1
|
Liu H, Wan X. Alterations in static and dynamic functional network connectivity in chronic low back pain: a resting-state network functional connectivity and machine learning study. Neuroreport 2025; 36:364-377. [PMID: 40203235 DOI: 10.1097/wnr.0000000000002158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Low back pain (LBP) is a prevalent pain condition whose persistence can lead to changes in the brain regions responsible for sensory, cognitive, attentional, and emotional processing. Previous neuroimaging studies have identified various structural and functional abnormalities in patients with LBP; however, how the static and dynamic large-scale functional network connectivity (FNC) of the brain is affected in these patients remains unclear. Forty-one patients with chronic low back pain (cLBP) and 42 healthy controls underwent resting-state functional MRI scanning. The independent component analysis method was employed to extract the resting-state networks. Subsequently, we calculate and compare between groups for static intra- and inter-network functional connectivity. In addition, we investigated the differences between dynamic functional network connectivity and dynamic temporal metrics between cLBP patients and healthy controls. Finally, we tried to distinguish cLBP patients from healthy controls by support vector machine method. The results showed that significant reductions in functional connectivity within the network were found within the DMN,DAN, and ECN in cLBP patients. Significant between-group differences were also found in static FNC and in each state of dynamic FNC. In addition, in terms of dynamic temporal metrics, fraction time and mean dwell time were significantly altered in cLBP patients. In conclusion, our study suggests the existence of static and dynamic large-scale brain network alterations in patients with cLBP. The findings provide insights into the neural mechanisms underlying various brain function abnormalities and altered pain experiences in patients with cLBP.
Collapse
Affiliation(s)
- Hao Liu
- School of Ophthalmology and Optometry
| | - Xin Wan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Ceylan H, Acet N, Günendi Z. The Effect of a Single Session Rubber Hand Illusion on Pressure Pain Is Not Long-Lasting. Eur J Pain 2025; 29:e70003. [PMID: 39968867 DOI: 10.1002/ejp.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Rubber hand illusion (RHI) is an experience that causes changes in body perception and awareness as a result of the integration of simultaneous perceived visual and tactile stimuli. After synchronous brush strokes with rubber and real hands, the person perceives the rubber hand as their own. RHI is known to alter pain perception. In this study, it was aimed to evaluate the effects of RHI on pressure pain threshold and continuity of this effect. METHODS Twenty-three volunteers who developed RHI were included in our study and two conditions, illusion (synchronous) and control (asynchronous), were applied. The illusion condition was created by synchronous brush strokes, while the control condition was created by asynchronous brush application using different frequency and different finger areas in the same individuals. In both conditions, pressure pain threshold measurements with an algometer were performed at four times: baseline/1st measurement, during the brush stroke/2nd measurement, at the end of the brush stroke/3rd measurement and after the hand was removed from the environment/4th measurement. RESULTS It was shown that RHI increased the pressure-pain threshold (p = 0.004) in healthy volunteers. Asynchronous brush strokes arranged as a control trial significantly decreased the pressure pain threshold (p = 0.002). CONCLUSIONS It was found that the threshold values that change during the brush strokes return to the initial state after the brush strokes are terminated and the rubber hand is removed from the environment so that the effect of the illusion does not last for a long time with a single session application.
Collapse
Affiliation(s)
- Hatice Ceylan
- Physical Medicine and Rehabilitation Department, Gazi University Faculty of Medicine, Ankara, Turkey
- SBU, Gaziler Physical Therapy and Rehabilitation Training and Research Hospital, Ankara, Turkey
| | - Nagihan Acet
- Physical Medicine and Rehabilitation Department, Gazi University Faculty of Medicine, Ankara, Turkey
- Department of Physical Therapy and Rehabilitation, Atılım University Faculty of Health Science, Ankara, Turkey
| | - Zafer Günendi
- Physical Medicine and Rehabilitation Department, Gazi University Faculty of Medicine, Ankara, Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Metzger S, Horn-Hofmann C, Kunz M, Lautenbacher S. Counterirritation by pain inhibits the responsiveness to aversive loud tones: the role of state anxiety and state fear triggered in the NPU paradigm. Somatosens Mot Res 2025; 42:38-46. [PMID: 38459928 DOI: 10.1080/08990220.2024.2322499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
AIM OF THE STUDY The application of a noxious stimulus reduces the perception and responsiveness to other pain stimuli. This inhibition can be experimentally assessed with a method called 'counterirritation'. The question arises if counterirritation acts also on the perception and responsiveness to aversive but non-nociceptive stimuli (e.g., loud tones). Since aversive stimulation is often associated with state anxiety or state fear, we investigated in addition the modulatory effects of these emotions on counterirritation. MATERIAL AND METHODS 51 subjects participated in our study. We presented tones with aversive loudness (105 dB), first alone then during counterirritation (immersion of the hand in a hot water bath of 46 °C) to assess inhibition of loudness perception and responsiveness. Influences of state anxiety and state fear on counterirritation were investigated by using the Neutral-Predictable(fear)- Unpredictable(anxiety) Paradigm (NPU), which is based on classical conditioning. Loudness ratings (perception of the aversive tones) and startle reflex (defensive reaction to aversive tones) were assessed. RESULTS Counterirritation reduced startle reflex amplitudes, but not the loudness ratings. Although state anxiety and state fear were successfully induced, counterirritation remained unaffected. CONCLUSIONS Our study showed that pain inhibits the responsiveness to aversive stimuli (loud tones). Thus, the postulate that 'pain inhibits pain' might be better changed to 'pain inhibits aversiveness'. Consequently, our findings may also question the assumption of a clear pain specificity in inhibitory action as assumed by theoretical approaches like 'conditioned pain modulation' (CPM). Furthermore, counterirritation appeared one more time resistant to the influence of negative emotions.
