Ertl M, Zu Eulenburg P, Woller M, Mayadali Ü, Boegle R, Dieterich M. Vestibular mapping of the naturalistic head-centered motion spectrum.
J Vestib Res 2023;
33:299-312. [PMID:
37458057 DOI:
10.3233/ves-210121]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND
Naturalistic head accelerations can be used to elicit vestibular evoked potentials (VestEPs). These potentials allow for analysis of cortical vestibular processing and its multi-sensory integration with a high temporal resolution.
METHODS
We report the results of two experiments in which we compared the differential VestEPs elicited by randomized translations, rotations, and tilts in healthy subjects on a motion platform.
RESULTS
An event-related potential (ERP) analysis revealed that established VestEPs were verifiable in all three acceleration domains (translations, rotations, tilts). A further analysis of the VestEPs showed a significant correlation between rotation axes (yaw, pitch, roll) and the amplitude of the evoked potentials. We found increased amplitudes for rotations in the roll compared to the pitch and yaw plane. A distributed source localization analysis showed that the activity in the cingulate sulcus visual (CSv) area best explained direction-dependent amplitude modulations of the VestEPs, but that the same cortical network (posterior insular cortex, CSv) is involved in processing vestibular information, regardless of the motion direction.
CONCLUSION
The results provide evidence for an anisotropic, direction-dependent processing of vestibular input by cortical structures. The data also suggest that area CSv plays an integral role in ego-motion perception and interpretation of spatial features such as acceleration direction and intensity.
Collapse