Novel Substrate Radiotracer for Molecular Imaging of SIRT2 Expression and Activity with Positron Emission Tomography. Mol Imaging Biol 2019; 20:594-604. [PMID: 29423902 PMCID: PMC6816246 DOI: 10.1007/s11307-017-1149-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this study was to develop a SIRT2-specific substrate-type radiotracer for non-invasive PET imaging of epigenetic regulatory processes mediated by SIRT2 in normal and disease tissues. PROCEDURES A library of compounds containing tert-butyloxycarbonyl-lysine-aminomethylcoumarin backbone was derivatized with fluoroalkyl chains 3-16 carbons in length. SIRT2 most efficiently cleaved the myristoyl, followed by 12-fluorododecanoic and 10-fluorodecanoic groups (Kcat/Km 716.5 ± 72.8, 615.4 ± 50.5, 269.5 ± 52.1/s mol, respectively). Radiosynthesis of 12- [18F]fluorododecanoic aminohexanoicanilide (12-[18F]DDAHA) was achieved by nucleophilic radiofluorination of 12-iododecanoic-AHA precursor. RESULTS A significantly higher accumulation of 12-[18F]DDAHA was observed in MCF-7 and MDA-MB-435 cells in vitro as compared to U87, MiaPaCa, and MCF10A, which was consistent with levels of SIRT2 expression. Initial in vivo studies using 12-[18F]DDAHA conducted in a 9L glioma-bearing rats were discouraging, due to rapid defluorination of this radiotracer upon intravenous administration, as evidenced by significant accumulation of F-18 radioactivity in the skull and other bones, which confounded the interpretation of images of radiotracer accumulation within the tumor and other regions of the brain. CONCLUSIONS The next generation of SIRT2-specific radiotracers resistant to systemic defluorination should be developed using alternative sites of radiofluorination on the aliphatic chain of DDAHA. A SIRT2-selective radiotracer may provide information about SIRT2 expression and activity in tumors and normal organs and tissues, which may help to better understand the roles of SIRT2 in different diseases.
Collapse
|
9
|
Bonomi R, Popov V, Laws MT, Gelovani D, Majhi A, Shavrin A, Lu X, Muzik O, Turkman N, Liu R, Mangner T, Gelovani JG. Molecular Imaging of Sirtuin1 Expression-Activity in Rat Brain Using Positron-Emission Tomography-Magnetic-Resonance Imaging with [ 18F]-2-Fluorobenzoylaminohexanoicanilide. J Med Chem 2018; 61:7116-7130. [PMID: 30052441 DOI: 10.1021/acs.jmedchem.8b00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sirtuin 1 (SIRT1) is a class III histone deacetylase that plays significant roles in the regulation of lifespan, metabolism, memory, and circadian rhythms and in the mechanisms of many diseases. However, methods of monitoring the pharmacodynamics of SIRT1-targeted drugs are limited to blood sampling because of the invasive nature of biopsies. For the noninvasive monitoring of the spatial and temporal dynamics of SIRT1 expression-activity in vivo by PET-CT-MRI, we developed a novel substrate-type radiotracer, [18F]-2-fluorobenzoylaminohexanoicanilide (2-[18F]BzAHA). PET-CT-MRI studies in rats demonstrated increased accumulation of 2-[18F]BzAHA-derived radioactivity in the hypothalamus, hippocampus, nucleus accumbens, and locus coeruleus, consistent with autoradiographic and immunofluorescent (IMF) analyses of brain-tissue sections. Pretreatment with the SIRT1 specific inhibitor, EX-527 (5 mg/kg, ip), resulted in about a 20% reduction of 2-[18F]BzAHA-derived-radioactivity accumulation in these structures. In vivo imaging of SIRT1 expression-activity should facilitate studies that improve the understanding of SIRT1-mediated regulation in the brain and aid in the development and clinical translation of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Robin Bonomi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Vadim Popov
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Maxwell T Laws
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - David Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Anjoy Majhi
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Aleksandr Shavrin
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | | | | | - Nashaat Turkman
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| | - Renshyan Liu
- National Taiwan University , Taipei City 10617 , Taiwan
| | | | - Juri G Gelovani
- Karmanos Cancer Institute , Detroit , Michigan 48202 , United States
| |
Collapse
|
10
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
11
|
In Vivo 6-([ 18F]Fluoroacetamido)-1-hexanoicanilide PET Imaging of Altered Histone Deacetylase Activity in Chemotherapy-Induced Neurotoxicity. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3612027. [PMID: 29755299 PMCID: PMC5884410 DOI: 10.1155/2018/3612027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 12/26/2022]
Abstract
Background Histone deacetylases (HDACs) regulate gene expression by changing histone deacetylation status. Neurotoxicity is one of the major side effects of cisplatin, which reacts with deoxyribonucleic acid (DNA) and has excellent antitumor effects. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor with neuroprotective effects against cisplatin-induced neurotoxicity. Purpose We investigated how cisplatin with and without SAHA pretreatment affects HDAC expression/activity in the brain by using 6-([18F]fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) as a positron emission tomography (PET) imaging agent for HDAC IIa. Materials and Methods [18F]FAHA and [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG) PET studies were done in 24 mice on 2 consecutive days and again 1 week later. The mice were divided into three groups according to drug administration between the first and second imaging sessions (Group A: cisplatin 2 mg/kg, twice; Group B: cisplatin 4 mg/kg, twice; Group C: cisplatin 4 mg/kg, twice, and SAHA 300 mg/kg pretreatment, 4 times). Results The Ki value of [18F]FAHA was increased and the percentage of injected dose/tissue g (% ID/g) of [18F]FDG was decreased in the brains of animals in Groups A and B. The Ki value of [18F]FAHA and % ID/g of [18F]FDG were not significantly different in Group C. Conclusions [18F]FAHA PET clearly showed increased HDAC activity suggestive of cisplatin neurotoxicity in vivo, which was blocked by SAHA pretreatment.