Collapse
Affiliation(s)
- Silvia Metzger
- Physiological Psychology, Otto-Friedrich-University of Bamberg, Bamberg, Germany
| | - Claudia Horn-Hofmann
- Physiological Psychology, Otto-Friedrich-University of Bamberg, Bamberg, Germany
| | - Miriam Kunz
- Bamberger Living Lab Dementia, BamLiD, Otto-Friedrich-University of Bamberg, Bamberg, Germany
- Medical Psychology and Sociology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Stefan Lautenbacher
- Physiological Psychology, Otto-Friedrich-University of Bamberg, Bamberg, Germany
- Bamberger Living Lab Dementia, BamLiD, Otto-Friedrich-University of Bamberg, Bamberg, Germany
| |
Collapse
|
4
|
Li Z, Jiang J, Jiang X, Xie Y, Lu J, Gu L, Hong S. Abnormal alterations in structure-function coupling at the modular level in patients with postherpetic neuralgia. Sci Rep 2025; 15:2377. [PMID: 39827190 PMCID: PMC11742715 DOI: 10.1038/s41598-025-86908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
To investigate the presence of modular loss of coupling and abnormal alterations in functional and structural networks in the brain networks of patients with postherpetic neuralgia (PHN). We collected resting-state functional magnetic resonance imaging data and diffusion tensor imaging data from 82 healthy controls (HCs) and 71 PHN patients, generated structural connectivity (SC) and functional connectivity (FC) networks, and assessed the corresponding clinical information assessment. Based on AAL(90) mapping, the brain network was divided into 9 modules, and the structural-functional connectivity (SC-FC) coupling was compared at the whole-brain level and within the modules, as well as alterations in the topological properties of the brain network in the patient group. Finally, correlation analyses were performed using the following clinical scales: Visual Analogue Scale (VAS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD). Compared with HCs, patients with PHN had reduced global efficiency (Eg) and local efficiency (Eloc) of structural and functional networks. The FC in the PHN group presented abnormal node clustering coefficients (NCp), local node efficiencies (NLe), and node efficiencies (Ne), and the SC presented abnormal node degrees (Dc), NCp, NLe, characteristic path lengths (NLp), and Ne. In addition, SC-FC coupling was reduced in the patient default network (DMN), salient network (SN), and visual network (VIS). Moreover, the degree of impairment of graph theory indicators was significantly positively correlated with scales such as VAS scores, and the coupling of modules was significantly negatively correlated with the early course of the patient's disease. Large-scale impaired topological properties of the FC and SC networks were observed in patients with PHN, and SC-FC decoupling was detected in these modules of the DMN, SN, and VIS. These aberrant alterations may have led to over-transmission of pain information or central sensitization of pain.
Collapse
Affiliation(s)
- Zihan Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Xiaofeng Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Yangyang Xie
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Jing Lu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, China.
- Neuroimaging Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, China.
| |
Collapse
|
5
|
Lautenbacher S, Horn-Hofmann C, Kunz M. Is predictability of the conditioning stimulus (CS) a critical factor in conditioned pain modulation (CPM)? Somatosens Mot Res 2024:1-9. [PMID: 39269173 DOI: 10.1080/08990220.2024.2395809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Conditioned pain modulation (CPM) allows to investigate endogenous pain modulation and its clinical outcomes. Although co-activation of emotions has been shown to affect CPM, the impact of 'threat,' which may accompany CPM stimulation itself, has been mostly neglected. A critical factor for the threat level of the conditioning stimulus (CS) may be its predictability. METHODS 38 healthy participants (18 female) took part in a CPM study with pressure stimulation on the leg (blood-pressure cuff) serving as CS and heat stimulation on the forearm (contact thermode; CHEPS) serving as test stimulus (TS). While CS varied in intensity and -as operationalisation of threat- in temporary predictability, TS was kept constant. CPM effects were studied by EEG parameters (N2P2) and pain ratings. RESULTS We found a significant CPM effect when considering N2P2, with low CS predictability augmenting CPM inhibition; in contrast, a surprisingly facilitatory CPM effect occurred in pain ratings (in the high CS predictability condition). The threat manipulation was only partially successful because CS intensity increased the threat ratings but not -as intended- CS predictability. Correlations between subjective and psychophysiological CPM responses were low. DISCUSSION The differing CPM effects in subjective and psychophysiological responses, with both inhibitory and facilitatory effects, is puzzling but has already been observed earlier. The consideration of the CPM stimulation as major threat that is emotionally active is theoretically clearly justifiable but the operationalisation by means of different levels of CS predictability as in the present study might not have been ideal. Thus, further attempts of experimental verification are warranted.
Collapse
Affiliation(s)
- Stefan Lautenbacher
- Bamberger Living Lab Dementia (BamLiD), University of Bamberg, Bamberg, Germany
| | | | - Miriam Kunz
- Medical Psychology and Sociology, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
6
|
McEwan J, Kritikos A, Zeljko M. Involvement of the superior colliculi in crossmodal correspondences. Atten Percept Psychophys 2024; 86:931-941. [PMID: 38418807 PMCID: PMC11062976 DOI: 10.3758/s13414-024-02866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
There is an increasing body of evidence suggesting that there are low-level perceptual processes involved in crossmodal correspondences. In this study, we investigate the involvement of the superior colliculi in three basic crossmodal correspondences: elevation/pitch, lightness/pitch, and size/pitch. Using a psychophysical design, we modulate visual input to the superior colliculus to test whether the superior colliculus is required for behavioural crossmodal congruency effects to manifest in an unspeeded multisensory discrimination task. In the elevation/pitch task, superior colliculus involvement is required for a behavioural elevation/pitch congruency effect to manifest in the task. In the lightness/pitch and size/pitch task, we observed a behavioural elevation/pitch congruency effect regardless of superior colliculus involvement. These results suggest that the elevation/pitch correspondence may be processed differently to other low-level crossmodal correspondences. The implications of a distributed model of crossmodal correspondence processing in the brain are discussed.
