1
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
2
|
Brain potential responses involved in decision-making in weightlessness. Sci Rep 2022; 12:12992. [PMID: 35906468 PMCID: PMC9338282 DOI: 10.1038/s41598-022-17234-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
The brain is essential to human adaptation to any environment including space. We examined astronauts’ brain function through their electrical EEG brain potential responses related to their decision of executing a docking task in the same virtual scenario in Weightlessness and on Earth before and after the space stay of 6 months duration. Astronauts exhibited a P300 component in which amplitude decreased during, and recovered after, their microgravity stay. This effect is discussed as a post-value-based decision-making closing mechanism; The P300 amplitude decrease in weightlessness is suggested as an emotional stimuli valence reweighting during which orbitofrontal BA10 would play a major role. Additionally, when differentiating the bad and the good docks on Earth and in Weightlessness and keeping in mind that astronauts were instantaneously informed through a visual cue of their good or bad performance, it was observed that the good dockings resulted in earlier voltage redistribution over the scalp (in the 150–250 ms period after the docking) than the bad dockings (in the 250–400 ms) in Weightlessness. These results suggest that in Weightlessness the knowledge of positive or negative valence events is processed differently than on Earth.
Collapse
|
3
|
Zarka D, Cebolla AM, Cheron G. [Mirror neurons, neural substrate of action understanding?]. Encephale 2021; 48:83-91. [PMID: 34625217 DOI: 10.1016/j.encep.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/12/2021] [Indexed: 10/20/2022]
Abstract
In 1992, the Laboratory of Human Physiology at the University of Parma (Italy) publish a study describing "mirror" neurons in the macaque that activate both when the monkey performs an action and when it observes an experimenter performing the same action. The research team behind this discovery postulates that the mirror neurons system is the neural basis of our ability to understand the actions of others, through the motor mapping of the observed action on the observer's motor repertory (direct-matching hypothesis). Nevertheless, this conception met serious criticism. These critics attempt to relativize their function by placing them within a network of neurocognitive and sensory interdependencies. In short, the essential characteristic of these neurons is to combine the processing of sensory information, especially visual, with that of motor information. Their elementary function would be to provide a motor simulation of the observed action, based on visual information from it. They can contribute, with other non-mirror areas, to the identification/prediction of the action goal and to the interpretation of the intention of the actor performing it. Studying the connectivity and high frequency synchronizations of the different brain areas involved in action observation would likely provide important information about the dynamic contribution of mirror neurons to "action understanding". The aim of this review is to provide an up-to-date analysis of the scientific evidence related to mirror neurons and their elementary functions, as well as to shed light on the contribution of these neurons to our ability to interpret and understand others' actions.
Collapse
Affiliation(s)
- D Zarka
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique; Unité de Recherche en Sciences de l'Ostéopathie, faculté des Sciences de la Motricité, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique.
| | - A M Cebolla
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique
| | - G Cheron
- Faculté des Sciences de la Motricité, laboratoire de neurophysiologie et de biomécanique du mouvement, université Libre de Bruxelles, CP640, 808, route de Lennik, 1070 Brussels, Belgique; Laboratoire d'électrophysiologie, université de Mons, 7000 Mons, Belgique
| |
Collapse
|
4
|
Long-term effects of concussion on relevancy-based modulation of somatosensory-evoked potentials. Clin Neurophysiol 2021; 132:2431-2439. [PMID: 34454270 DOI: 10.1016/j.clinph.2021.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The purpose of this investigation was to better understand the effects of concussions on the ability to selectively up or down-regulate incoming somatosensory information based on relevance. METHODS Median nerve somatosensory-evoked potentials (SEPs) were elicited from electrical stimulation and recorded from scalp electrodes while participants completed tasks that altered the relevance of specific somatosensory information being conveyed along the stimulated nerve. RESULTS Within the control group, SEP amplitudes for task-relevant somatosensory information were significantly greater than for non-relevant somatosensory information at the earliest cortical processing potentials (N20-P27). Alternatively, the concussion history group showed similar SEP amplitudes for all conditions at early processing potentials, however a pattern similar to controls emerged later in the processing stream (P100) where both movement-related gating and facilitation of task-relevant information were present. CONCLUSIONS Previously concussed participants demonstrated impairments in the ability to up-regulate relevant somatosensory information at early processing stages. These effects appear to be chronic, as this pattern was observed on average several years after participants' most recent concussion. SIGNIFICANCE Given the role of the prefrontal cortex in relevancy-based facilitation during movement-related gating, these findings lend support to the notion that this brain area may be particularly vulnerable to concussive forces.