Collapse
|
12
|
Kommidi H, Tosi U, Maachani UB, Guo H, Marnell CS, Law B, Souweidane MM, Ting R. 18F-Radiolabeled Panobinostat Allows for Positron Emission Tomography Guided Delivery of a Histone Deacetylase Inhibitor. ACS Med Chem Lett 2018; 9:114-119. [PMID: 29456798 DOI: 10.1021/acsmedchemlett.7b00471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/08/2018] [Indexed: 01/02/2023] Open
Abstract
Histone deacetylase (HDAC) inhibition is becoming an increasingly popular approach to treat cancer, as HDAC overexpression is common in many malignancies. The blood-brain barrier (BBB) prevents systemically delivered drugs from reaching brain at effective concentration, making small-molecule-HDAC inhibition in brain tumors particularly challenging. To circumvent the BBB, novel routes for administering therapeutics are being considered in the clinic, and a need exists for drugs whose deliveries can be directly imaged, so that effective delivery across the BBB can be monitored. We report chemistry for radiolabeling the HDAC inhibitor, panobinostat, with fluoride-18 (compound-1). Like panobinostat, compound 1 retains nanomolar efficacy in diffuse intrinsic pontine glioma (DIPG IV and XIII) cells (IC50 = 122 and 108 nM, respectively), with lesser activity against U87 glioma. With a favorable therapeutic ratio, 1 is highly selective to glioma and demonstrates considerably less toxicity toward healthy astrocyte controls (IC50 = 5265 nM). Compound 1 is stable in aqueous solution at physiological pH (>7 days, fetal bovine serum), and its delivery can be imaged by positron emission tomography (PET). Compound 1 is synthesized in two steps, and employs rapid, late-stage aqueous isotopic exchange 18F-radiochemistry. PET is used to image the in vivo delivery of [18F]-1 to the murine central nervous system via convection enhanced delivery.
Collapse
Affiliation(s)
- Harikrishna Kommidi
- Department
of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine, New York, New York 10065, United States
| | - Umberto Tosi
- Department
of Neurological Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Uday B. Maachani
- Department
of Neurological Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Hua Guo
- Department
of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine, New York, New York 10065, United States
| | - Christopher S. Marnell
- Department
of Neurological Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Benedict Law
- Department
of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine, New York, New York 10065, United States
| | - Mark M. Souweidane
- Department
of Neurological Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Richard Ting
- Department
of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
13
|
Tago T, Toyohara J. Advances in the Development of PET Ligands Targeting Histone Deacetylases for the Assessment of Neurodegenerative Diseases. Molecules 2018; 23:E300. [PMID: 29385079 PMCID: PMC6017260 DOI: 10.3390/molecules23020300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/05/2022] Open
Abstract
Epigenetic alterations of gene expression have emerged as a key factor in several neurodegenerative diseases. In particular, inhibitors targeting histone deacetylases (HDACs), which are enzymes responsible for deacetylation of histones and other proteins, show therapeutic effects in animal neurodegenerative disease models. However, the details of the interaction between changes in HDAC levels in the brain and disease progression remain unknown. In this review, we focus on recent advances in development of radioligands for HDAC imaging in the brain with positron emission tomography (PET). We summarize the results of radiosynthesis and biological evaluation of the HDAC ligands to identify their successful results and challenges. Since 2006, several small molecules that are radiolabeled with a radioisotope such as carbon-11 or fluorine-18 have been developed and evaluated using various assays including in vitro HDAC binding assays and PET imaging in rodents and non-human primates. Although most compounds do not readily cross the blood-brain barrier, adamantane-conjugated radioligands tend to show good brain uptake. Until now, only one HDAC radioligand has been tested clinically in a brain PET study. Further PET imaging studies to clarify age-related and disease-related changes in HDACs in disease models and humans will increase our understanding of the roles of HDACs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
14
|
Strebl M, Campbell AJ, Zhao WN, Schroeder FA, Riley MM, Chindavong PS, Morin TM, Haggarty SJ, Wagner FF, Ritter T, Hooker JM. HDAC6 Brain Mapping with [ 18F]Bavarostat Enabled by a Ru-Mediated Deoxyfluorination. ACS CENTRAL SCIENCE 2017; 3:1006-1014. [PMID: 28979942 PMCID: PMC5620987 DOI: 10.1021/acscentsci.7b00274] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 05/23/2023]
Abstract
Histone deacetylase 6 (HDAC6) function and dysregulation have been implicated in the etiology of certain cancers and more recently in central nervous system (CNS) disorders including Rett syndrome, Alzheimer's and Parkinson's diseases, and major depressive disorder. HDAC6-selective inhibitors have therapeutic potential, but in the CNS drug space the development of highly brain penetrant HDAC inhibitors has been a persistent challenge. Moreover, no tool exists to directly characterize HDAC6 and its related biology in the living human brain. Here, we report a highly brain penetrant HDAC6 inhibitor, Bavarostat, that exhibits excellent HDAC6 selectivity (>80-fold over all other Zn-containing HDAC paralogues), modulates tubulin acetylation selectively over histone acetylation, and has excellent brain penetrance. We further demonstrate that Bavarostat can be radiolabeled with 18F by deoxyfluorination through in situ formation of a ruthenium π-complex of the corresponding phenol precursor: the only method currently suitable for synthesis of [18F]Bavarostat. Finally, by using [18F]Bavarostat in a series of rodent and nonhuman primate imaging experiments, we demonstrate its utility for mapping HDAC6 in the living brain, which sets the stage for first-in-human neurochemical imaging of this important target.