Collapse
Affiliation(s)
- John McEwan
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| | - Ada Kritikos
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Mick Zeljko
- School of Psychology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
7
|
Thaploo D, Joshi A, Yilmaz E, Yildirim D, Altundag A, Hummel T. Functional connectivity patterns in parosmia. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:24. [PMID: 38115149 PMCID: PMC10731743 DOI: 10.1186/s12993-023-00225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Parosmia is a qualitative olfactory dysfunction presenting as "distorted odor perception" in presence of an odor source. Aim of this study was to use resting state functional connectivity to gain more information on the alteration of olfactory processing at the level of the central nervous system level. METHODS A cross sectional study was performed in 145 patients with parosmia (age range 20-76 years; 90 women). Presence and degree of parosmia was diagnosed on the basis of standardized questionnaires. Participants also received olfactory testing using the "Sniffin' Sticks". Then they underwent resting state scans using a 3 T magnetic resonance imaging scanner while fixating on a cross. RESULTS Whole brain analyses revealed reduced functional connectivity in salience as well as executive control networks. Region of interest-based analyses also supported reduced functional connectivity measures between primary and secondary olfactory eloquent areas (temporal pole, supramarginal gyrus and right orbitofrontal cortex; dorso-lateral pre-frontal cortex and the right piriform cortex). CONCLUSIONS Participants with parosmia exhibited a reduced information flow between memory, decision making centers, and primary and secondary olfactory areas.
Collapse
Affiliation(s)
- Divesh Thaploo
- Smell & Taste Clinic, Department of Otorhinolaryngology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Akshita Joshi
- Smell & Taste Clinic, Department of Otorhinolaryngology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Eren Yilmaz
- Faculty of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Duzgun Yildirim
- Department of Medical Imaging, Acibadem University, Vocational School of Health Sciences, Istanbul, Turkey
| | - Aytug Altundag
- Faculty of Medicine, Department of Otorhinolaryngology, Biruni University, Istanbul, Turkey
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
8
|
Bagher SM, Felemban OM, Alsabbagh GA, Aljuaid NA. The Effect of Using a Camouflaged Dental Syringe on Children's Anxiety and Behavioral Pain. Cureus 2023; 15:e50023. [PMID: 38186474 PMCID: PMC10767613 DOI: 10.7759/cureus.50023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Seeing a dental syringe can be terrifying, especially for young children, and hiding it during local anesthesia (LA) administration can sometimes be challenging for the pediatric dentist. OBJECTIVE To assess the effect of a camouflaged dental syringe on children's anxiety and behavioral pain in comparison to the traditional dental syringe during local anesthesia administration in pediatric patients. MATERIALS AND METHODS This randomized clinical trial included cooperative and healthy 6- to 10-year-old children scheduled for non-urgent dental treatment that required buccal infiltration anesthesia (BIA) in the maxillary arch. The subjects were randomized into either the test or the control groups. In the test group, subjects received BIA using the camouflaged dental syringe. Subjects in the control group received the BIA using a traditional dental syringe. A single-trained dentist administered all the anesthesia. Heart rate (HR) was monitored at three different time points (before, during, and after) the BIA administration. Subjects' anxiety and behavioral pain were measured using Venham's Anxiety Rating Scale (VARS) and the Face, Leg, Activity, Cry, and Consolability (FLACC) scale, respectively, by two trained and calibrated investigators. RESULTS A total of 60 subjects with a mean age of 8.3 ±1.3 years were included. The scores of the VARS in the subjects in the camouflaged group were somewhat lower than the subjects in the traditional group, but the observed difference did not reach statistical significance (P=0.113). However, subjects in the camouflaged group showed significantly lower FLACC scores compared to the traditional group (P=0.034). CONCLUSION The utilization of a camouflaged dental syringe is effective in improving children's behavior during local anesthesia administration; therefore, it is recommended as an alternative to using the traditional syringe.
Collapse
Affiliation(s)
- Sara M Bagher
- Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Osama M Felemban
- Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | | | | |
Collapse
|
9
|
Metzger S, Horn-Hofmann C, Lautenbacher S. Counterirritation by Pain Inhibits Responses to and Perception of Aversive Loud Tones. Percept Mot Skills 2023; 130:1801-1818. [PMID: 37340659 PMCID: PMC10552344 DOI: 10.1177/00315125231183604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The application of a noxious stimulus reduces the perception of other noxious stimuli, which can be assessed by an experimental method called "counterirritation." The question arises whether this type of inhibition also affects the processing of other aversive (but not nociceptive) stimuli, such as loud tones. If aversiveness or, in other words, negative emotional valence qualifies a stimulus to be affected by counterirritation, the general emotional context may also play a role in modulating counterirritation effects. We involved 63 participants in this study (M age = 38.8, SD = 10.5 years; 33 males, 30 females). We tried to counterirritate their perceptual and startle reactions to aversively loud tones (105 db) by immersing the hand into a painful hot water bath (46°C) in two emotional valence conditions (i.e., a neutral and a negative valence block in which we showed either neutral pictures or pictures of burn wounds). We assessed Inhibition by loudness ratings and startle reflex amplitudes. Counterirritation significantly reduced both loudness ratings and startle reflex amplitudes. The emotional context manipulation did not affect this clear inhibitory effect, showing that counterirritation by a noxious stimulus affects aversive sensations not induced by nociceptive stimuli. Thus, the assumption that "pain inhibits pain" should be widened to "pain inhibits the processing of aversive stimuli." This broadened understanding of counterirritation leads to a questioning of the postulate of clear pain specificity in paradigms like "conditioned pain modulation" (CPM) or "diffuse noxious inhibitory controls" (DNIC).
