1
|
Zhong S, Lin J, Zhang L, Wang S, Kemp GJ, Li L, Gong Q. Neural correlates of harm avoidance: a multimodal meta-analysis of brain structural and resting-state functional neuroimaging studies. Transl Psychiatry 2024; 14:384. [PMID: 39304648 PMCID: PMC11415487 DOI: 10.1038/s41398-024-03091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Harm avoidance (HA) is a Cloninger personality trait that describes behavioural inhibition to avoid aversive stimuli. It serves as a predisposing factor that contributes to the development of mental disorders such as anxiety and major depressive disorder. Neuroimaging research has identified some brain anatomical and functional correlates of HA, but reported findings are inconsistent. We therefore conducted a multimodal meta-analysis of whole-brain structural and resting-state functional neuroimaging studies to identify the most stable neural substrate of HA. Included were a total of 10 structural voxel-based morphometry studies (11 datasets) and 13 functional positron emission tomography or single photon emission computed tomography studies (16 datasets) involving 3053 healthy participants without any psychiatric or neurological disorders evaluated for HA using the Three-Dimensional Personality Questionnaire (TPQ) or the Temperament and Character Inventory (TCI). The meta-analysis revealed brain volumetric correlates of HA in parietal and temporal cortices, and resting-state functional correlates in prefrontal, temporal and parietal gray matter. Volumetric and functional correlates co-occurred in the left superior frontal gyrus and left middle frontal gyrus, and were dissociated in the left rectus gyrus. Our meta-analysis is the first study to give a comprehensive picture of the structural and functional correlates of HA, a contribution that may help bridge the grievous gap between the neurobiology of HA and the pathogenesis, prevention and treatment of HA-related mental disorders.
Collapse
Affiliation(s)
- Shitong Zhong
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinping Lin
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
- The Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Xiamen, China
| | - Lingsheng Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
- The Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Xiamen, China.
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Mihara M, Izumika R, Tsukiura T. Remembering unexpected beauty: Contributions of the ventral striatum to the processing of reward prediction errors regarding the facial attractiveness in face memory. Neuroimage 2023; 282:120408. [PMID: 37838105 DOI: 10.1016/j.neuroimage.2023.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The COVID-19 pandemic has led people to predict facial attractiveness from partially covered faces. Differences in the predicted and observed facial attractiveness (i.e., masked and unmasked faces, respectively) are defined as reward prediction error (RPE) in a social context. Cognitive neuroscience studies have elucidated the neural mechanisms underlying RPE-induced memory improvements in terms of monetary rewards. However, little is known about the mechanisms underlying RPE-induced memory modulation in terms of social rewards. To elucidate this, the present functional magnetic resonance imaging (fMRI) study investigated activity and functional connectivity during face encoding. In encoding trials, participants rated the predicted attractiveness of faces covered except for around the eyes (prediction phase) and then rated the observed attractiveness of these faces without any cover (outcome phase). The difference in ratings between these phases was defined as RPE in facial attractiveness, and RPE was categorized into positive RPE (increased RPE from the prediction to outcome phases), negative RPE (decreased RPE from the prediction to outcome phases), and non-RPE (no difference in RPE between the prediction and outcome phases). During retrieval, participants were presented with individual faces that had been seen and unseen in the encoding trials, and were required to judge whether or not each face had been seen in the encoding trials. Univariate activity in the ventral striatum (VS) exhibited a linear increase with increased RPE in facial attractiveness. In the multivariate pattern analysis (MVPA), activity patterns in the VS and surrounding areas (extended VS) significantly discriminated between positive/negative RPE and non-RPE. In the functional connectivity analysis, significant functional connectivity between the extended VS and the hippocampus was observed most frequently in positive RPE. Memory improvements by face-based RPE could be involved in functional networks between the extended VS (representing RPE) and the hippocampus, and the interaction could be modulated by RPE values in a social context.
Collapse
Affiliation(s)
- Moe Mihara
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Reina Izumika
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Tsukiura
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Wang J, Ji G, Li G, Hu Y, Zhang W, Ji W, Tan Z, Li H, Jiang F, Zhang Y, Wu F, von Deneen KM, Yu J, Han Y, Cui G, Manza P, Tomasi D, Volkow ND, Nie Y, Zhang Y, Wang GJ. Habenular connectivity predict weight loss and negative emotional-related eating behavior after laparoscopic sleeve gastrectomy. Cereb Cortex 2023; 33:2037-2047. [PMID: 35580853 PMCID: PMC10365841 DOI: 10.1093/cercor/bhac191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Habenular (Hb) processes negative emotions that may drive compulsive food-intake. Its functional changes were reported following laparoscopic-sleeve-gastrectomy (LSG). However, structural connectivity (SC) of Hb-homeostatic/hedonic circuits after LSG remains unclear. We selected regions implicated in homeostatic/hedonic regulation that have anatomical connections with Hb as regions-of-interest (ROIs), and used diffusion-tensor-imaging with probabilistic tractography to calculate SC between Hb and these ROIs in 30 obese participants before LSG (PreLSG) and at 12-month post-LSG (PostLSG12) and 30 normal-weight controls. Three-factor-eating-questionnaire (TFEQ) and Dutch-eating-behavior-questionnaire (DEBQ) were used to assess eating behaviors. LSG significantly decreased weight, negative emotion, and improved self-reported eating behavior. LSG increased SC between the Hb and homeostatic/hedonic regions including hypothalamus (Hy), bilateral superior frontal gyri (SFG), left amygdala (AMY), and orbitofrontal cortex (OFC). TFEQ-hunger negatively correlated with SC of Hb-Hy at PostLSG12; and increased SC of Hb-Hy correlated with reduced depression and DEBQ-external eating. TFEQ-disinhibition negatively correlated with SC of Hb-bilateral SFG at PreLSG. Increased SC of Hb-left AMY correlated with reduced DEBQ-emotional eating. Higher percentage of total weight-loss negatively correlated with SC of Hb-left OFC at PreLSG. Enhanced SC of Hb-homeostatic/hedonic regulatory regions post-LSG may contribute to its beneficial effects in improving eating behaviors including negative emotional eating, and long-term weight-loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Ludwig M, Richter M, Goltermann J, Redlich R, Repple J, Flint C, Grotegerd D, Koch K, Leehr EJ, Meinert S, Hülsmann C, Enneking V, Kugel H, Hahn T, Baune BT, Dannlowski U, Opel N. Novelty seeking is associated with increased body weight and orbitofrontal grey matter volume reduction. Psychoneuroendocrinology 2021; 126:105148. [PMID: 33513455 DOI: 10.1016/j.psyneuen.2021.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Novelty seeking (NS) has previously been identified as a personality trait that is associated with elevated body mass index (BMI) and obesity. Of note, both obesity and reduced impulse control - a core feature of NS - have previously been associated with grey matter volume (GMV) reductions in the orbitofrontal cortex (OFC). Yet, it remains unknown, if body weight-related grey matter decline in the OFC might be explained by higher levels of NS. To address this question, we studied associations between NS, BMI and brain structure in 355 healthy subjects. Brain images were pre-processed using voxel-based morphometry (VBM). BMI was calculated from self-reported height and weight. The Tridimensional Personality Questionnaire (TPQ) was used to assess NS. NS and BMI were associated positively (r = .137, p = .01) with NS being a significant predictor of BMI (B = 0.172; SE B = 0.05; ß = 0.184; p = 0.001). Significant associations between BMI and GMV specifically in the OFC (x = -44, y = 56, z = -2, t(350) = 4.34, k = 5, pFWE = 0.011) did not uphold when correcting for NS in the model. In turn, a significant negative association between NS and OFC GMV was found independent of BMI (x = -2, y = 48, z = -10, t(349) = 4.42, k = 88, pFWE = 0.008). Body mass-related grey matter decrease outside the OFC could not be attributed to NS. Our results suggest that body-weight-related orbitofrontal grey matter reduction can at least partly be linked to higher levels of NS. Given the pivotal role of the OFC in overweight as well as cognitive domains such as impulse inhibition, executive control and reward processing, its association with NS seems to provide a tenable neurobiological correlate for future research.