Collapse
Affiliation(s)
- Martin
G. Strebl
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Arthur J. Campbell
- Stanley
Center for Psychiatric Research, Broad Institute
of MIT and Harvard, 75
Ames Street, Cambridge, Massachusetts 02142, United States
| | - Wen-Ning Zhao
- Chemical
Neurobiology Laboratory, Center for Genomic Medicine, Department of
Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Frederick A. Schroeder
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Misha M. Riley
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Peter S. Chindavong
- Chemical
Neurobiology Laboratory, Center for Genomic Medicine, Department of
Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas M. Morin
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Tufts University, 419 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Stephen J. Haggarty
- Chemical
Neurobiology Laboratory, Center for Genomic Medicine, Department of
Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Florence F. Wagner
- Stanley
Center for Psychiatric Research, Broad Institute
of MIT and Harvard, 75
Ames Street, Cambridge, Massachusetts 02142, United States
| | - Tobias Ritter
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
- Division
of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Jacob M. Hooker
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Division
of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
| |
Collapse
|
15
|
Brugada-Ramentol V, de Polavieja GG, Román ÁC. Toward a Molecular Profile of Self-Representation. Front Hum Neurosci 2016; 10:602. [PMID: 27965556 PMCID: PMC5124566 DOI: 10.3389/fnhum.2016.00602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022] Open
Abstract
Feeling embodiment over our body or body part has a major role in the understanding of the self and control of self-actions. Even though it is crucial in our daily life, embodiment is not an homogenous phenotype across population, as quantified by implicit and explicit measures (i.e., neuroimaging or self-reports). Studies have shown differences in neuropathological conditions compared to healthy controls, but also across healthy individuals. We discuss examples of self-perception differences, and the molecular origin of embodiment, focusing on clinical cases, during the first and second section. We then discuss two important questions in this molecular-to-embodiment relationship: (i) which are the molecular levels (and their associated techniques) that can be relevant to embodiment, and (ii) which are the most adequate experiments to correlate molecular profiles and embodiment quantification across individuals. Potential answers for both questions will be outlined during the third and fourth sections, respectively, in order to design a framework to study the molecular profile of body embodiment.
Collapse
Affiliation(s)
| | | | - Ángel-Carlos Román
- Collective Behavior Lab, Champalimaud Research, Fundaçao Champalimaud Lisboa, Portugal
| |
Collapse
|
16
|
Ricq EL, Hooker JM, Haggarty SJ. Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation. Psychiatry Clin Neurosci 2016; 70:536-550. [PMID: 27485392 PMCID: PMC5764164 DOI: 10.1111/pcn.12426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
The mammalian brain dynamically activates or silences gene programs in response to environmental input and developmental cues. This neuroplasticity is controlled by signaling pathways that modify the activity, localization, and/or expression of transcriptional-regulatory enzymes in combination with alterations in chromatin structure in the nucleus. Consistent with this key neurobiological role, disruptions in the fine-tuning of epigenetic and transcriptional regulation have emerged as a recurrent theme in studies of the genetics of neurodevelopmental and neuropsychiatric disorders. Furthermore, environmental factors have been implicated in the increased risk of heterogeneous, multifactorial, neuropsychiatric disorders via epigenetic mechanisms. Aberrant epigenetic regulation of gene expression thus provides an attractive unifying model for understanding the complex risk architecture of mental illness. Here, we review emerging genetic evidence implicating dysregulation of histone lysine methylation in neuropsychiatric disease and outline advancements in small-molecule probes targeting this chromatin modification. The emerging field of neuroepigenetic research is poised to provide insight into the biochemical basis of genetic risk for diverse neuropsychiatric disorders and to develop the highly selective chemical tools and imaging agents necessary to dissect dynamic transcriptional-regulatory mechanisms in the nervous system. On the basis of these findings, continued advances may lead to the validation of novel, disease-modifying therapeutic targets for a range of disorders with aberrant chromatin-mediated neuroplasticity.
Collapse
Affiliation(s)
- Emily L. Ricq
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jacob M. Hooker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
Non-opioid anesthetic drug abuse among anesthesia care providers: a narrative review. Can J Anaesth 2016; 64:169-184. [PMID: 27470230 DOI: 10.1007/s12630-016-0698-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/19/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The objective of this narrative review is to provide an overview of the problem of non-opioid anesthetic drug abuse among anesthesia care providers (ACPs) and to describe current approaches to screening, therapy, and rehabilitation of ACPs suffering from non-opioid anesthetic drug abuse. SOURCE We first performed a search of all literature available on PubMed prior to April 11, 2016. The search was limited to articles published in Spanish and English, and the following key words were used: anesthesiology, anesthesia personnel, AND substance-related disorders. We also searched Ovid MEDLINE® databases from 1946-April 11, 2016 using the following search terms: anesthesiology OR anesthesia, OR nurse anesthetist OR anesthesia care provider OR perioperative nursing AND substance-related disorders. PRINCIPAL FINDINGS Despite an increased awareness of drug abuse among ACPs and improvements in preventive measures, the problem of non-opioid anesthetic drug abuse remains significant. While opioids are the most commonly abused anesthesia medications among ACPs, the abuse of non-opioid anesthetics is a significant cause of morbidity, mortality, and professional demise. CONCLUSION Early detection, effective therapy, and long-term follow-up help ACPs cope more effectively with the problem and, when possible, resume their professional activities. There is insufficient evidence to determine the ability of ACPs to return safely to anesthesia practice after rehabilitation, though awareness of the issue and ongoing treatment are necessary to minimize patient risk from potentially related clinical errors.