Collapse
Affiliation(s)
- Silvia Metzger
- Department of Physiological Psychology, Otto-Friedrich-University of Bamberg, Bamberg, Germany
| | - Claudia Horn-Hofmann
- Department of Physiological Psychology, Otto-Friedrich-University of Bamberg, Bamberg, Germany
| | - Stefan Lautenbacher
- Department of Physiological Psychology, Otto-Friedrich-University of Bamberg, Bamberg, Germany
| |
Collapse
|
10
|
Erdoğan ET, Küçük Z, Eskikurt G, Kurt A, Ermutlu N, Karamürsel S. Single Session Anodal Transcranial Direct Current Stimulation on Different Cortical Areas. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Transcranial direct current stimulation (tDCS) studies in healthy volunteers have shown conflicting results in terms of modulation in pain thresholds. The aim of this study was to investigate how single session anodal tDCS and modulated tDCS (mtDCS) of distinct cortical areas affected pain and perception thresholds in healthy participants. Five different stimulation conditions were applied at different cortical sites to 20 healthy volunteers to investigate the effects of tDCS and mtDCS (20 Hz) on pain and perception thresholds. TDCS over the motor cortex (M1), mtDCS over the motor cortex, tDCS over the dorsolateral prefrontal cortex (DLPFC), mtDCS of the DLPFC, and mtDCS over the occipital cortex were the stimulation conditions. All of the stimulations were anodal. The stimulations were given in a randomized order at 20-minute intervals. For comparison, electrical pain and perception thresholds were obtained from the right middle finger before and during the tDCS. After each measurement, participants were asked to give a score to their pain. In repeated measures analysis of variance (RM-ANOVA) test, the Condition × Time interaction showed no significant influence on changes in pain, perception thresholds, and pain scores ( p = .48, p = .89, and p = .50, respectively). However, regardless of the condition types, there was a significant difference in pain and perceptual thresholds during tDCS ( p = .01, p = .025, respectively). Our findings did not support difference in pain and perception modulation by a single session anodal tDCS over M1 and DLPFC compared to the occipital cortex in healthy volunteers. The increase in all thresholds during tDCS, irrespective of conditions, and peripheral sensations, including an active control group, taken together, suggest a placebo effect of active tDCS. Future studies about pain and perception in healthy subjects should consider the level of experimental pain and a strong placebo effect.
Collapse
Affiliation(s)
- Ezgi Tuna Erdoğan
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Zeynep Küçük
- Department of Psychology, Faculty of Science and Literature, Halic University, Istanbul, Turkey
| | - Gökçer Eskikurt
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Adnan Kurt
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Numan Ermutlu
- Department of Physiology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
11
|
Efraim Kaufman A, Weissman-Fogel I, Rosenthal MZ, Kaplan Neeman R, Bar-Shalita T. Opening a window into the riddle of misophonia, sensory over-responsiveness, and pain. Front Neurosci 2022; 16:907585. [PMID: 35992931 PMCID: PMC9381840 DOI: 10.3389/fnins.2022.907585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Misophonia and sensory over-responsiveness (SOR) share physiological and psychological symptoms. While individuals with SOR demonstrate pain perception alterations, these were not explored in misophonia. Methods This exploratory study comprised thirty healthy adults with (n = 15; based on the Misophonia Questionnaire) and without misophonia. The Sensory Responsiveness Questionnaire (SRQ) was used for evaluating sensory responsiveness. In addition, psychophysical tests were applied for quantification of: (i) stimulus-response function of painful stimuli, (ii) the individual perceived pain intensity, (iii) pain modulation efficiency, (iv) auditory intensity discrimination capability, and (v) painful and unpleasantness responses to six ecological daily sounds using the Battery of Aversiveness to Sounds (BAS). Results Individuals with misophonia reported higher scores in the SRQ-Aversive (p = 0.022) and SRQ-Hedonic (p = 0.029) scales as well as in auditory (p = 0.042) and smell (p = 0.006) sub-scales, indicating higher sensory responsiveness. Yet they were not identified with the SOR type of sensory modulation dysfunction. Groups did not differ in the pain psychophysical tests, and in auditory discrimination test scores (p > 0.05). However, in the misophonia group the BAS evoked higher pain intensity (p = 0.046) and unpleasantness (p <0.001) ratings in the apple biting sound, and higher unpleasantness rating in the scraping a dish sound (p = 0.007), compared to the comparison group. Conclusion Findings indicate increased sensory responsiveness in individuals with misophonia, yet not defined as SOR. Thus, this suggests that misophonia and SOR are two distinct conditions, differing in their behavioral responses to painful and non-painful stimuli.