Collapse
|
5
|
Ono Y, Hirosawa T, Hasegawa C, Ikeda T, Kudo K, Naito N, Yoshimura Y, Kikuchi M. Influence of oxytocin administration on somatosensory evoked magnetic fields induced by median nerve stimulation during hand action observation in healthy male volunteers. PLoS One 2021; 16:e0249167. [PMID: 33788881 PMCID: PMC8011787 DOI: 10.1371/journal.pone.0249167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Watching another person’s hand movement modulates somatosensory evoked magnetic fields (SEFs). Assuming that the mirror neuron system may have a role in this phenomenon, oxytocin should enhance these effects. This single-blinded, placebo-controlled, crossover study therefore used magnetoencephalography (MEG) to investigate SEFs following electrical stimulation of the right median nerve in 20 healthy male participants during hand movement observation, which were initially presented as static images followed by moving images. The participants were randomly assigned to receive either oxytocin or saline during the first trial, with the treatment being reversed during a second trial. Log-transformed ratios of the N20 and N30 amplitudes were calculated and compared between moving and static images observations. Phase locking (calculated using intertrial phase coherence) of brain oscillations was also analyzed to evaluate alpha, beta and gamma rhythm changes after oxytocin administration. Log N30 ratios showed no significant changes after placebo administration but showed a decreasing tendency (albeit not significant) after placebo administration, which may suggest mirror neuron system involvement. In contrast, log N20 ratios were increased after placebo administration, but showed no significant change after oxytocin administration. Interestingly, the gamma band activity around N20 increased after placebo administration, suggesting that oxytocin exerted an analgesic effect on median nerve stimulation, and inhibited the gamma band increase. Oxytocin might therefore modulate not only the mirror neuron system, but also the sensory processing associated with median nerve stimulation.
Collapse
Affiliation(s)
- Yasuki Ono
- Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | | | - Nobushige Naito
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Cebolla AM, Cheron G. Understanding Neural Oscillations in the Human Brain: From Movement to Consciousness and Vice Versa. Front Psychol 2019; 10:1930. [PMID: 31507490 PMCID: PMC6718699 DOI: 10.3389/fpsyg.2019.01930] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons-Hainaut, Mons, Belgium
| |
Collapse
|
7
|
De Martino E, Seminowicz DA, Schabrun SM, Petrini L, Graven-Nielsen T. High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain. Neuroimage 2019; 186:93-102. [DOI: 10.1016/j.neuroimage.2018.10.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022] Open
|
8
|
Experimental muscle hyperalgesia modulates sensorimotor cortical excitability, which is partially altered by unaccustomed exercise. Pain 2018; 159:2493-2502. [DOI: 10.1097/j.pain.0000000000001351] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Macerollo A, Brown MJ, Kilner JM, Chen R. Neurophysiological Changes Measured Using Somatosensory Evoked Potentials. Trends Neurosci 2018; 41:294-310. [DOI: 10.1016/j.tins.2018.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023]
|
10
|
Leroy A, Petit G, Zarka D, Cebolla A, Palmero-Soler E, Strul J, Dan B, Verbanck P, Cheron G. EEG Dynamics and Neural Generators in Implicit Navigational Image Processing in Adults with ADHD. Neuroscience 2018; 373:92-105. [DOI: 10.1016/j.neuroscience.2018.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/12/2023]
|
11
|
Inuggi A, Bassolino M, Tacchino C, Pippo V, Bergamaschi V, Campus C, De Franchis V, Pozzo T, Moretti P. Ipsilesional functional recruitment within lower mu band in children with unilateral cerebral palsy, an event-related desynchronization study. Exp Brain Res 2017; 236:517-527. [DOI: 10.1007/s00221-017-5149-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