Collapse
|
18
|
PET Imaging of Epigenetic Influences on Alzheimer's Disease. Int J Alzheimers Dis 2015; 2015:575078. [PMID: 26600964 PMCID: PMC4633540 DOI: 10.1155/2015/575078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/20/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022] Open
Abstract
The precise role of environment-gene interactions (epigenetics) in the development and progression of Alzheimer's disease (AD) is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB) images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD.
Collapse
|
19
|
Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M, Nagarajan S, Schütz AL, Johnsen SA, Bonn S, Lührmann R, Dean C, Fischer A. HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest 2015; 125:3572-84. [PMID: 26280576 DOI: 10.1172/jci79942] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimer's disease (AD). Effective therapies for these diseases are lacking. Here, we evaluated mouse models of age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity in the brain and peripheral organs. We determined that aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region as the result of epigenetic-dependent alterations in gene expression. In both amyloid and aging models, inflammation was associated with increased gene expression linked to a subset of transcription factors, while plasticity gene deregulation was differentially mediated. Amyloid pathology impaired histone acetylation and decreased expression of plasticity genes, while aging altered H4K12 acetylation-linked differential splicing at the intron-exon junction in neurons, but not nonneuronal cells. Furthermore, oral administration of the clinically approved histone deacetylase inhibitor vorinostat not only restored spatial memory, but also exerted antiinflammatory action and reinstated epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This study provides a systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and suggests that histone deacetylase inhibitors should be further explored as a cost-effective therapeutic strategy against age-associated cognitive decline.
Collapse
|
20
|
Bonomi R, Mukhopadhyay U, Shavrin A, Yeh HH, Majhi A, Dewage SW, Najjar A, Lu X, Cisneros GA, Tong WP, Alauddin MM, Liu RS, Mangner TJ, Turkman N, Gelovani JG. Novel Histone Deacetylase Class IIa Selective Substrate Radiotracers for PET Imaging of Epigenetic Regulation in the Brain. PLoS One 2015; 10:e0133512. [PMID: 26244761 PMCID: PMC4526562 DOI: 10.1371/journal.pone.0133512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/29/2015] [Indexed: 01/14/2023] Open
Abstract
Histone deacetylases (HDAC's) became increasingly important targets for therapy of various diseases, resulting in a pressing need to develop HDAC class- and isoform-selective inhibitors. Class IIa deacetylases possess only minimal deacetylase activity against acetylated histones, but have several other client proteins as substrates through which they participate in epigenetic regulation. Herein, we report the radiosyntheses of the second generation of HDAC class IIa-specific radiotracers: 6-(di-fluoroacetamido)-1-hexanoicanilide (DFAHA) and 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]-TFAHA). The selectivity of these radiotracer substrates to HDAC class IIa enzymes was assessed in vitro, in a panel of recombinant HDACs, and in vivo using PET/CT imaging in rats. [18F]TFAHA showed significantly higher selectivity for HDAC class IIa enzymes, as compared to [18F]DFAHA and previously reported [18F]FAHA. PET imaging with [18F]TFAHA can be used to visualize and quantify spatial distribution and magnitude of HDAC class IIa expression-activity in different organs and tissues in vivo. Furthermore, PET imaging with [18F]TFAHA may advance the understanding of HDACs class IIa mediated epigenetic regulation of normal and pathophysiological processes, and facilitate the development of novel HDAC class IIa-specific inhibitors for therapy of different diseases.