Collapse
Affiliation(s)
- Adi Efraim Kaufman
- Department of Occupational Therapy, School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Weissman-Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - M. Zachary Rosenthal
- Department of Psychiatry and Behavioral Sciences, Center for Misophonia and Emotion Regulation, Duke University Medical Center, Durham, NC, United States
| | - Ricky Kaplan Neeman
- Department of Communication Disorders, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022; 258:119351. [PMID: 35659993 DOI: 10.1016/j.neuroimage.2022.119351] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
Diagnosis and management of chronic neuropathic pain are challenging, leading to current efforts to characterize 'objective' biomarkers of pain using imaging or neurophysiological techniques, such as electroencephalography (EEG). A systematic literature review was conducted in PubMed-Medline and Web-of-Science until October 2021 to identify EEG biomarkers of chronic neuropathic pain in humans. The risk of bias was assessed by the Newcastle-Ottawa-Scale. Experimental, provoked, or chronic non-neuropathic pain studies were excluded. We identified 14 studies, in which resting-state EEG spectral analysis was compared between patients with pain related to a neurological disease and patients with the same disease but without pain or healthy controls. From these heterogeneous exploratory studies, some conclusions can be drawn, even if they must be weighted by the fact that confounding factors, such as medication and association with anxio-depressive disorders, are generally not taken into account. Overall, EEG signal power was increased in the θ band (4-7Hz) and possibly in the high-β band (20-30Hz), but decreased in the high-α-low-β band (10-20Hz) in the presence of ongoing neuropathic pain, while increased γ band oscillations were not evidenced, unlike in experimental pain. Consequently, the dominant peak frequency was decreased in the θ-α band and increased in the whole-β band in neuropathic pain patients. Disappointingly, pain intensity correlated with various EEG changes across studies, with no consistent trend. This review also discusses the location of regional pain-related EEG changes in the pain connectome, as the perspectives offered by advanced techniques of EEG signal analysis (source location, connectivity, or classification methods based on artificial intelligence). The biomarkers provided by resting-state EEG are of particular interest for optimizing the treatment of chronic neuropathic pain by neuromodulation techniques, such as transcranial alternating current stimulation or neurofeedback procedures.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Bardel
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France.
| |
Collapse
|
13
|
Vastano R, Costantini M, Widerstrom-Noga E. Maladaptive reorganization following SCI: The role of body representation and multisensory integration. Prog Neurobiol 2021; 208:102179. [PMID: 34600947 DOI: 10.1016/j.pneurobio.2021.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
In this review we focus on maladaptive brain reorganization after spinal cord injury (SCI), including the development of neuropathic pain, and its relationship with impairments in body representation and multisensory integration. We will discuss the implications of altered sensorimotor interactions after SCI with and without neuropathic pain and possible deficits in multisensory integration and body representation. Within this framework we will examine published research findings focused on the use of bodily illusions to manipulate multisensory body representation to induce analgesic effects in heterogeneous chronic pain populations and in SCI-related neuropathic pain. We propose that the development and intensification of neuropathic pain after SCI is partly dependent on brain reorganization associated with dysfunctional multisensory integration processes and distorted body representation. We conclude this review by suggesting future research avenues that may lead to a better understanding of the complex mechanisms underlying the sense of the body after SCI, with a focus on cortical changes.
Collapse
Affiliation(s)
- Roberta Vastano
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Eva Widerstrom-Noga
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| |
Collapse
|
14
|
Manohar S, Adler HJ, Radziwon K, Salvi R. Interaction of auditory and pain pathways: Effects of stimulus intensity, hearing loss and opioid signaling. Hear Res 2020; 393:108012. [PMID: 32554129 DOI: 10.1016/j.heares.2020.108012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Moderate intensity sounds can reduce pain sensitivity (i.e., audio-analgesia) whereas intense sounds can induce aural pain, evidence of multisensory interaction between auditory and pain pathways. To explore auditory-pain pathway interactions, we used the tail-flick (TF) test to assess thermal tail-pain sensitivity by measuring the latency of a rat to remove its tail from 52 °C water. In Experiment 1, TF latencies were measured in ambient noise and broadband noise (BBN) presented from 80 to 120 dB SPL. TF latencies gradually increased from ambient to 90 dB SPL (audio-analgesia), but then declined. At 120 dB, TF latencies were significantly shorter than normal, evidence for audio-hyperalgesia near the aural threshold for pain. In Experiment II, the opioid pain pathway was modified by treating rats with a high dose of fentanyl known to induce post-treatment hyperalgesia. TF latencies in ambient noise were normal 10-days post-fentanyl. However, TF latencies became shorter than normal from 90 to 110 dB indicating that fentanyl pre-treatment had converted audio-analgesia to audio-hyperalgesia. In Experiment III, we tested the hypothesis that hearing loss could alter pain sensitivity by unilaterally exposing rats to an intense noise that induced a significant hearing loss. TF latencies in ambient noise gradually declined from 1- to 4-weeks post-exposure indicating that noise-induced hearing loss had increased pain sensitivity. Our results suggest that auditory and pain pathways interact in ways that depend on intensity, hearing loss and opioid pain signaling, results potentially relevant to pain hyperacusis.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Henry J Adler
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Kelly Radziwon
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
15
|
Liu Q, Liao Z, Zhang Y, Lin C, He B, Fang L, Tu L, Zhao M, Wu X, Gu J. Pain- and Fatigue-Related Functional and Structural Changes in Ankylosing Spondylitis: An fRMI Study. Front Med (Lausanne) 2020; 7:193. [PMID: 32500077 PMCID: PMC7242653 DOI: 10.3389/fmed.2020.00193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Chronic pain and fatigue are two cardinal features of ankylosing spondylitis (AS) and how to effectively treat these conditions continues to be a challenge. The underlying mechanisms and the relationship between AS-related pain and fatigue remain poorly understood. The present study was conducted, therefore, to explore the brain functional and structural changes associated with pain and fatigue in AS. Methods: A total of 65 AS patients (48 men and 17 women; 32.33 ± 8.6 years) and 53 age- and sex-matched controls were enrolled in the study. The patients underwent clinical assessment based on Total Back Pain scores, Fatigue Severity Scale, Bath Ankylosing Spondylitis Disease Activity Index, (BASDAI), high-sensitivity C-reactive Protein (hsCRP), erythrocyte sedimentation rate (ESR), and Beck Depression Inventory (BDI). Using 3T magnetic resonance imaging (3T-MRI), we analyzed the brain functional (connectivity and nodal properties) and structural (covariance and gray matter volumes) differences between AS patients and controls. Furthermore, we extracted the values of the significantly changed regions in the AS cohort and explored their association with pain and fatigue. Results: In AS patients, there were functional and structural abnormalities distributed in the default mode network (DMN), salience network (SN), sensory/somatomotor network (SMN), dorsal attention network (DAN), task control network (TCN), and visual network, and some regions showed both types of changes. Among these, the functional connectivity (FC) between the left insula and medial prefrontal cortex, the betweenness centrality of the left medial prefrontal cortex and the gray matter volume of the right putamen tracked both pain and fatigue. In addition, pain was related to within-DMN FC disruption and nodal function / gray matter volumes changes in DMN, SN, and the visual network, while fatigue mainly involved the SMN, DAN, and TCN. Moreover, certain changes were also related to BASDAI and inflammation level. Conclusion: This study offers new insights into understanding the neural mechanism of AS-related pain and fatigue, and could help to stratify patients based on the correlation features and ultimately move towards a personalized therapy.