|
12
|
Michels L, Muthuraman M, Anwar AR, Kollias S, Leh SE, Riese F, Unschuld PG, Siniatchkin M, Gietl AF, Hock C. Changes of Functional and Directed Resting-State Connectivity Are Associated with Neuronal Oscillations, ApoE Genotype and Amyloid Deposition in Mild Cognitive Impairment. Front Aging Neurosci 2017; 9:304. [PMID: 29081745 PMCID: PMC5646353 DOI: 10.3389/fnagi.2017.00304] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 09/04/2017] [Indexed: 01/03/2023] Open
Abstract
The assessment of effects associated with cognitive impairment using electroencephalography (EEG) power mapping allows the visualization of frequency-band specific local changes in oscillatory activity. In contrast, measures of coherence and dynamic source synchronization allow for the study of functional and effective connectivity, respectively. Yet, these measures have rarely been assessed in parallel in the context of mild cognitive impairment (MCI) and furthermore it has not been examined if they are related to risk factors of Alzheimer’s disease (AD) such as amyloid deposition and apolipoprotein ε4 (ApoE) allele occurrence. Here, we investigated functional and directed connectivities with Renormalized Partial Directed Coherence (RPDC) in 17 healthy controls (HC) and 17 participants with MCI. Participants underwent ApoE-genotyping and Pittsburgh compound B positron emission tomography (PiB-PET) to assess amyloid deposition. We observed lower spectral source power in MCI in the alpha and beta bands. Coherence was stronger in HC than MCI across different neuronal sources in the delta, theta, alpha, beta and gamma bands. The directed coherence analysis indicated lower information flow between fronto-temporal (including the hippocampus) sources and unidirectional connectivity in MCI. In MCI, alpha and beta RPDC showed an inverse correlation to age and gender; global amyloid deposition was inversely correlated to alpha coherence, RPDC and beta and gamma coherence. Furthermore, the ApoE status was negatively correlated to alpha coherence and RPDC, beta RPDC and gamma coherence. A classification analysis of cognitive state revealed the highest accuracy using EEG power, coherence and RPDC as input. For this small but statistically robust (Bayesian power analyses) sample, our results suggest that resting EEG related functional and directed connectivities are sensitive to the cognitive state and are linked to ApoE and amyloid burden.
Collapse
Affiliation(s)
- Lars Michels
- Clinic of Neuroradiology, University Hospital of ZurichZurich, Switzerland.,MR-Center, University Children's Hospital ZurichZurich, Switzerland
| | - Muthuraman Muthuraman
- Clinic for Neurology, University of KielKiel, Germany.,Clinic for Neurology, University of MainzMainz, Germany
| | - Abdul R Anwar
- Clinic for Neurology, University of KielKiel, Germany
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital of ZurichZurich, Switzerland
| | - Sandra E Leh
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| | - Florian Riese
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| | - Paul G Unschuld
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, Christian-Albrechts-University of KielKiel, Germany
| | - Anton F Gietl
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| | - Christoph Hock
- Division of Psychiatry Research and Psychogeriatric Medicine, University of ZurichZurich, Switzerland
| |
Collapse
|
13
|
Cheron G, Márquez-Ruiz J, Dan B. Oscillations, Timing, Plasticity, and Learning in the Cerebellum. THE CEREBELLUM 2016; 15:122-38. [PMID: 25808751 DOI: 10.1007/s12311-015-0665-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000, Mons, Belgium. .,Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.