Collapse
Affiliation(s)
- Marius Ludwig
- Department of Psychiatry, University of Münster, Germany
| | - Maike Richter
- Department of Psychiatry, University of Münster, Germany
| | | | - Ronny Redlich
- Department of Psychiatry, University of Münster, Germany; Department of Psychology, University of Halle, Germany
| | | | - Claas Flint
- Department of Psychiatry, University of Münster, Germany; Department of Mathematics and Computer Science, University of Münster, Germany
| | | | - Katharina Koch
- Department of Psychiatry, University of Münster, Germany
| | | | | | | | | | - Harald Kugel
- Institute of Clinical Radiology, University of Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Germany; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Germany.
| |
Collapse
|
5
|
Hu Y, Ji G, Li G, Manza P, Zhang W, Wang J, Lv G, He Y, Zhang Z, Yuan K, von Deneen KM, Chen A, Cui G, Wang H, Wiers CE, Volkow ND, Nie Y, Zhang Y, Wang GJ. Brain Connectivity, and Hormonal and Behavioral Correlates of Sustained Weight Loss in Obese Patients after Laparoscopic Sleeve Gastrectomy. Cereb Cortex 2021; 31:1284-1295. [PMID: 33037819 PMCID: PMC8179510 DOI: 10.1093/cercor/bhaa294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The biological mediators that support cognitive-control and long-term weight-loss after laparoscopic sleeve gastrectomy (LSG) remain unclear. We measured peripheral appetitive hormones and brain functional-connectivity (FC) using magnetic-resonance-imaging with food cue-reactivity task in 25 obese participants at pre, 1 month, and 6 month after LSG, and compared with 30 normal weight controls. We also used diffusion-tensor-imaging to explore whether LSG increases brain structural-connectivity (SC) of regions involved in food cue-reactivity. LSG significantly decreased BMI, craving for high-calorie food cues, ghrelin, insulin, and leptin levels, and increased self-reported cognitive-control of eating behavior. LSG increased FC between the right dorsolateral prefrontal cortex (DLPFC) and the pregenual anterior cingulate cortex (pgACC) and increased SC between DLPFC and ACC at 1 month and 6 month after LSG. Reduction in BMI correlated negatively with increased FC of right DLPFC-pgACC at 1 month and with increased SC of DLPFC-ACC at 1 month and 6 month after LSG. Reduction in craving for high-calorie food cues correlated negatively with increased FC of DLPFC-pgACC at 6 month after LSG. Additionally, SC of DLPFC-ACC mediated the relationship between lower ghrelin levels and greater cognitive control. These findings provide evidence that LSG improved functional and structural connectivity in prefrontal regions, which contribute to enhanced cognitive-control and sustained weight-loss following surgery.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Ganggang Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Zhida Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Antao Chen
- Department of Psychology, Southwest University, Chongqing 400715, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Holland MA, Budday S, Li G, Shen D, Goriely A, Kuhl E. Folding drives cortical thickness variations. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2020; 229:2757-2778. [PMID: 37275766 PMCID: PMC10237175 DOI: 10.1140/epjst/e2020-000001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/27/2020] [Indexed: 06/07/2023]
Abstract
The cortical thickness is a characteristic biomarker for a wide variety of neurological disorders. While the structural organization of the cerebral cortex is tightly regulated and evolutionarily preserved, its thickness varies widely between 1.5 and 4.5 mm across the healthy adult human brain. It remains unclear whether these thickness variations are a cause or consequence of cortical development. Recent studies suggest that cortical thickness variations are primarily a result of genetic effects. Previous studies showed that a simple homogeneous bilayered system with a growing layer on an elastic substrate undergoes a unique symmetry breaking into a spatially heterogeneous system with discrete gyri and sulci. Here, we expand on that work to explore the evolution of cortical thickness variations over time to support our finding that cortical pattern formation and thickness variations can be explained - at least in part - by the physical forces that emerge during cortical folding. Strikingly, as growth progresses, the developing gyri universally thicken and the sulci thin, even in the complete absence of regional information. Using magnetic resonance images, we demonstrate that these naturally emerging thickness variations agree with the cortical folding pattern in n = 9 healthy adult human brains, in n = 564 healthy human brains ages 7-64, and in n = 73 infant brains scanned at birth, and at ages one and two. Additionally, we show that cortical organoids develop similar patterns throughout their growth. Our results suggest that genetic, geometric, and physical events during brain development are closely interrelated. Understanding regional and temporal variations in cortical thickness can provide insight into the evolution and causative factors of neurological disorders, inform the diagnosis of neurological conditions, and assess the efficacy of treatment options.
Collapse
Affiliation(s)
- Maria A. Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Silvia Budday
- Department of Mechanical Engineering, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Laparoscopic sleeve gastrectomy improves brain connectivity in obese patients. J Neurol 2020; 267:1931-1940. [DOI: 10.1007/s00415-020-09780-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
|
8
|
Li X, Zhuo C, Guo H, Du J, Wang H, Wang J, Li J, Zhao W, Li Y, Sun C, Zhang J, Yang Q, Xu Y. Mechanism differences between typical yin and typical yang personality individuals assessed by Five-Pattern Personality Inventory (FPPI): Evidence from resting-state brain functional networks. Neurosci Lett 2020; 718:134745. [PMID: 31923521 DOI: 10.1016/j.neulet.2020.134745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Most studies assessing brain-personality mechanisms have used Western personality questionnaires. However, Western personality questionnaires may not objectively reflect the personality characteristics of individuals in Eastern cultures such as China. Hence, we adopted the functional magnetic resonance imaging (fMRI) and the Chinese localized scale, FPPI, to explore the brain mechanisms differences of typical yin and typical yang personalities of individuals in China. METHODS 30 typical yin personality participants (TYI) and 34 typical yang personality participants (TYA) were enrolled according to the FPPI. The group differences of the functional brain networks among 90 specific brain regions were mapped using fMRI data and then analyzed by the conventional network metrics (CNM) and frequency subgraph mining (FSM). RESULTS The CNM and FSM differences between two typical personality groups were traced to the frontal, temporal, and parietal cortices. The yin group, reflecting the rich emotions and feelings of individuals, showed higher betweenness centrality (BCi) and nodal efficiency (Ei) values in putamen and middle frontal gyrus. The yang group, reflecting active behaviors and tendency to adapting to the changing surroundings, showed higher BCi and Ei values in precuneus, posterior cingulate gyrus, and inferior parietal lobule, brain areas in the default mode network (DMN). CONCLUSION These results supplied evidence for the neurobiological differences between typical yin and typical yang personality participants based on Chinese culture. These results also provide a new perspective to help researchers understand brain mechanism differences between yin and yang personality groups in the Chinese culture.