Collapse
Affiliation(s)
- Qi Liu
- Rheumatology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Zetao Liao
- Rheumatology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Yanli Zhang
- Rheumatology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Churong Lin
- Radiology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Bingjun He
- Radiology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Linkai Fang
- Rheumatology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Liudan Tu
- Rheumatology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Mingjing Zhao
- Rheumatology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Xinyu Wu
- Rheumatology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Jieruo Gu
- Rheumatology Department of the Third Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| |
Collapse
|
16
|
Shen W, Tu Y, Gollub RL, Ortiz A, Napadow V, Yu S, Wilson G, Park J, Lang C, Jung M, Gerber J, Mawla I, Chan ST, Wasan AD, Edwards RR, Kaptchuk T, Li S, Rosen B, Kong J. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. NEUROIMAGE-CLINICAL 2019; 22:101775. [PMID: 30927604 PMCID: PMC6444301 DOI: 10.1016/j.nicl.2019.101775] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/22/2019] [Accepted: 03/10/2019] [Indexed: 01/04/2023]
Abstract
Chronic low back pain (cLBP) is associated with widespread functional and structural changes in the brain. This study aims to investigate the resting state functional connectivity (rsFC) changes of visual networks in cLBP patients and the feasibility of distinguishing cLBP patients from healthy controls using machine learning methods. cLBP (n = 90) and control individuals (n = 74) were enrolled and underwent resting-state BOLD fMRI scans. Primary, dorsal, and ventral visual networks derived from independent component analysis were used as regions of interest to compare resting state functional connectivity changes between the cLBP patients and healthy controls. We then applied a support vector machine classifier to distinguish the cLBP patients and control individuals. These results were further verified in a new cohort of subjects. We found that the functional connectivity between the primary visual network and the somatosensory/motor areas were significantly enhanced in cLBP patients. The rsFC between the primary visual network and S1 was negatively associated with duration of cLBP. In addition, we found that the rsFC of the visual network could achieve a classification accuracy of 79.3% in distinguishing cLBP patients from HCs, and these results were further validated in an independent cohort of subjects (accuracy = 66.7%). Our results demonstrate significant changes in the rsFC of the visual networks in cLBP patients. We speculate these alterations may represent an adaptation/self-adjustment mechanism and cross-model interaction between the visual, somatosensory, motor, attention, and salient networks in response to cLBP. Elucidating the role of the visual networks in cLBP may shed light on the pathophysiology and development of the disorder. We investigated rsFC changes of visual networks in cLBP patients. rsFC of the primary visual network with S1 and M1 increased in cLBP patients. rsFC of the visual networks can differentiate cLBP patients from controls (with 79.3% accuracy). Classification results can be validated in an independent cohort (with 66.7% accuracy).
Collapse
Affiliation(s)
- Wei Shen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; First Affiliated Hospital of Hainan Medical College, Hainan Medical University, Haikou, Hainan, China
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Ortiz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Siyi Yu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Minyoung Jung
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Gerber
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ishtiaq Mawla
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Suk-Tak Chan
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ajay D Wasan
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ted Kaptchuk
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shasha Li
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce Rosen
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Poortvliet PC, Tucker KJ, Finnigan S, Scott D, Hodges PW. Experimental Pain Decreases Corticomuscular Coherence in a Force- But Not a Position-Control Task. THE JOURNAL OF PAIN 2019; 20:192-200. [DOI: 10.1016/j.jpain.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
18
|
Bauer A, Hagenburger J, Plank T, Busch V, Greenlee MW. Mechanical Pain Thresholds and the Rubber Hand Illusion. Front Psychol 2018; 9:712. [PMID: 29867677 PMCID: PMC5962648 DOI: 10.3389/fpsyg.2018.00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/23/2018] [Indexed: 02/03/2023] Open
Abstract
We manipulated the sense of body ownership with the rubber hand illusion (RHI) to determine if perception of a potentially painful threat to the rubber hand can modify the mechanical pain threshold (MPT). Simultaneous tactile stimulation of the subject’s concealed hand and the appropriately positioned visible rubber hand generated the illusion of false body ownership. The MPT was recorded on the left hand of the subjects before and after induction of the RHI, as well as during the phase in which the model hand was pricked with a sharp knife or touched by the blunt knife handle. The results indicate that the RHI could be successfully generated with our set-up. Mechanical stimuli were perceived as more painful in the condition where the rubber hand was simultaneously pricked with a knife. Our findings suggest that the illusion of body ownership gates nociceptive processing of potentially painful stimuli.