Collapse
Affiliation(s)
- Robin Bonomi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Uday Mukhopadhyay
- Center for Advanced Biomedical Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Aleksandr Shavrin
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Hsien-Hsien Yeh
- National Cyclotron and Radiochemistry Center, National Yang Ming University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
| | - Anjoy Majhi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Sajeewa W. Dewage
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| | - Amer Najjar
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Xin Lu
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - G. Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States of America
| | - William P. Tong
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Mian M. Alauddin
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Ren-Shuan Liu
- National Cyclotron and Radiochemistry Center, National Yang Ming University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
| | - Thomas J. Mangner
- Positron Emission Tomography Center, Wayne State University, Detroit, MI 48202, United States of America
| | - Nashaat Turkman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Juri G. Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| |
Collapse
|
21
|
Meng Q, Liu Z, Li F, Ma J, Wang H, Huan Y, Li Z. An HDAC-Targeted Imaging Probe LBH589–Cy5.5 for Tumor Detection and Therapy Evaluation. Mol Pharm 2015; 12:2469-76. [DOI: 10.1021/acs.molpharmaceut.5b00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qingqing Meng
- Department
of Translational Imaging, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Zhiyi Liu
- Department
of Translational Imaging, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Feng Li
- Department
of Translational Imaging, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | | | | | | | - Zheng Li
- Department
of Translational Imaging, Houston Methodist Research Institute, Houston, Texas 77030, United States
| |
Collapse
|
22
|
Wey HY, Wang C, Schroeder FA, Logan J, Price JC, Hooker JM. Kinetic Analysis and Quantification of [¹¹C]Martinostat for in Vivo HDAC Imaging of the Brain. ACS Chem Neurosci 2015; 6:708-15. [PMID: 25768025 DOI: 10.1021/acschemneuro.5b00066] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epigenetic mechanisms mediated by histone deacetylases (HDACs) have been implicated in a wide-range of CNS disorders and may offer new therapeutic opportunities. In vivo evaluation of HDAC density and drug occupancy has become possible with [(11)C]Martinostat, which exhibits selectivity for a subset of class I/IIb HDAC enzymes. In this study, we characterize the kinetic properties of [(11)C]Martinostat in the nonhuman primate (NHP) brain in preparation for human neuroimaging studies. The goal of this work was to determine whether classic compartmental analysis techniques were appropriate and to further determine if arterial plasma is required for future NHP studies. Using an arterial plasma input function, several analysis approaches were evaluated for robust outcome measurements. [(11)C]Martinostat showed high baseline distribution volume (VT) ranging from 29.9 to 54.4 mL/cm(3) in the brain and large changes in occupancy (up to 99%) with a blocking dose approaching full enzyme saturation. An averaged nondisplaceable tissue uptake (VND) of 8.6 ± 3.7 mL/cm(3) suggests high specific binding of [(11)C]Martinostat. From a two-tissue compartment model, [(11)C]Martinostat exhibits a high K1 (averaged K1 of 0.65 mL/cm(3)/min) and a small k4 (average of 0.0085 min(-1)). Our study supports that [(11)C]Martinostat can be used to detect changes in HDAC density and occupancy in vivo and that simplified analysis not using arterial blood could be appropriate.
Collapse
Affiliation(s)
- Hsiao-Ying Wey
- Athinoula
A Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula
A Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Frederick A. Schroeder
- Athinoula
A Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jean Logan
- Center
for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Julie C. Price
- Department
of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jacob M. Hooker
- Athinoula
A Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
23
|
Quantification of histone deacetylase isoforms in human frontal cortex, human retina, and mouse brain. PLoS One 2015; 10:e0126592. [PMID: 25962138 PMCID: PMC4427357 DOI: 10.1371/journal.pone.0126592] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/06/2015] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylase (HDAC) inhibition has promise as a therapy for Alzheimer’s disease (AD) and other neurodegenerative diseases. Currently, therapeutic HDAC inhibitors target many HDAC isoforms, a particularly detrimental approach when HDAC isoforms are known to have different and specialized functions. We have developed a multiple reaction monitoring (MRM) mass spectrometry assay using stable isotope-labeled QconCATs as internal standards to quantify HDAC isoforms. We further determined a quantitative pattern of specific HDACs expressed in various human and mouse neural tissues. In human AD frontal cortex, HDAC1,2 decreased 32%, HDAC5 increased 47%, and HDAC6 increased 31% in comparison to age-matched controls. Human neural retina concentrations of HDAC1, 2, HDAC5, HDAC6, and HDAC7 decreased in age-related macular degeneration (AMD)-affected donors and exhibited a greater decrease in AD-affected donors in comparison to age-matched control neural retinas. Additionally, HDAC concentrations were measured in whole hemisphere of brain of 5XFAD mice, a model of β-amyloid deposition, to assess similarity to AD in human frontal cortex. HDAC profiles of human frontal cortex and mouse hemisphere had noticeable differences and relatively high concentrations of HDAC3 and HDAC4 in mice, which were undetectable in humans. Our method for quantification of HDAC isoforms is a practical and efficient technique to quantify isoforms in various tissues and diseases. Changes in HDAC concentrations reported herein contribute to the understanding of the pathology of neurodegeneration.
Collapse
|
24
|
Satterlee JS, Beckel-Mitchener A, Little R, Procaccini D, Rutter JL, Lossie AC. Neuroepigenomics: Resources, Obstacles, and Opportunities. NEUROEPIGENETICS 2015; 1:2-13. [PMID: 25722961 PMCID: PMC4337407 DOI: 10.1016/j.nepig.2014.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-lived post-mitotic cells, such as the majority of human neurons, must respond effectively to ongoing changes in neuronal stimulation or microenvironmental cues through transcriptional and epigenomic regulation of gene expression. The role of epigenomic regulation in neuronal function is of fundamental interest to the neuroscience community, as these types of studies have transformed our understanding of gene regulation in post-mitotic cells. This perspective article highlights many of the resources available to researchers interested in neuroepigenomic investigations and discusses some of the current obstacles and opportunities in neuroepigenomics.