Collapse
Affiliation(s)
- Xiaozhen Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chuanjun Zhuo
- Department of Psychiatry and Morbidity, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China; Department of Psychiatry, Tianjin Medical University, Tianjin, China
| | - Hao Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jian Du
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junjie Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Wentao Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Chao Sun
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jingfang Zhang
- Department of Humanities and Social Science, Shanxi Medical University, Taiyuan, China
| | - Qiuli Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Department of Humanities and Social Science, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
9
|
Adrián-Ventura J, Costumero V, Parcet MA, Ávila C. Linking personality and brain anatomy: a structural MRI approach to Reinforcement Sensitivity Theory. Soc Cogn Affect Neurosci 2020; 14:329-338. [PMID: 30753654 PMCID: PMC6399605 DOI: 10.1093/scan/nsz011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
Reinforcement Sensitivity Theory (RST) proposes a widely used taxonomy of human personality linked to individual differences at both behavioral and neuropsychological levels that describe a predisposition to psychopathology. However, the body of RST research was based on animal findings, and little is known about their anatomical correspondence in humans. Here we set out to investigate MRI structural correlates (i.e. voxel-based morphometry) of the main personality dimensions proposed by the RST in a group of 400 healthy young adults who completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ). Sensitivity to punishment scores correlated positively with the gray matter volume in the amygdala, whereas sensitivity to reward scores correlated negatively with the volume in the left lateral and medial prefrontal cortex. Moreover, a negative relationship was found between the striatal volume and the reward sensitivity trait, but only for male participants. The present results support the neuropsychological basis of the RST by linking punishment and reward sensitivity to anatomical differences in limbic and frontostriatal regions, respectively. These results are interpreted based on previous literature related to externalizing and internalizing disorders, and they highlight the possible role of SPSRQ as a measure of proneness to these disorders.
Collapse
Affiliation(s)
- Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging, Jaume I University, Castellón, Spain
| | - Víctor Costumero
- Neuropsychology and Functional Neuroimaging, Jaume I University, Castellón, Spain.,Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain.,ERI Lectura, University of Valencia, Valencia, Spain
| | - Maria Antònia Parcet
- Neuropsychology and Functional Neuroimaging, Jaume I University, Castellón, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging, Jaume I University, Castellón, Spain
| |
Collapse
|
10
|
Abstract
Human personality is 30-60% heritable according to twin and adoption studies. Hundreds of genetic variants are expected to influence its complex development, but few have been identified. We used a machine learning method for genome-wide association studies (GWAS) to uncover complex genotypic-phenotypic networks and environmental interactions. The Temperament and Character Inventory (TCI) measured the self-regulatory components of personality critical for health (i.e., the character traits of self-directedness, cooperativeness, and self-transcendence). In a discovery sample of 2149 healthy Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets) regardless of phenotype. Second, we identified five clusters of people with distinct profiles of character traits regardless of genotype. Third, we found 42 SNP sets that identified 727 gene loci and were significantly associated with one or more of the character profiles. Each character profile was related to different SNP sets with distinct molecular processes and neuronal functions. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed the replicability of 95% of the 42 SNP sets in healthy Korean and German samples, as well as their associations with character. The identified SNPs explained nearly all the heritability expected for character in each sample (50 to 58%). We conclude that self-regulatory personality traits are strongly influenced by organized interactions among more than 700 genes despite variable cultures and environments. These gene sets modulate specific molecular processes in brain for intentional goal-setting, self-reflection, empathy, and episodic learning and memory.
Collapse
|
11
|
Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, Romero-Zaliz R, Hintsanen M, Cloninger KM, Garcia D, Svrakic DM, Rozsa S, Martinez M, Lyytikäinen LP, Giegling I, Kähönen M, Hernandez-Cuervo H, Seppälä I, Raitoharju E, de Erausquin GA, Raitakari O, Rujescu D, Postolache TT, Sung J, Keltikangas-Järvinen L, Lehtimäki T, Cloninger CR. Uncovering the complex genetics of human temperament. Mol Psychiatry 2020; 25:2275-2294. [PMID: 30279457 PMCID: PMC7515831 DOI: 10.1038/s41380-018-0264-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/21/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022]
Abstract
Experimental studies of learning suggest that human temperament may depend on the molecular mechanisms for associative conditioning, which are highly conserved in animals. The main genetic pathways for associative conditioning are known in experimental animals, but have not been identified in prior genome-wide association studies (GWAS) of human temperament. We used a data-driven machine learning method for GWAS to uncover the complex genotypic-phenotypic networks and environmental interactions related to human temperament. In a discovery sample of 2149 healthy Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets) regardless of phenotype. Second, we identified 3 clusters of people with distinct temperament profiles measured by the Temperament and Character Inventory regardless of genotype. Third, we found 51 SNP sets that identified 736 gene loci and were significantly associated with temperament. The identified genes were enriched in pathways activated by associative conditioning in animals, including the ERK, PI3K, and PKC pathways. 74% of the identified genes were unique to a specific temperament profile. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed the replicability of the 51 Finnish SNP sets in healthy Korean (90%) and German samples (89%), as well as their associations with temperament. The identified SNPs explained nearly all the heritability expected in each sample (37-53%) despite variable cultures and environments. We conclude that human temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term memory.