| | - J Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - B Dan
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, CP640, 1070, Brussels, Belgium.,Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020, Brussels, Belgium
| |
Collapse
|
14
|
Cheron G. How to Measure the Psychological "Flow"? A Neuroscience Perspective. Front Psychol 2016; 7:1823. [PMID: 27999551 PMCID: PMC5138413 DOI: 10.3389/fpsyg.2016.01823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de BruxellesBrussels, Belgium; Laboratory of Electrophysiology, Université de Mons-HainautMons, Belgium
| |
Collapse
|
15
|
Cebolla AM, Petieau M, Dan B, Balazs L, McIntyre J, Cheron G. "Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness". Sci Rep 2016; 6:37824. [PMID: 27883068 PMCID: PMC5121637 DOI: 10.1038/srep37824] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022] Open
Abstract
Human brain adaptation in weightlessness follows the necessity to reshape the dynamic integration of the neural information acquired in the new environment. This basic aspect was here studied by the electroencephalogram (EEG) dynamics where oscillatory modulations were measured during a visuo-attentional state preceding a visuo-motor docking task. Astronauts in microgravity conducted the experiment in free-floating aboard the International Space Station, before the space flight and afterwards. We observed stronger power decrease (~ERD: event related desynchronization) of the ~10 Hz oscillation from the occipital-parietal (alpha ERD) to the central areas (mu ERD). Inverse source modelling of the stronger alpha ERD revealed a shift from the posterior cingulate cortex (BA31, from the default mode network) on Earth to the precentral cortex (BA4, primary motor cortex) in weightlessness. We also observed significant contribution of the vestibular network (BA40, BA32, and BA39) and cerebellum (lobule V, VI). We suggest that due to the high demands for the continuous readjustment of an appropriate body posture in free-floating, this visuo-attentional state required more contribution from the motor cortex. The cerebellum and the vestibular network involvement in weightlessness might support the correction signals processing necessary for postural stabilization, and the increased demand to integrate incongruent vestibular information.
Collapse
Affiliation(s)
- A. M. Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - M. Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - B. Dan
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Inkendaal Rehabilitation Hospital, 1602 Vlezenbeek, Belgium
| | - L. Balazs
- Institute for Psychology of the Hungarian Academy of Sciences, Department of Experimental Psychology, 1132 Budapest, Hungary
| | - J. McIntyre
- LNRS/CNRS-Université René Descartes Paris V, 75006, Paris, France
| | - G. Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium
| |
Collapse
|
16
|
Cheron G, Petit G, Cheron J, Leroy A, Cebolla A, Cevallos C, Petieau M, Hoellinger T, Zarka D, Clarinval AM, Dan B. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance. Front Psychol 2016; 7:246. [PMID: 26955362 PMCID: PMC4768321 DOI: 10.3389/fpsyg.2016.00246] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/08/2016] [Indexed: 01/20/2023] Open
Abstract
Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium; Laboratory of Electrophysiology, Université de Mons-HainautMons, Belgium
| | - Géraldine Petit
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Julian Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium; Haute Ecole CondorcetCharleroi, Belgium
| | - Anita Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Carlos Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Thomas Hoellinger
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Anne-Marie Clarinval
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de Bruxelles Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium; Inkendaal Rehabilitation HospitalVlezembeek, Belgium
| |
Collapse
|
17
|
Brown MJ, Staines WR. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input. Neuroimage 2016; 127:97-109. [DOI: 10.1016/j.neuroimage.2015.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
|
18
|
Kang SY, Ma HI. N30 Somatosensory Evoked Potential Is Negatively Correlated with Motor Function in Parkinson's Disease. J Mov Disord 2016; 9:35-9. [PMID: 26828214 PMCID: PMC4734986 DOI: 10.14802/jmd.15038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/15/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022] Open
Abstract
Objective The aim of this study was to investigate frontal N30 status in Parkinson’s disease (PD) and to examine the correlation between the amplitude of frontal N30 and the severity of motor deficits. Methods The frontal N30 was compared between 17 PD patients and 18 healthy volunteers. Correlations between the amplitude of frontal N30 and the Unified Parkinson’s Disease Rating Scale (UPDRS) motor score of the more severely affected side was examined. Results The mean latency of the N30 was not significantly different between patients and healthy volunteers (p = 0.981), but the mean amplitude was lower in PD patients (p < 0.025). There was a significant negative correlation between the amplitude of N30 and the UPDRS motor score (r = -0.715, p = 0.013). Conclusions The frontal N30 status indicates the motor severity of PD. It can be a useful biomarker reflecting dopaminergic deficits and an objective measurement for monitoring the clinical severity of PD.
Collapse
Affiliation(s)
- Suk Yun Kang
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Hyeo-Il Ma
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
19
|
Cebolla AM, Petieau M, Cevallos C, Leroy A, Dan B, Cheron G. Long-Lasting Cortical Reorganization as the Result of Motor Imagery of Throwing a Ball in a Virtual Tennis Court. Front Psychol 2015; 6:1869. [PMID: 26648903 PMCID: PMC4664627 DOI: 10.3389/fpsyg.2015.01869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here.