Collapse
Affiliation(s)
- John S. Satterlee
- National Institute on Drug Abuse (NIDA), Division of Basic Neurobiology and Behavioral Research, 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - Andrea Beckel-Mitchener
- National Institute on Mental Health (NIMH), Division of Neuroscience and Basic Behavioral Science, 6001 Executive Boulevard Bethesda, MD 20892-9641, USA
| | - Roger Little
- National Institute on Drug Abuse (NIDA), Division of Basic Neurobiology and Behavioral Research, 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - Dena Procaccini
- National Institute on Drug Abuse (NIDA), Division of Basic Neurobiology and Behavioral Research, 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - Joni L. Rutter
- National Institute on Drug Abuse (NIDA), Division of Basic Neurobiology and Behavioral Research, 6001 Executive Boulevard, Bethesda, MD 20850, USA
| | - Amy C. Lossie
- Office of Behavioral and Social Sciences Research (OBSSR), Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director/National Institutes of Health (NIH), 31 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
|
26
|
Satterlee JS, Beckel-Mitchener A, McAllister K, Procaccini DC, Rutter JL, Tyson FL, Chadwick LH. Community resources and technologies developed through the NIH Roadmap Epigenomics Program. Methods Mol Biol 2015; 1238:27-49. [PMID: 25421653 DOI: 10.1007/978-1-4939-1804-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This chapter describes resources and technologies generated by the NIH Roadmap Epigenomics Program that may be useful to epigenomics researchers investigating a variety of diseases including cancer. Highlights include reference epigenome maps for a wide variety of human cells and tissues, the development of new technologies for epigenetic assays and imaging, the identification of novel epigenetic modifications, and an improved understanding of the role of epigenetic processes in a diversity of human diseases. We also discuss future needs in this area including exploration of epigenomic variation between individuals, single-cell epigenomics, environmental epigenomics, exploration of the use of surrogate tissues, and improved technologies for epigenome manipulation.
Collapse
Affiliation(s)
- John S Satterlee
- Division of Basic Neuroscience and Behavioral Research, National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Boulevard, NIH, MSC 9555, Bethesda, MD, 20892-9555, USA,
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang C, Schroeder FA, Wey HY, Borra R, Wagner FF, Reis S, Kim SW, Holson EB, Haggarty SJ, Hooker JM. In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs. J Med Chem 2014; 57:7999-8009. [PMID: 25203558 PMCID: PMC4191584 DOI: 10.1021/jm500872p] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Epigenetic
enzymes are now targeted to treat the underlying gene
expression dysregulation that contribute to disease pathogenesis.
Histone deacetylases (HDACs) have shown broad potential in treatments
against cancer and emerging data supports their targeting in the context
of cardiovascular disease and central nervous system dysfunction.
Development of a molecular agent for non-invasive imaging to elucidate
the distribution and functional roles of HDACs in humans will accelerate
medical research and drug discovery in this domain. Herein, we describe
the synthesis and validation of an HDAC imaging agent, [11C]6. Our imaging results demonstrate that this probe
has high specificity, good selectivity, and appropriate kinetics and
distribution for imaging HDACs in the brain, heart, kidney, pancreas,
and spleen. Our findings support the translational potential for [11C]6 for human epigenetic imaging.
Collapse
Affiliation(s)
- Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , 73 High Street, Charlestown, Massachusetts 02129, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Diyabalanage HVK, Van de Bittner GC, Ricq EL, Hooker JM. A chemical strategy for the cell-based detection of HDAC activity. ACS Chem Biol 2014; 9:1257-62. [PMID: 25056147 PMCID: PMC4076023 DOI: 10.1021/cb500248r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
A strategy
for activity-based enzyme detection using a novel enamide-based
chemical strategy is described. Enzymatic cleavage of an amide bond
results in the formation of an aldehyde. The interaction of this aldehyde
with proteins increases retention in cells that express the enzyme.
Proof of concept for this enamide-based strategy is demonstrated by
detecting histone deacetylase (HDAC) activity in HeLa cells. The modular
design of this strategy makes it amenable to in vitro and in vivo detection.
Collapse
Affiliation(s)
- Himashinie V. K. Diyabalanage
- Athinoula A. Martinos
Center for Biomedical
Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Genevieve C. Van de Bittner
- Athinoula A. Martinos
Center for Biomedical
Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Emily L. Ricq
- Athinoula A. Martinos
Center for Biomedical
Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos
Center for Biomedical
Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
29
|
Tang W, Kuruvilla SA, Galitovskiy V, Pan ML, Grando SA, Mukherjee J. Targeting histone deacetylase in lung cancer for early diagnosis: (18)F-FAHA PET/CT imaging of NNK-treated A/J mice model. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:324-332. [PMID: 24982818 PMCID: PMC4074498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
Elevated levels of histone deacetylases (HDACs) have been indicated in the development of some cancers. HDAC has been imaged using (18)F-FAHA and may serve as a marker to study epigenetics. We report evaluation of (18)F-FAHA as a probe in the early diagnosis of lung cancer using (18)F-FAHA PET/CT studies of A/J mice treated with NNK. (18)F-FAHA radiosynthesis was carried out in specific activity of ~2 Ci/μmol. A/J mice were divided into 2 groups: 1. Controls; 2. NNK treatment group with NNK (100 mg/kg, ip, weekly for 4 wks). Mice were injected 100-200 μCi i.v. (18)F-FAHA and then scanned in Inveon PET/CT under anesthesia using 2.0% isoflurane. Midbrain, cerebellum and brainstem uptake of (18)F-FAHA was displaced by the known HDAC inhibitor, suberanilohydroxamic acid (SAHA) with less than 10% activity remaining. CT revealed presence of lung nodules in 8 to 10-month old NNK mice while control mice were free of tumors. Little uptake of (18)F-FAHA was observed in the control mice lungs while significant (18)F-FAHA uptake occurred in the lungs of NNK-treated mice with tumor/nontumor >2.0. Ex vivo scans of the excised NNK and control mice lungs confirmed presence of extensive amounts of lung nodules seen by CT and confirmed by (18)F-FAHA in the NNK mice with tumor/nontumor >6.0. Our preliminary imaging studies with A/J mice lung cancer model suggest (18)F-FAHA PET may allow the study of epigenetic mechanisms involved in NNK-induced tumorigenesis in the lungs.