Collapse
Affiliation(s)
- Igor Zwir
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA ,grid.4489.10000000121678994Department of Computer Science, University of Granada, Granada, Spain
| | - Javier Arnedo
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA ,grid.4489.10000000121678994Department of Computer Science, University of Granada, Granada, Spain
| | - Coral Del-Val
- grid.4489.10000000121678994Department of Computer Science, University of Granada, Granada, Spain
| | - Laura Pulkki-Råback
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Bettina Konte
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Sarah S. Yang
- grid.31501.360000 0004 0470 5905Department of Epidemiology, School of Public Health, Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Rocio Romero-Zaliz
- grid.4489.10000000121678994Department of Computer Science, University of Granada, Granada, Spain
| | - Mirka Hintsanen
- grid.10858.340000 0001 0941 4873Unit of Psychology, Faculty of Education, University of Oulu, Oulu, Finland
| | | | - Danilo Garcia
- grid.8761.80000 0000 9919 9582Department of Psychology, University of Gothenburg, Gothenburg, Sweden ,grid.435885.70000 0001 0597 1381Blekinge Centre of Competence, Blekinge County Council, Karlskrona, Sweden
| | - Dragan M. Svrakic
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Sandor Rozsa
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Maribel Martinez
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Leo-Pekka Lyytikäinen
- grid.502801.e0000 0001 2314 6254Fimlab Laboratories, Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, Finnish Cardiovascular Research Center-Tampere, University of Tampere, Tampere, Finland
| | - Ina Giegling
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany ,grid.5252.00000 0004 1936 973XUniversity Clinic, Ludwig-Maximilian University, Munich, Germany
| | - Mika Kähönen
- grid.502801.e0000 0001 2314 6254Department of Clinical Physiology, Faculty of Medicine and Life Sciences, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Helena Hernandez-Cuervo
- grid.170693.a0000 0001 2353 285XDepartment of Psychiatry and Neurosurgery, University of South Florida, Tampa, FL USA
| | - Ilkka Seppälä
- grid.502801.e0000 0001 2314 6254Fimlab Laboratories, Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, Finnish Cardiovascular Research Center-Tampere, University of Tampere, Tampere, Finland
| | - Emma Raitoharju
- grid.502801.e0000 0001 2314 6254Fimlab Laboratories, Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, Finnish Cardiovascular Research Center-Tampere, University of Tampere, Tampere, Finland
| | - Gabriel A. de Erausquin
- grid.449717.80000 0004 5374 269XDepartment of Psychiatry and Neurology, Institute of Neurosciences, University of Texas Rio-Grande Valley School of Medicine, Harlingen, TX USA
| | - Olli Raitakari
- grid.410552.70000 0004 0628 215XDepartment of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Dan Rujescu
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Teodor T. Postolache
- grid.411024.20000 0001 2175 4264Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA ,Rocky Mountain Mental Illness, Research, Education and Clinical Center for Veteran Suicide Prevention, Denver, CO USA
| | - Joohon Sung
- grid.31501.360000 0004 0470 5905Department of Epidemiology, School of Public Health, Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Liisa Keltikangas-Järvinen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Terho Lehtimäki
- grid.502801.e0000 0001 2314 6254Fimlab Laboratories, Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, Finnish Cardiovascular Research Center-Tampere, University of Tampere, Tampere, Finland
| | - C. Robert Cloninger
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychological and Brain Sciences, School of Arts and Sciences, and Department of Genetics, School of Medicine, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
12
|
Cloninger CR, Cloninger KM, Zwir I, Keltikangas-Järvinen L. The complex genetics and biology of human temperament: a review of traditional concepts in relation to new molecular findings. Transl Psychiatry 2019; 9:290. [PMID: 31712636 PMCID: PMC6848211 DOI: 10.1038/s41398-019-0621-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have shown that temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term learning and memory. The results were replicated in three independent samples despite variable cultures and environments. The identified genes were enriched in pathways activated by behavioral conditioning in animals, including the two major molecular pathways for response to extracellular stimuli, the Ras-MEK-ERK and the PI3K-AKT-mTOR cascades. These pathways are activated by a wide variety of physiological and psychosocial stimuli that vary in positive and negative valence and in consequences for health and survival. Changes in these pathways are orchestrated to maintain cellular homeostasis despite changing conditions by modulating temperament and its circadian and seasonal rhythms. In this review we first consider traditional concepts of temperament in relation to the new genetic findings by examining the partial overlap of alternative measures of temperament. Then we propose a definition of temperament as the disposition of a person to learn how to behave, react emotionally, and form attachments automatically by associative conditioning. This definition provides necessary and sufficient criteria to distinguish temperament from other aspects of personality that become integrated with it across the life span. We describe the effects of specific stimuli on the molecular processes underlying temperament from functional, developmental, and evolutionary perspectives. Our new knowledge can improve communication among investigators, increase the power and efficacy of clinical trials, and improve the effectiveness of treatment of personality and its disorders.
Collapse
Affiliation(s)
- C Robert Cloninger
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- School of Arts and Sciences, Department of Psychological and Brain Sciences, and School of Medicine, Department of Genetics, Washington University, St. Louis, MO, USA.
- Anthropedia Foundation, St. Louis, MO, USA.
| | | | - Igor Zwir
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Computer Science, University of Granada, Granada, Spain
| | | |
Collapse
|
13
|
Chen J, Huang X, Liu S, Lu C, Dai Y, Yao Z, Chen Y. Disrupted topological properties of brain networks in erectile dysfunction patients owing predominantly to psychological factors: a structural and functional neuroimaging study. Andrology 2019; 8:381-391. [PMID: 31468742 DOI: 10.1111/andr.12684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Affiliation(s)
- J. Chen
- Department of Andrology Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - X. Huang
- Department of Andrology Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - S. Liu
- Department of Radiology Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - C. Lu
- Department of Radiology Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Y. Dai
- Department of Andrology Nanjing Drum Tower HospitalAffiliated Hospital of Nanjing University Medical School Nanjing China
| | - Z. Yao
- Department of Psychiatry Nanjing Brain Hospital Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Y. Chen
- Department of Andrology Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
14
|
Squarcina L, Delvecchio G, Nobile M, Mauri M, Madonna D, Bonivento C, Garzitto M, Piccin S, Molteni M, Tomasino B, Bressi C, Fabbro F, Stanley JA, Brambilla P. The Assertive Brain: Anterior Cingulate Phosphocreatine plus Creatine Levels Correlate With Self-Directedness in Healthy Adolescents. Front Psychiatry 2019; 10:763. [PMID: 31827447 PMCID: PMC6849467 DOI: 10.3389/fpsyt.2019.00763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
Despite various advances in the study of the neurobiological underpinnings of personality traits, the specific neural correlates associated with character and temperament traits are not yet fully understood. Therefore, this study aims to fill this gap by exploring the biochemical basis of personality, which is explored with the temperament and character inventory (TCI), during brain development in a sample of adolescents. Twenty-six healthy adolescents (aged between 13 and 21 years; 17 males and 9 females) with behavioral and emotional problems underwent a TCI evaluation and a 3T single-voxel proton magnetic resonance spectroscopy (1H MRS) acquisition of the anterior cingulate cortex (ACC). Absolute metabolite levels were estimated using LCModel: significant correlations between metabolite levels and selective TCI scales were identified. Specifically, phosphocreatine plus creatine (PCr+Cre) significantly correlated with self-directedness, positively, and with a self-transcendence (ST), negatively, while glycerophosphocholine plus phosphocholine (GPC+PC) and myo-inositol negatively correlated with ST. To the best of our knowledge, this is the first study reporting associations of brain metabolites with personality traits in adolescents. Therefore, our results represent a step forward for personality neuroscience within the study of biochemical systems and brain structures.
