1
|
Barrio-Arranz G, de Luis-García R, Tristán-Vega A, Martín-Fernández M, Aja-Fernández S. Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach. PLoS One 2015; 10:e0137905. [PMID: 26457415 PMCID: PMC4601730 DOI: 10.1371/journal.pone.0137905] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/23/2015] [Indexed: 11/19/2022] Open
Abstract
Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique. Second, the consequences of simultaneous changes in multiple parameters are analyzed: number of gradient directions, b-value and voxel resolution. Results indicate that the FA is most affected by changes in the number of gradients and voxel resolution, while MD is specially influenced by variations in the b-value. Even if the choice of a tractography algorithm has an effect on the numerical values of the final scalar measures, the evolution of these measures when acquisition parameters are modified is parallel.
Collapse
Affiliation(s)
- Gonzalo Barrio-Arranz
- Laboratorio de Procesado de Imagen, Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática/ETSI Telecomunicación, Universidad de Valladolid, Valladolid, España
| | - Rodrigo de Luis-García
- Laboratorio de Procesado de Imagen, Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática/ETSI Telecomunicación, Universidad de Valladolid, Valladolid, España
| | - Antonio Tristán-Vega
- Laboratorio de Procesado de Imagen, Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática/ETSI Telecomunicación, Universidad de Valladolid, Valladolid, España
| | - Marcos Martín-Fernández
- Laboratorio de Procesado de Imagen, Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática/ETSI Telecomunicación, Universidad de Valladolid, Valladolid, España
| | - Santiago Aja-Fernández
- Laboratorio de Procesado de Imagen, Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática/ETSI Telecomunicación, Universidad de Valladolid, Valladolid, España
| |
Collapse
|
2
|
de Luis-García R, Cabús-Piñol G, Imaz-Roncero C, Argibay-Quiñones D, Barrio-Arranz G, Aja-Fernández S, Alberola-López C. Attention deficit/hyperactivity disorder and medication with stimulants in young children: a DTI study. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:176-84. [PMID: 25445066 DOI: 10.1016/j.pnpbp.2014.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
The relationship between attention deficit/hyperactivity disorder (ADHD) and white matter connectivity has not been well established yet, specially for children under 10 years of age. In addition, the effects of treatment on brain structure have not been sufficiently explored from a Diffusion Tensor Imaging (DTI) perspective. In this study, the influence of treatment with methylphenidate in the white matter of children with ADHD was investigated using two different and complementary DTI analysis methods: Tract-Based Spatial Statistics (TBSS) and a robust tractography selection method. No significant differences were found in Fractional Anisotropy (FA) between medicated, drug-naïve patients and healthy controls, but a reduced Mean Diffusivity (MD) was found in ADHD patients under treatment with respect to both healthy controls and drug-naïve ADHD patients. Also, correlations were found between MD increases and performance indicators of ADHD. These findings may help elucidate the nature of white matter alterations in ADHD, their relationship with symptoms and the effects of treatment with psychostimulants.
Collapse
|
3
|
Elhabian S, Gur Y, Vachet C, Piven J, Styner M, Leppert IR, Pike GB, Gerig G. Subject-Motion Correction in HARDI Acquisitions: Choices and Consequences. Front Neurol 2014; 5:240. [PMID: 25538672 PMCID: PMC4260507 DOI: 10.3389/fneur.2014.00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 11/05/2014] [Indexed: 11/16/2022] Open
Abstract
Diffusion-weighted imaging (DWI) is known to be prone to artifacts related to motion originating from subject movement, cardiac pulsation, and breathing, but also to mechanical issues such as table vibrations. Given the necessity for rigorous quality control and motion correction, users are often left to use simple heuristics to select correction schemes, which involves simple qualitative viewing of the set of DWI data, or the selection of transformation parameter thresholds for detection of motion outliers. The scientific community offers strong theoretical and experimental work on noise reduction and orientation distribution function (ODF) reconstruction techniques for HARDI data, where post-acquisition motion correction is widely performed, e.g., using the open-source DTIprep software (1), FSL (the FMRIB Software Library) (2), or TORTOISE (3). Nonetheless, effects and consequences of the selection of motion correction schemes on the final analysis, and the eventual risk of introducing confounding factors when comparing populations, are much less known and far beyond simple intuitive guessing. Hence, standard users lack clear guidelines and recommendations in practical settings. This paper reports a comprehensive evaluation framework to systematically assess the outcome of different motion correction choices commonly used by the scientific community on different DWI-derived measures. We make use of human brain HARDI data from a well-controlled motion experiment to simulate various degrees of motion corruption and noise contamination. Choices for correction include exclusion/scrubbing or registration of motion corrupted directions with different choices of interpolation, as well as the option of interpolation of all directions. The comparative evaluation is based on a study of the impact of motion correction using four metrics that quantify (1) similarity of fiber orientation distribution functions (fODFs), (2) deviation of local fiber orientations, (3) global brain connectivity via graph diffusion distance (GDD), and (4) the reproducibility of prominent and anatomically defined fiber tracts. Effects of various motion correction choices are systematically explored and illustrated, leading to a general conclusion of discouraging users from setting ad hoc thresholds on the estimated motion parameters beyond which volumes are claimed to be corrupted.
Collapse
Affiliation(s)
- Shireen Elhabian
- Scientific Computing and Imaging Institute , Salt Lake City, UT , USA ; Faculty of Computers and Information, Cairo University , Cairo , Egypt
| | - Yaniv Gur
- IBM Almaden Research Center , San Jose, CA , USA
| | - Clement Vachet
- Scientific Computing and Imaging Institute , Salt Lake City, UT , USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina , Chapel Hill, NC , USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina , Chapel Hill, NC , USA ; Department of Computer Science, University of North Carolina , Chapel Hill, NC , USA
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute , Montreal, QC , Canada
| | - G Bruce Pike
- Department of Neurology and Neurosurgery, Montreal Neurological Institute , Montreal, QC , Canada ; Department of Radiology, University of Calgary , Calgary, AB , Canada
| | - Guido Gerig
- Scientific Computing and Imaging Institute , Salt Lake City, UT , USA
| |
Collapse
|