Collapse
Affiliation(s)
- Anna Bauer
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Julia Hagenburger
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Tina Plank
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Volker Busch
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Mark W Greenlee
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Intense pain influences the cortical processing of visual stimuli projected onto the sensitized skin. Pain 2017; 158:691-697. [PMID: 28030473 DOI: 10.1097/j.pain.0000000000000816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sensitization is a form of implicit learning produced by the exposure to a harmful stimulus. In humans and other mammals, sensitization after skin injury increases the responsiveness of peripheral nociceptors and enhances the synaptic transmission of nociceptive input in the central nervous system. Here, we show that sensitization-related changes in the central nervous system are not restricted to nociceptive pathways and, instead, also affect other sensory modalities, especially if that modality conveys information relevant for the sensitized body part. Specifically, we show that after sensitizing the forearm using high-frequency electrical stimulation (HFS) of the skin, visual stimuli projected onto the sensitized forearm elicit significantly enhanced brain responses. Whereas mechanical hyperalgesia was present both 20 and 45 minutes after HFS, the enhanced responsiveness to visual stimuli was present only 20 minutes after HFS. Taken together, our results indicate that sensitization involves both nociceptive-specific and multimodal mechanisms, having distinct time courses.
Collapse
|
20
|
Rodríguez I, Herskovic V, Gerea C, Fuentes C, Rossel PO, Marques M, Campos M. Understanding Monitoring Technologies for Adults With Pain: Systematic Literature Review. J Med Internet Res 2017; 19:e364. [PMID: 29079550 PMCID: PMC5681725 DOI: 10.2196/jmir.7279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/24/2017] [Accepted: 09/10/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Monitoring of patients may decrease treatment costs and improve quality of care. Pain is the most common health problem that people seek help for in hospitals. Therefore, monitoring patients with pain may have significant impact in improving treatment. Several studies have studied factors affecting pain; however, no previous study has reviewed the contextual information that a monitoring system may capture to characterize a patient's situation. OBJECTIVE The objective of this study was to conduct a systematic review to (1) determine what types of technologies have been used to monitor adults with pain, and (2) construct a model of the context information that may be used to implement apps and devices aimed at monitoring adults with pain. METHODS A literature search (2005-2015) was conducted in electronic databases pertaining to medical and computer science literature (PubMed, Science Direct, ACM Digital Library, and IEEE Xplore) using a defined search string. Article selection was done through a process of removing duplicates, analyzing title and abstract, and then reviewing the full text of the article. RESULTS In the final analysis, 87 articles were included and 53 of them (61%) used technologies to collect contextual information. A total of 49 types of context information were found and a five-dimension (activity, identity, wellness, environment, physiological) model of context information to monitor adults with pain was proposed, expanding on a previous model. Most technological interfaces for pain monitoring were wearable, possibly because they can be used in more realistic contexts. Few studies focused on older adults, creating a relevant avenue of research on how to create devices for users that may have impaired cognitive skills or low digital literacy. CONCLUSIONS The design of monitoring devices and interfaces for adults with pain must deal with the challenge of selecting relevant contextual information to understand the user's situation, and not overburdening or inconveniencing users with information requests. A model of contextual information may be used by researchers to choose possible contextual information that may be monitored during studies on adults with pain.
Collapse
Affiliation(s)
- Iyubanit Rodríguez
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria Herskovic
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carmen Gerea
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Fuentes
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - Pedro O Rossel
- Department of Computer Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Maíra Marques
- Department of Computer Science, Universidad de Chile, Santiago, Chile
| | - Mauricio Campos
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Świder K, Wronka E, Oosterman JM, van Rijn CM, Jongsma MLA. Influence of transient spatial attention on the P3 component and perception of painful and non-painful electric stimuli in crossed and uncrossed hands positions. PLoS One 2017; 12:e0182616. [PMID: 28873414 PMCID: PMC5584947 DOI: 10.1371/journal.pone.0182616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
Recent reports show that focusing attention on the location where pain is expected can enhance its perception. Moreover, crossing the hands over the body’s midline is known to impair the ability to localise stimuli and decrease tactile and pain sensations in healthy participants. The present study investigated the role of transient spatial attention on the perception of painful and non-painful electrical stimuli in conditions in which a match or a mismatch was induced between skin-based and external frames of reference (uncrossed and crossed hands positions, respectively). We measured the subjective experience (Numerical Rating Scale scores) and the electrophysiological response elicited by brief electric stimuli by analysing the P3 component of Event-Related Potentials (ERPs). Twenty-two participants underwent eight painful and eight non-painful stimulus blocks. The electrical stimuli were applied to either the left or the right hand, held in either a crossed or uncrossed position. Each stimulus was preceded by a direction cue (leftward or rightward arrow). In 80% of the trials, the arrow correctly pointed to the spatial regions where the stimulus would appear (congruent cueing). Our results indicated that congruent cues resulted in increased pain NRS scores compared to incongruent ones. For non-painful stimuli such an effect was observed only in the uncrossed hands position. For both non-painful and painful stimuli the P3 peak amplitudes were higher and occurred later for incongruently cued stimuli compared to congruent ones. However, we found that crossing the hands substantially reduced the cueing effect of the P3 peak amplitudes elicited by painful stimuli. Taken together, our results showed a strong influence of transient attention manipulations on the NRS ratings and on the brain activity. Our results also suggest that hand position may modulate the strength of the cueing effect, although differences between painful and non-painful stimuli exist.