Collapse
Affiliation(s)
- Letizia Squarcina
- Department of Neurosciences and Mental Health, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maria Nobile
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Maddalena Mauri
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Domenico Madonna
- Department of Neurosciences and Mental Health, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carolina Bonivento
- Scientific Institute, IRCCS Eugenio Medea, San Vito al Tagliamento, Italy
| | - Marco Garzitto
- Scientific Institute, IRCCS Eugenio Medea, San Vito al Tagliamento, Italy
| | - Sara Piccin
- Scientific Institute, IRCCS Eugenio Medea, San Vito al Tagliamento, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Barbara Tomasino
- Scientific Institute, IRCCS Eugenio Medea, San Vito al Tagliamento, Italy
| | - Cinzia Bressi
- Department of Neurosciences and Mental Health, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franco Fabbro
- Scientific Institute, IRCCS Eugenio Medea, San Vito al Tagliamento, Italy
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
15
|
Jiang R, Calhoun VD, Zuo N, Lin D, Li J, Fan L, Qi S, Sun H, Fu Z, Song M, Jiang T, Sui J. Connectome-based individualized prediction of temperament trait scores. Neuroimage 2018; 183:366-374. [PMID: 30125712 DOI: 10.1016/j.neuroimage.2018.08.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/16/2022] Open
Abstract
Temperament consists of multi-dimensional traits that affect various domains of human life. Evidence has shown functional connectome-based predictive models are powerful predictors of cognitive abilities. Putatively, individuals' innate temperament traits may be predictable by unique patterns of brain functional connectivity (FC) as well. However, quantitative prediction for multiple temperament traits at the individual level has not yet been studied. Therefore, we were motivated to realize the individualized prediction of four temperament traits (novelty seeking [NS], harm avoidance [HA], reward dependence [RD] and persistence [PS]) using whole-brain FC. Specifically, a multivariate prediction framework integrating feature selection and sparse regression was applied to resting-state fMRI data from 360 college students, resulting in 4 connectome-based predictive models that enabled prediction of temperament scores for unseen subjects in cross-validation. More importantly, predictive models for HA and NS could be successfully generalized to two relevant personality traits for unseen individuals, i.e., neuroticism and extraversion, in an independent dataset. In four temperament trait predictions, brain connectivities that show top contributing power commonly concentrated on the hippocampus, prefrontal cortex, basal ganglia, amygdala, and cingulate gyrus. Finally, across independent datasets and multiple traits, we show person's temperament traits can be reliably predicted using functional connectivity strength within frontal-subcortical circuits, indicating that human social and behavioral performance can be characterized by specific brain connectivity profile.
Collapse
Affiliation(s)
- Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA; Dept. of Psychiatry and Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongdong Lin
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Jin Li
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shile Qi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Hailun Sun
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zening Fu
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Ming Song
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Electronic Science and Technology of China, Chengdu, 610054, China; Chinese Academy of Sciences Center for Excellence in Brain Science, Institute of Automation, Beijing, China.
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese Academy of Sciences Center for Excellence in Brain Science, Institute of Automation, Beijing, China.
| |
Collapse
|
16
|
Ellingson JM, Slutske WS, Vergés A, Littlefield AK, Statham DJ, Martin NG. A Multivariate Behavior Genetic Investigation of Dual-Systems Models of Alcohol Involvement. J Stud Alcohol Drugs 2018. [PMID: 30079878 DOI: 10.15288/jsad.2018.79.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Dual-systems models hypothesize that individuals who tend to be drawn to risky behavior and are low in self-control are at greatest risk for alcohol use disorder (AUD). Importantly, these models assume that behavioral approach tendencies and self-control are distinct. This study investigated hypotheses and assumptions central to dual-systems models. METHOD Participants were 3,509 members of a national twin registry (58% female). Structured interviews assessed alcohol use and AUD symptoms. Self-report questionnaires assessed individual differences in approach tendencies, namely for general risky behavior (sensation seeking) and substance use (positive expectancies), and behavioral control. Regression models tested nonadditive, interaction effects on alcohol involvement, as proposed by the dual-systems model. Multivariate behavior genetic models investigated the incremental validity of these interaction effects and whether approach tendencies and behavioral control explain distinct variance in alcohol involvement. RESULTS In regression models, we found interaction effects consistent with the dual-systems model for women but in the opposite direction for men. After accounting for additive main effects in behavior genetic models, however, these interaction effects played a negligible role phenotypically and genetically. Further, sensation seeking and positive expectancies explained phenotypic and genetic variance in alcohol involvement that was distinct from behavioral control. Behavioral control, however, did not explain distinct variance in alcohol involvement. CONCLUSIONS Contrary to dual-systems models, this study suggests that all of the variance in alcohol involvement explained by behavioral control is also shared with the tendency to engage in risky behavior (sensation seeking) and substance use (positive expectancies). Further, interaction effects central to dual-systems models failed to explain additional variance beyond basic main effects. Thus, more parsimonious models may better explain AUD.
Collapse
Affiliation(s)
- Jarrod M Ellingson
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri.,Department of Psychology & Neuroscience, University of Colorado, Boulder, Colorado
| | - Wendy S Slutske
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Alvaro Vergés
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri.,Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew K Littlefield
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri.,Department of Psychological Sciences, Texas Tech University, Lubbock, Texas
| | | | - Nicholas G Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
17
|
Prillwitz CC, Rüber T, Reuter M, Montag C, Weber B, Elger CE, Markett S. The salience network and human personality: Integrity of white matter tracts within anterior and posterior salience network relates to the self-directedness character trait. Brain Res 2018; 1692:66-73. [DOI: 10.1016/j.brainres.2018.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 01/26/2023]
|
18
|
Dennison MJ, Rosen ML, Sambrook KA, Jenness JL, Sheridan MA, McLaughlin KA. Differential Associations of Distinct Forms of Childhood Adversity With Neurobehavioral Measures of Reward Processing: A Developmental Pathway to Depression. Child Dev 2017; 90:e96-e113. [PMID: 29266223 DOI: 10.1111/cdev.13011] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Childhood adversity is associated with altered reward processing, but little is known about whether this varies across distinct types of adversity. In a sample of 94 children (6-19 years), we investigated whether experiences of material deprivation, emotional deprivation, and trauma have differential associations with reward-related behavior and white matter microstructure in tracts involved in reward processing. Material deprivation (food insecurity), but not emotional deprivation or trauma, was associated with poor reward performance. Adversity-related influences on the integrity of white matter microstructure in frontostriatal tracts varied across childhood adversity types, and reductions in frontostriatal white matter integrity mediated the association of food insecurity with depressive symptoms. These findings document distinct behavioral and neurodevelopmental consequences of specific forms of adversity that have implications for psychopathology risk.