Collapse
Affiliation(s)
- Wayland Tang
- Preclinical Imaging, Department of Radiological Sciences, University of CaliforniaIrvine, California 92697, USA
| | - Sharon A Kuruvilla
- Preclinical Imaging, Department of Radiological Sciences, University of CaliforniaIrvine, California 92697, USA
| | - Valentin Galitovskiy
- Cancer Center and Research Institute, University of CaliforniaIrvine, California 92697, USA
| | - Min-Liang Pan
- Preclinical Imaging, Department of Radiological Sciences, University of CaliforniaIrvine, California 92697, USA
| | - Sergei A Grando
- Department of Dermatology, University of CaliforniaIrvine, California 92697, USA
- Cancer Center and Research Institute, University of CaliforniaIrvine, California 92697, USA
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of CaliforniaIrvine, California 92697, USA
- Cancer Center and Research Institute, University of CaliforniaIrvine, California 92697, USA
| |
Collapse
|
30
|
Logan J, Kim SW, Pareto D, Telang F, Wang GJ, Fowler JS, Biegon A. Kinetic Analysis of [11C]Vorozole Binding in the Human Brain with Positron Emission Tomography. Mol Imaging 2014. [DOI: 10.2310/7290.2014.00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jean Logan
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Sung Won Kim
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Deborah Pareto
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Frank Telang
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Gene-Jack Wang
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Joanna S. Fowler
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Anat Biegon
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| |
Collapse
|
31
|
Seo YJ, Muench L, Reid A, Chen J, Kang Y, Hooker JM, Volkow ND, Fowler JS, Kim SW. Radionuclide labeling and evaluation of candidate radioligands for PET imaging of histone deacetylase in the brain. Bioorg Med Chem Lett 2013; 23:6700-5. [PMID: 24210501 PMCID: PMC4007514 DOI: 10.1016/j.bmcl.2013.10.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
Abstract
Histone deacetylases (HDACs) regulate gene expression by inducing conformational changes in chromatin. Ever since the discovery of a naturally occurring HDAC inhibitor, trichostatin A (TSA) stimulated the recent development of suberoylanilide (SAHA, Zolinza®), HDAC has become an important molecular target for drug development. This has created the need to develop specific in vivo radioligands to study epigenetic regulation and HDAC engagement for drug development for diseases including cancer and psychiatric disorders. 6-([(18)F]Fluoroacetamido)-1-hexanoicanilide ([(18)F]FAHA) was recently developed as a HDAC substrate and shows moderate blood-brain barrier (BBB) permeability and specific signal (by metabolic trapping/or deacetylation) but rapid metabolism. Here, we report the radiosynthesis of two carbon-11 labeled candidate radiotracers (substrate- and inhibitor-based radioligand) for HDAC and their evaluation in non-human primate brain. PET studies showed very low brain uptake and rapid metabolism of both labeled compounds but revealed a surprising enhancement of brain penetration by F for H substitution when comparing one of these to [(18)F]FAHA. Further structural refinement is needed for the development of brain-penetrant, metabolically stable HDAC radiotracers and to understand the role of fluorine substitution on brain penetration.
Collapse
Affiliation(s)
- Young Jun Seo
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Chemistry, Chonbuk National University, Jeonju, 561-756, South Korea
| | - Lisa Muench
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Upton, NY 11973, USA
| | - Alicia Reid
- Department of Physical, Environmental and Computer Sciences, Medgar Evers College, The City University of New York 1650 Bedford Ave, Brooklyn, NY 11225, USA
| | - Jinzhu Chen
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yeona Kang
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Upton, NY 11973, USA
- National Institute on Drug Abuse, 6001 Executive Blvd, Rockville, Maryland 20852, USA
| | - Joanna S. Fowler
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Upton, NY 11973, USA
| |
Collapse
|
32
|
Wang C, Eessalu TE, Barth VN, Mitch CH, Wagner FF, Hong Y, Neelamegam R, Schroeder FA, Holson EB, Haggarty SJ, Hooker JM. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 4:29-38. [PMID: 24380043 PMCID: PMC3867727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/01/2013] [Indexed: 06/03/2023]
Abstract
Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the importance of in vivo PET imaging tools in characterizing putative CNS drug lead compounds and the continued need to discover effect PET tracers for neuroepigenetic imaging.
Collapse
Affiliation(s)
- Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA 02129, USA
| | | | | | | | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT7 Cambridge Center, Cambridge, MA 02142, USA
| | - Yijia Hong
- Department of Molecular and Cell Biology, University of CaliforniaBerkeley, CA 94720, USA
| | - Ramesh Neelamegam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA 02129, USA
| | - Frederick A Schroeder
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Center for Human Genetic Research, Massachusetts General Hospital185 Cambridge Street, Boston, MA 02114, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT7 Cambridge Center, Cambridge, MA 02142, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Center for Human Genetic Research, Massachusetts General Hospital185 Cambridge Street, Boston, MA 02114, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA 02129, USA
| |
Collapse
|
33
|
Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques. Neuroscience 2013; 264:186-97. [PMID: 24051365 DOI: 10.1016/j.neuroscience.2013.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/27/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022]
Abstract
Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin-modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in the human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone-modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction.