Collapse
Affiliation(s)
- Karolina Świder
- Institute of Psychology, Jagiellonian University, Kraków, Poland
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
- * E-mail:
| | - Eligiusz Wronka
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Joukje M. Oosterman
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clementina M. van Rijn
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marijtje L. A. Jongsma
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Pamment J, Aspell J. Putting pain out of mind with an ‘out of body’ illusion. Eur J Pain 2016; 21:334-342. [DOI: 10.1002/ejp.927] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Affiliation(s)
- J. Pamment
- Department of Psychology; Anglia Ruskin University; Cambridge UK
| | - J.E. Aspell
- Department of Psychology; Anglia Ruskin University; Cambridge UK
| |
Collapse
|
23
|
Hauck M, Domnick C, Lorenz J, Gerloff C, Engel AK. Top-down and bottom-up modulation of pain-induced oscillations. Front Hum Neurosci 2015; 9:375. [PMID: 26190991 PMCID: PMC4488623 DOI: 10.3389/fnhum.2015.00375] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/15/2015] [Indexed: 11/17/2022] Open
Abstract
Attention is an important factor that is able to strongly modulate the experience of pain. In order to differentiate cortical mechanisms underlying subject-driven (i.e., top-down) and stimulus-driven (bottom-up) modes of attentional pain modulation, we recorded electric brain activity in healthy volunteers during painful laser stimulation while spatial attention and stimulus intensity were systematically varied. The subjects’ task was to evaluate the pain intensity at the attended finger, while ignoring laser stimuli delivered to the other finger. Top-down (attention) and bottom up (intensity) influences differed in their effects on oscillatory response components. Attention towards pain induced a decrease in alpha and an increase in gamma band power, localized in the insula. Pain intensity modulated delta, alpha, beta and gamma band power. Source localization revealed stimulus driven modulation in the cingulate gyrus (CG) and somatosensory areas for gamma power changes. Our results indicate that bottom-up and top-down modes of processing exert different effects on pain-induced slow and fast oscillatory activities. Future studies may examine pain-induced oscillations using this paradigm to test for altered attentional pain control in patients with chronic pain.
Collapse
Affiliation(s)
- Michael Hauck
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Claudia Domnick
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Jürgen Lorenz
- Faculty of Life Science, Laboratory of Human Biology and Physiology, Applied Science University Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
24
|
Anticipation of electric shocks modulates low beta power and event-related fields during memory encoding. Neurobiol Learn Mem 2015; 123:196-204. [PMID: 26119254 DOI: 10.1016/j.nlm.2015.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
In humans, the temporal and oscillatory dynamics of pain anticipation and its effects on long-term memory are largely unknown. Here, we investigated this open question by using a previously established behavioral paradigm in combination with magnetoencephalography (MEG). Healthy human subjects encoded a series of scene images, which was combined with cues predicting an aversive electric shock with different probabilities (0.2, 0.5 or 0.8). After encoding, memory for the studied images was tested using a remember/know recognition task. Behaviorally, pain anticipation did not modulate recollection-based recognition memory per se, but interacted with the perceived unpleasantness of the electric shock [visual analogue scale rating from 1 (not unpleasant) to 10 (highly unpleasant)]. More precisely, the relationship between pain anticipation and recollection followed an inverted u-shaped function the more unpleasant the shocks were rated by a subject. At the physiological level, this quadratic effect was mimicked in the event-related magnetic fields associated with successful memory formation ('DM-effect') ∼450ms after image onset at left frontal sensors. Importantly, across all subjects, shock anticipation modulated oscillatory power in the low beta frequency range (13-20Hz) in a linear fashion at left temporal sensors. Taken together, our findings indicate that beta oscillations provide a generic mechanism underlying pain anticipation; the effect on subsequent long-term memory, on the other hand, is much more variable and depends on the level of individual pain perception. As such, our findings give new and important insights into how aversive motivational states can drive memory formation.
Collapse
|
25
|
Crossmodal shaping of pain: a multisensory approach to nociception. Trends Cogn Sci 2014; 18:319-27. [PMID: 24751359 DOI: 10.1016/j.tics.2014.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/21/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022]
Abstract
Noxious stimuli in our environment are often accompanied by input from other sensory modalities that can affect the processing of these stimuli and the perception of pain. Stimuli from these other modalities may distract us from pain and reduce its perceived strength. Alternatively, they can enhance the saliency of the painful input, leading to an increased pain experience. We discuss factors that influence the crossmodal shaping of pain and highlight the important role of innocuous stimuli in peripersonal space. We propose that frequency-specific modulations in local oscillatory power and in long-range functional connectivity may serve as neural mechanisms underlying the crossmodal shaping of pain. Finally, we provide an outlook on future directions and clinical implications of this promising research field.
Collapse
|
26
|
Höfle M, Pomper U, Hauck M, Engel AK, Senkowski D. Spectral signatures of viewing a needle approaching one's body when anticipating pain. Eur J Neurosci 2013; 38:3089-98. [PMID: 23859421 DOI: 10.1111/ejn.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
When viewing the needle of a syringe approaching your skin, anticipation of a painful prick may lead to increased arousal. How this anticipation is reflected in neural oscillatory activity and how it relates to activity within the autonomic nervous system is thus far unknown. Recently, we found that viewing needle pricks compared with Q-tip touches increases the pupil dilation response (PDR) and perceived unpleasantness of electrical stimuli. Here, we used high-density electroencephalography to investigate whether anticipatory oscillatory activity predicts the unpleasantness of electrical stimuli and PDR while viewing a needle approaching a hand that is perceived as one's own. We presented video clips of needle pricks and Q-tip touches, and delivered spatiotemporally aligned painful and nonpainful intracutaneous electrical stimuli. The perceived unpleasantness of electrical stimuli and the PDR were enhanced when participants viewed needle pricks compared with Q-tip touches. Source reconstruction using linear beamforming revealed reduced alpha-band activity in the posterior cingulate cortex (PCC) and fusiform gyrus before the onset of electrical stimuli when participants viewed needle pricks compared with Q-tip touches. Moreover, alpha-band activity in the PCC predicted PDR on a single trial level. The anticipatory reduction of alpha-band activity in the PCC may reflect a neural mechanism that serves to protect the body from forthcoming harm by facilitating the preparation of adequate defense responses.
Collapse
Affiliation(s)
- Marion Höfle
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| | - Ulrich Pomper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| | - Michael Hauck
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Senkowski
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| |
Collapse
|
27
|
童 基. The Research on Pain Mechanism Based on the Spectrum Analysis of EEG. Biophysics (Nagoya-shi) 2013. [DOI: 10.12677/biphy.2013.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|