Collapse
|
19
|
Beaudet G, Paizanis E, Zoratto F, Lacivita E, Leopoldo M, Freret T, Laviola G, Boulouard M, Adriani W. LP-211, a selective 5-HT7
receptor agonist, increases novelty-preference and promotes risk-prone behavior in rats. Synapse 2017; 71. [DOI: 10.1002/syn.21995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- G. Beaudet
- INSERM U1075 COMETE UNICAEN; University of Caen Normandie; Caen F-14000 France
- Istituto Superiore di Sanità; Center for Behavioral Sciences and Mental Health; Rome I-00161 Italy
| | - E. Paizanis
- INSERM U1075 COMETE UNICAEN; University of Caen Normandie; Caen F-14000 France
| | - F. Zoratto
- Istituto Superiore di Sanità; Center for Behavioral Sciences and Mental Health; Rome I-00161 Italy
| | - E. Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro,”; Bari Italy
| | - M. Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro,”; Bari Italy
- BIOFORDRUG s.r.l; Spin-off by Università degli Studi di Bari; Bari Italy
| | - T. Freret
- INSERM U1075 COMETE UNICAEN; University of Caen Normandie; Caen F-14000 France
| | - G. Laviola
- Istituto Superiore di Sanità; Center for Behavioral Sciences and Mental Health; Rome I-00161 Italy
| | - M. Boulouard
- INSERM U1075 COMETE UNICAEN; University of Caen Normandie; Caen F-14000 France
| | - W. Adriani
- Istituto Superiore di Sanità; Center for Behavioral Sciences and Mental Health; Rome I-00161 Italy
| |
Collapse
|
20
|
Bilgi MM, Simsek F, Akan ST, Aksoy B, Kitis O, Gonul AS. The Common Brain Structures Correlated with Personality Traits in Healthy Mothers and Their Daughters. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20150815033406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mustafa Melih Bilgi
- Izmir Bozyaka Training and Research Hospital, Psychiatry Clinic, SoCAT Neuroscience Research Group, Izmir - Turkey
| | - Fatma Simsek
- Izmir Karsiyaka State Hospital, Psychiatry Clinic, SoCAT Neuroscience Research Group, Izmir - Turkey
| | - Sebnem Tunay Akan
- Ege University, School of Medicine, Department of Psychiatry, SoCAT Neuroscience Research Group, Izmir - Turkey
| | - Burcu Aksoy
- Dokuz Eylul Univesity, School of Nursing, SoCAT Neuroscience Research Group, Izmir - Turkey
| | - Omer Kitis
- Ege University, School of Medicine, Department of Radiology, SoCAT Neuroscience Research Group, Izmir - Turkey
| | - Ali Saffet Gonul
- Izmir Ege School of Medicine, Department of Psychiatry, SoCAT Neuroscience Research Group, Izmir - Turkey
- Mercer University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Macon - Georgia
| |
Collapse
|
21
|
Striatum-Centered Fiber Connectivity Is Associated with the Personality Trait of Cooperativeness. PLoS One 2016; 11:e0162160. [PMID: 27755551 PMCID: PMC5068751 DOI: 10.1371/journal.pone.0162160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
Cooperativeness is an essential behavioral trait evolved to facilitate group living. Social and cognitive mechanisms involved in cooperation (e.g., motivation, reward encoding, action evaluation, and executive functions) are sub-served by the striatal-projected circuits, whose physical existence has been confirmed by animal studies, human postmortem studies, and in vivo human brain studies. The current study investigated the associations between Cooperativeness and fiber connectivities from the striatum to nine subcortical and cortical regions, including the amygdala, hippocampus, medial orbitofrontal cortex, lateral orbitofrontal cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, posterior cingulate cortex/retrosplenial cortex, dorsal cingulate cortex, and rostral cingulate cortex. Results showed that Cooperativeness was negatively correlated with fiber connectivity for the cognitive control system (from the dorsal caudate to the rostral cingulate cortex and ventrolateral prefrontal cortex), but not with fiber connectivity for the social cognitive system (e.g., connectivity with the medial prefrontal cortex and amygdala). These results partially supported Declerck et al.’s (2013) cognitive neural model of the role of cognitive control and social cognition in cooperation.
Collapse
|
22
|
Lei X, Han Z, Chen C, Bai L, Xue G, Dong Q. Sex Differences in Fiber Connection between the Striatum and Subcortical and Cortical Regions. Front Comput Neurosci 2016; 10:100. [PMID: 27721750 PMCID: PMC5034007 DOI: 10.3389/fncom.2016.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/07/2016] [Indexed: 01/31/2023] Open
Abstract
The striatum is an important subcortical structure with extensive connections to other regions of the brain. These connections are believed to play important roles in behaviors such as reward-related processes and impulse control, which show significant sex differences. However, little is known about sex differences in the striatum-projected fiber connectivity. The current study examined sex differences between 50 Chinese males and 79 Chinese females in their fiber connections between the striatum and nine selected cortical and subcortical regions. Despite overall similarities, males showed stronger fiber connections between the left caudate and rostral cingulate cortex, between the right putamen and the lateral orbitofrontal cortex, between the bilateral putamen and the ventro-lateral prefrontal cortex, and between the right caudate and the ventro-lateral prefrontal cortex, whereas females showed stronger fiber connections between the right putamen and the dorsolateral prefrontal cortex, between bilateral caudate and hippocampus, and between the left putamen and hippocampus. These findings help us to understand sex differences in the striatum-projected fiber connections and their implications for sex differences in behaviors.
Collapse
Affiliation(s)
- Xuemei Lei
- School of Psychology, Beijing Normal University Beijing, China
| | - Zhuo Han
- School of Psychology, Beijing Normal University Beijing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California Irvine, CA, USA
| | - Lu Bai
- School of Psychology, Beijing Normal University Beijing, China
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Beijing, China
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Beijing, China
| |
Collapse
|
23
|
Zacharopoulos G, Lancaster TM, Bracht T, Ihssen N, Maio GR, Linden DEJ. A Hedonism Hub in the Human Brain. Cereb Cortex 2016; 26:3921-3927. [PMID: 27473322 PMCID: PMC5028005 DOI: 10.1093/cercor/bhw197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 05/23/2016] [Indexed: 11/14/2022] Open
Abstract
Human values are abstract ideals that motivate behavior. The motivational nature of human values raises the possibility that they might be underpinned by brain structures that are particularly involved in motivated behavior and reward processing. We hypothesized that variation in subcortical hubs of the reward system and their main connecting pathway, the superolateral medial forebrain bundle (slMFB) is associated with individual value orientation. We conducted Pearson's correlation between the scores of 10 human values and the volumes of 14 subcortical structures and microstructural properties of the medial forebrain bundle in a sample of 87 participants, correcting for multiple comparisons (i.e.,190). We found a positive association between the value that people attach to hedonism and the volume of the left globus pallidus (GP).We then tested whether microstructural parameters (i.e., fractional anisotropy and myelin volume fraction) of the slMFB, which connects with the GP, are also associated to hedonism and found a significant, albeit in an uncorrected level, positive association between the myelin volume fraction within the left slMFB and hedonism scores. This is the first study to elucidate the relationship between the importance people attach to the human value of hedonism and structural variation in reward-related subcortical brain regions.