Collapse
|
34
|
Personalized medicine in Alzheimer's disease and depression. Contemp Clin Trials 2013; 36:616-23. [PMID: 23816492 DOI: 10.1016/j.cct.2013.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 12/17/2022]
Abstract
Latest research in the mental health field brings new hope to patients and promises to revolutionize the field of psychiatry. Personalized pharmacogenetic tests that aid in diagnosis and treatment choice are now becoming available for clinical practice. Amyloid beta peptide biomarkers in the cerebrospinal fluid of patients with Alzheimer's disease are now available. For the first time, radiologists are able to visualize amyloid plaques specific to Alzheimer's disease in live patients using Positron Emission Tomography-based tests approved by the FDA. A novel blood-based assay has been developed to aid in the diagnosis of depression based on activation of the HPA axis, metabolic, inflammatory and neurochemical pathways. Serotonin reuptake inhibitors have shown increased remission rates in specific ethnic subgroups and Cytochrome P450 gene polymorphisms can predict antidepressant tolerability. The latest research will help to eradicate "trial and error" prescription, ushering in the most personalized medicine to date. Like all major medical breakthroughs, integration of new algorithms and technologies requires sound science and time. But for many mentally ill patients, diagnosis and effective therapy cannot happen fast enough. This review will describe the newest diagnostic tests, treatments and clinical studies for the diagnosis and treatment of Alzheimer's disease and unipolar, major depressive disorder.
Collapse
Key Words
- 5-HTT
- 5-HTTLPR
- 5-Hydroxytryptamine Transporter gene
- AD
- ADNI
- ADRDA
- Alzheimer's Disease Neuroimaging Initiative
- Alzheimer's Disease and Related Disorders Association
- Alzheimer's disease
- Aβ40
- Aβ42
- CREB
- CSF
- CT
- CV
- CYP2C19
- CYP2D6
- CYP450
- Coefficient of Variation
- Computed Tomography
- Cytochrome P450
- Cytochrome P450 2C19
- Cytochrome P450 2D6
- DNA
- DSM
- DSM-IV-TR
- DSM-V
- Deoxyribonucleic Acid
- Depression
- Diagnostic and Statistical Manual of Mental Disorders
- Diagnostic and Statistical Manual of Mental Disorders—Fifth Edition
- Diagnostic and Statistical Manual of Mental Disorders—Fourth Edition-Text Revision
- ELISA
- Enzyme-Linked Immunosorbent Assay
- Epigenetics
- FDA
- FK506-binding protein
- FKBP5
- Food and Drug Administration
- GRIA
- GRIK
- HPA
- IL28RA
- KCNK2
- MDDScore
- MRI
- MTC
- Magnetic Resonance Imaging
- Major Depressive Disorder Score
- Methylthioninium Chloride
- NINCDS
- National Institute of Neurological and Communicative Disorders and Stroke
- P-tau181P
- PAPLN
- PET
- Personalized medicine
- Positron Emission Tomography
- QC
- Quality Control
- RDoC
- RNA
- Research Domain Criteria
- Ribonucleic Acid
- SSRI
- STAR*D
- Selective Serotonin Reuptake Inhibitor
- Sequenced Treatment Alternatives to Relieve Depression
- Serotonin-Transporter-Gene-Linked Polymorphic Region
- T-tau
- Tau phosphorylated at threonine 181
- VNTR
- WHO
- World Health Organization
- beta-amyloid, amino acids 1–40
- beta-amyloid, amino acids 1–42
- cAMP response element-binding protein
- cerebrospinal fluid
- glutamate receptor, ionotropic, AMPA
- glutamate receptor, ionotropic, kainate
- hypothalamic–pituitary–adrenal
- interleukin 28 receptor, alpha (interferon, lambda receptor)
- papilin, proteoglycan-like sulfated glycoprotein
- potassium channel, subfamily K, member 2
- total Tau
- variable nucleotide terminal repeat
Collapse
|
35
|
Schroeder FA, Chonde DB, Riley MM, Moseley CK, Granda ML, Wilson CM, Wagner FF, Zhang YL, Gale J, Holson EB, Haggarty SJ, Hooker JM. FDG-PET imaging reveals local brain glucose utilization is altered by class I histone deacetylase inhibitors. Neurosci Lett 2013; 550:119-24. [PMID: 23810801 DOI: 10.1016/j.neulet.2013.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/30/2013] [Accepted: 06/11/2013] [Indexed: 11/17/2022]
Abstract
The purpose of this work--the first of its kind--was to evaluate the impact of chronic selective histone deacetylase (HDAC) inhibitor treatment on brain activity using uptake of the radioligand (18)F-fluorodeoxyglucose and positron emission tomography ((18)FDG-PET). HDAC dysfunction and other epigenetic mechanisms are implicated in diverse CNS disorders and animal research suggests HDAC inhibition may provide a lead toward developing improved treatment. To begin to better understand the role of the class I HDAC subtypes HDAC 1, 2 and 3 in modulating brain activity, we utilized two benzamide inhibitors from the literature, compound 60 (Cpd-60) and CI-994 which selectively inhibit HDAC 1 and 2 or HDACs 1, 2 and 3, respectively. One day after the seventh treatment with Cpd-60 (22.5 mg/kg) or CI-994 (5 mg/kg), (18)FDG-PET experiments (n=11-12 rats per treatment group) revealed significant, local changes in brain glucose utilization. These 2-17% changes were represented by increases and decreases in glucose uptake. The pattern of changes was similar but distinct between Cpd-60 and CI-994, supporting that (18)FDG-PET is a useful tool to examine the relationship between HDAC subtype activity and brain activity. Further work using additional selective HDAC inhibitors will be needed to clarify these effects as well as to understand how brain activity changes influence behavioral response.
Collapse
Affiliation(s)
- Frederick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|