Collapse
Affiliation(s)
- G Zacharopoulos
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - T M Lancaster
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, UK
| | - T Bracht
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - N Ihssen
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, UK
| | - G R Maio
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - D E J Linden
- CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, UK.,National Centre for Mental Health, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff, UK
| |
Collapse
|
24
|
Ishii T, Sawamoto N, Tabu H, Kawashima H, Okada T, Togashi K, Takahashi R, Fukuyama H. Altered striatal circuits underlie characteristic personality traits in Parkinson's disease. J Neurol 2016; 263:1828-39. [PMID: 27334907 DOI: 10.1007/s00415-016-8206-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 11/29/2022]
Abstract
Patients with Parkinson's disease (PD) have been suggested to share personality traits characterised by low novelty-seeking and high harm-avoidance. Although a link between novelty-seeking and dopamine is hypothesised, the link is not fully supported by 6-[(18)F]fluoro-L-dopa positron emission tomography (PET) studies. Meanwhile, tractography studies with magnetic resonance imaging (MRI) link personality to the connectivity of the striatum in healthy subjects. Here, we investigated neurochemical and anatomical correlates of characteristic personality traits in PD. Sixteen PD patients and 28 healthy controls were assessed using the Temperament and Character Inventory. All patients and 17 randomly selected controls were scanned with 2β-carbomethoxy-3β-(4-fluorophenyl)-[N-(11)C-methyl]tropane ([(11)C]CFT) PET to measure striatal dopamine transporter availability. All subjects were scanned with MRI to evaluate the connectivity of the striatum using probabilistic tractography. PET findings revealed no correlation of novelty-seeking and harm-avoidance with [(11)C]CFT uptake in patients or controls. Novelty-seeking correlated positively with the connectivity strength of the striatum with the hippocampus and amygdala in both patients and controls. Harm-avoidance and the fibre connectivity strength of the striatum including ventral area with the amygdala correlated negatively in patients and positively in controls, which differed significantly between the groups. Our data support the notion that the fibre connectivity of the striatum with limbic and frontal areas underlies the personality profile. Furthermore, our findings suggest that higher harm-avoidance in PD is linked to alterations of the network, including the nucleus accumbens and amygdala.
Collapse
Affiliation(s)
- Toru Ishii
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobukatsu Sawamoto
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Department of Neurology, Kyoto University Graduate School of Medicine, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Department of Human Health Sciences, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hayato Tabu
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidekazu Kawashima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohisa Okada
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
25
|
Galindo L, Pastoriza F, Bergé D, Mané A, Picado M, Bulbena A, Robledo P, Pérez V, Vilarroya O, Cloninger CR. Association between neurological soft signs, temperament and character in patients with schizophrenia and non-psychotic relatives. PeerJ 2016; 4:e1651. [PMID: 27168955 PMCID: PMC4860298 DOI: 10.7717/peerj.1651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/12/2016] [Indexed: 11/26/2022] Open
Abstract
The heritability of schizophrenia and most personality traits has been well established, but the role of personality in susceptibility to schizophrenia remains uncertain. The aim of this study was to test for an association between personality traits and Neurological Soft Signs (NSS), a well-known biological marker of schizophrenia, in non-psychotic relatives of patients with schizophrenia. For this purpose, we evaluated the NSS scale and personality measured by the Temperament and Character inventory (TCI-R) in three groups of subjects: 29 patients with schizophrenia, 24 unaffected relatives and 37 controls. The results showed that patients with schizophrenia were more asocial (higher harm avoidance and lower reward dependence), more perseverative (higher persistence), and more schizotypal (lower self-directedness and cooperativeness, higher self-transcendence). The unaffected relatives showed higher harm avoidance, lower self-directedness and cooperativeness than the healthy controls. Higher NSS scores and sub-scores were found in patients and non-psychotic relatives compared with the controls. Among all the patients, total NSS scores were positively correlated with harm avoidance but negatively correlated with novelty seeking and persistence. Total NSS were also correlated with low scores on self-directedness and cooperativeness, which are indicators of personality disorder. Our results show that susceptibility to NSS and to schizophrenia are both related to individual differences in the temperament and character features in non-psychotic relatives of patients with schizophrenia. High harm avoidance, low persistence, low self-directedness and low cooperativeness contribute to both the risk of NSS and schizophrenia. These findings highlight the value of using both assessments to study high risk populations.
Collapse
Affiliation(s)
- Liliana Galindo
- Neuropsychiatry and Addiction Institute, Parc de Salut Mar, Barcelona, Spain; Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Spain; Red de Trastornos Adictivos, RETIC, Spain
| | - Francisco Pastoriza
- Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Daniel Bergé
- Neuropsychiatry and Addiction Institute, Parc de Salut Mar, Barcelona, Spain; Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Spain; Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Mané
- Neuropsychiatry and Addiction Institute, Parc de Salut Mar, Barcelona, Spain; Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Spain
| | - Marisol Picado
- Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM) , Barcelona , Spain
| | - Antonio Bulbena
- Neuropsychiatry and Addiction Institute, Parc de Salut Mar, Barcelona, Spain; Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Spain
| | - Patricia Robledo
- Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Victor Pérez
- Neuropsychiatry and Addiction Institute, Parc de Salut Mar, Barcelona, Spain; Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Spain
| | - Oscar Vilarroya
- Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autónoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Claude Robert Cloninger
- Department of Psychiatry and Genetics, Washington University in St. Louis , Saint Louis, MO , United States
| |
Collapse
|
26
|
Wang Y, Liu WH, Li Z, Wei XH, Jiang XQ, Geng FL, Zou LQ, Lui SSY, Cheung EFC, Pantelis C, Chan RCK. Altered corticostriatal functional connectivity in individuals with high social anhedonia. Psychol Med 2016; 46:125-135. [PMID: 26315390 DOI: 10.1017/s0033291715001592] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulation of the striatum and altered corticostriatal connectivity have been associated with psychotic disorders. Social anhedonia has been identified as a predictor for the development of schizophrenia spectrum disorders. The aim of the present study was to examine corticostriatal functional connectivity in individuals with high social anhedonia. METHOD Twenty-one participants with high social anhedonia score and 30 with low social anhedonia score measured by the Chinese version of the Revised Social Anhedonia Scale were recruited from university undergraduates (age 17-21 years) to undergo resting-state functional MRI scans. Six subdivisions of the striatum in each hemisphere were defined as seeds. Voxel-wise functional connectivity analyses were conducted between each seed and the whole brain voxels, followed by repeated-measures ANOVA for the group effect. RESULTS Participants with high social anhedonia showed hyper-connectivity between the ventral striatum and the anterior cingulate cortex and the insula, and between the dorsal striatum and the motor cortex. Hypo-connectivity in participants with high social anhedonia was also observed between the ventral striatum and the posterior cingulate cortex. Partial correlation analyses further showed that the functional connectivity between the ventral striatum and the prefrontal cortex was associated with pleasure experience and emotional suppression. CONCLUSIONS Our findings suggest that altered corticostriatal connectivity can be found in participants with high levels of social anhedonia. Since social anhedonia has been considered a predictor for schizophrenia spectrum disorders, our results may provide novel evidence on the early changes in brain functional connectivity in at-risk individuals.
Collapse
Affiliation(s)
- Y Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health,Institute of Psychology,Chinese Academy of Sciences,Beijing,China
| | - W-H Liu
- School of Health Management,Guangzhou Medical University,Guangzhou,China
| | - Z Li
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health,Institute of Psychology,Chinese Academy of Sciences,Beijing,China
| | - X-H Wei
- Department of Radiology,Guangzhou First People's Hospital,Guangzhou,China
| | - X-Q Jiang
- Department of Radiology,Guangzhou First People's Hospital,Guangzhou,China
| | - F-L Geng
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health,Institute of Psychology,Chinese Academy of Sciences,Beijing,China
| | - L-Q Zou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health,Institute of Psychology,Chinese Academy of Sciences,Beijing,China
| | - S S Y Lui
- Castle Peak Hospital,Hong Kong Special Administrative Region,China
| | - E F C Cheung
- Castle Peak Hospital,Hong Kong Special Administrative Region,China
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry,University of Melbourne and Melbourne Health,Melbourne,Victoria,Australia
| | - R C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health,Institute of Psychology,Chinese Academy of Sciences,Beijing,China
| |
Collapse
|
27
|
Mincic AM. Neuroanatomical correlates of negative emotionality-related traits: A systematic review and meta-analysis. Neuropsychologia 2015; 77:97-118. [DOI: 10.1016/j.neuropsychologia.2015.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/15/2015] [Accepted: 08/06/2015] [Indexed: 01/07/2023]
|
28
|
The cortical surface area of the insula mediates the effect of DBH rs7040170 on novelty seeking. Neuroimage 2015; 117:184-90. [DOI: 10.1016/j.neuroimage.2015.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/28/2015] [Accepted: 05/14/2015] [Indexed: 01/02/2023] Open
|
29
|
Jabbi M, Chen Q, Turner N, Kohn P, White M, Kippenhan JS, Dickinson D, Kolachana B, Mattay V, Weinberger DR, Berman KF. Variation in the Williams syndrome GTF2I gene and anxiety proneness interactively affect prefrontal cortical response to aversive stimuli. Transl Psychiatry 2015; 5:e622. [PMID: 26285132 PMCID: PMC4564573 DOI: 10.1038/tp.2015.98] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022] Open
Abstract
Characterizing the molecular mechanisms underlying the heritability of complex behavioral traits such as human anxiety remains a challenging endeavor for behavioral neuroscience. Copy-number variation (CNV) in the general transcription factor gene, GTF2I, located in the 7q11.23 chromosomal region that is hemideleted in Williams syndrome and duplicated in the 7q11.23 duplication syndrome (Dup7), is associated with gene-dose-dependent anxiety in mouse models and in both Williams syndrome and Dup7. Because of this recent preclinical and clinical identification of a genetic influence on anxiety, we examined whether sequence variation in GTF2I, specifically the single-nucleotide polymorphism rs2527367, interacts with trait and state anxiety to collectively impact neural response to anxiety-laden social stimuli. Two hundred and sixty healthy adults completed the Tridimensional Personality Questionnaire Harm Avoidance (HA) subscale, a trait measure of anxiety proneness, and underwent functional magnetic resonance imaging (fMRI) while matching aversive (fearful or angry) facial identity. We found an interaction between GTF2I allelic variations and HA that affects brain response: in individuals homozygous for the major allele, there was no correlation between HA and whole-brain response to aversive cues, whereas in heterozygotes and individuals homozygous for the minor allele, there was a positive correlation between HA sub-scores and a selective dorsolateral prefrontal cortex (DLPFC) responsivity during the processing of aversive stimuli. These results demonstrate that sequence variation in the GTF2I gene influences the relationship between trait anxiety and brain response to aversive social cues in healthy individuals, supporting a role for this neurogenetic mechanism in anxiety.
Collapse
Affiliation(s)
- M Jabbi
- Section on Integrative Neuroimaging, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA,Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA,Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 9000 Rockville Pike, B10, Room 3C113, Bethesda, MD 20892, USA. E-mail: or
| | - Q Chen
- The Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - N Turner
- Section on Integrative Neuroimaging, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA,Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - P Kohn
- Section on Integrative Neuroimaging, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA,Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - M White
- The Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - J S Kippenhan
- Section on Integrative Neuroimaging, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA,Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - D Dickinson
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - B Kolachana
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - V Mattay
- The Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - D R Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA,Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genomic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - K F Berman
- Section on Integrative Neuroimaging, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA,Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA,Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 9000 Rockville Pike, B10, Room 3C113, Bethesda, MD 20892, USA. E-mail: or
| |
Collapse
|
30
|
Díaz-Santos M, Cao B, Yazdanbakhsh A, Norton DJ, Neargarder S, Cronin-Golomb A. Perceptual, cognitive, and personality rigidity in Parkinson's disease. Neuropsychologia 2015; 69:183-93. [PMID: 25640973 PMCID: PMC4344854 DOI: 10.1016/j.neuropsychologia.2015.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is associated with motor and non-motor rigidity symptoms (e.g., cognitive and personality). The question is raised as to whether rigidity in PD also extends to perception, and if so, whether perceptual, cognitive, and personality rigidities are correlated. Bistable stimuli were presented to 28 non-demented individuals with PD and 26 normal control adults (NC). Necker cube perception and binocular rivalry were examined during passive viewing, and the Necker cube was additionally used for two volitional-control conditions: Hold one percept in front, and Switch between the two percepts. Relative to passive viewing, PD were significantly less able than NC to reduce dominance durations in the Switch condition, indicating perceptual rigidity. Tests of cognitive flexibility and a personality questionnaire were administered to explore the association with perceptual rigidity. Cognitive flexibility was not correlated with perceptual rigidity for either group. Personality (novelty seeking) correlated with dominance durations on Necker passive viewing for PD but not NC. The results indicate the presence in mild-moderate PD of perceptual rigidity and suggest shared neural substrates with novelty seeking, but functional divergence from those supporting cognitive flexibility. The possibility is raised that perceptual rigidity may be a harbinger of cognitive inflexibility later in the disease course.
Collapse
Affiliation(s)
- Mirella Díaz-Santos
- Department of Psychological and Brain Sciences, Boston University, 648 Beacon Street, 2nd floor, Boston, MA 02215, USA.
| | - Bo Cao
- Center for Computational Neuroscience and Neural Technology, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | - Arash Yazdanbakhsh
- Center for Computational Neuroscience and Neural Technology, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | - Daniel J Norton
- Department of Psychological and Brain Sciences, Boston University, 648 Beacon Street, 2nd floor, Boston, MA 02215, USA.
| | - Sandy Neargarder
- Department of Psychological and Brain Sciences, Boston University, 648 Beacon Street, 2nd floor, Boston, MA 02215, USA; Department of Psychology, Hart Hall, Bridgewater State University, Bridgewater, MA 02325, USA.
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, 648 Beacon Street, 2nd floor, Boston, MA 02215, USA.
| |
Collapse
|
31
|
Kyeong S, Kim E, Park HJ, Hwang DU. Functional network organizations of two contrasting temperament groups in dimensions of novelty seeking and harm avoidance. Brain Res 2014; 1575:33-44. [DOI: 10.1016/j.brainres.2014.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/23/2014] [Indexed: 01/21/2023]
|