Collapse
Affiliation(s)
- Ana M Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium
| | - Carlos Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium
| | - Bernard Dan
- Department of Neurology, Hopital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles , Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium ; Haute École Condorcet , Charleroi, Belgium ; Laboratory of Electrophysiology, Université de Mons-Hainaut , Mons, Belgium
| |
Collapse
|
20
|
Tarhan LY, Watson CE, Buxbaum LJ. Shared and Distinct Neuroanatomic Regions Critical for Tool-related Action Production and Recognition: Evidence from 131 Left-hemisphere Stroke Patients. J Cogn Neurosci 2015; 27:2491-511. [PMID: 26351989 PMCID: PMC8139360 DOI: 10.1162/jocn_a_00876] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inferior frontal gyrus and inferior parietal lobe have been characterized as human homologues of the monkey "mirror neuron" system, critical for both action production (AP) and action recognition (AR). However, data from brain lesion patients with selective impairment on only one of these tasks provide evidence of neural and cognitive dissociations. We sought to clarify the relationship between AP and AR, and their critical neural substrates, by directly comparing performance of 131 chronic left-hemisphere stroke patients on both tasks--to our knowledge, the largest lesion-based experimental investigation of action cognition to date. Using voxel-based lesion-symptom mapping, we found that lesions to primary motor and somatosensory cortices and inferior parietal lobule were associated with disproportionately impaired performance on AP, whereas lesions to lateral temporo-occipital cortex were associated with a relatively rare pattern of disproportionately impaired performance on AR. In contrast, damage to posterior middle temporal gyrus was associated with impairment on both AP and AR. The distinction between lateral temporo-occipital cortex, critical for recognition, and posterior middle temporal gyrus, important for both tasks, suggests a rough gradient from modality-specific to abstract representations in posterior temporal cortex, the first lesion-based evidence for this phenomenon. Overall, the results of this large patient study help to bring closure to a long-standing debate by showing that tool-related AP and AR critically depend on both common and distinct left hemisphere neural substrates, most of which are external to putative human mirror regions.
Collapse
Affiliation(s)
- Leyla Y Tarhan
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, PA
| | - Christine E Watson
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, PA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, PA
| |
Collapse
|
21
|
Cebolla A, Cheron G. Sensorimotor and cognitive involvement of the beta–gamma oscillation in the frontal N30 component of somatosensory evoked potentials. Neuropsychologia 2015; 79:215-22. [DOI: 10.1016/j.neuropsychologia.2015.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/29/2022]
|
22
|
Halje P, Seeck M, Blanke O, Ionta S. Inferior frontal oscillations reveal visuo-motor matching for actions and speech: evidence from human intracranial recordings. Neuropsychologia 2015; 79:206-14. [PMID: 26282276 DOI: 10.1016/j.neuropsychologia.2015.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions.
Collapse
Affiliation(s)
- Pär Halje
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Sciences, Lund University, Sweden
| | - Margitta Seeck
- Presurgical Epilepsy Evaluation Unit, Department of Neurology, Geneva University Hospital (HUG), Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Presurgical Epilepsy Evaluation Unit, Department of Neurology, Geneva University Hospital (HUG), Switzerland
| | - Silvio Ionta
- Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Switzerland.
| |
Collapse
|
23
|
Modulatory effects of movement sequence preparation and covert spatial attention on early somatosensory input to non-primary motor areas. Exp Brain Res 2014; 233:503-17. [DOI: 10.1007/s00221-014-4131-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
|
24
|
Zarka D, Cevallos C, Petieau M, Hoellinger T, Dan B, Cheron G. Neural rhythmic symphony of human walking observation: Upside-down and Uncoordinated condition on cortical theta, alpha, beta and gamma oscillations. Front Syst Neurosci 2014; 8:169. [PMID: 25278847 PMCID: PMC4166901 DOI: 10.3389/fnsys.2014.00169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/31/2014] [Indexed: 11/20/2022] Open
Abstract
Biological motion observation has been recognized to produce dynamic change in sensorimotor activation according to the observed kinematics. Physical plausibility of the spatial-kinematic relationship of human movement may play a major role in the top-down processing of human motion recognition. Here, we investigated the time course of scalp activation during observation of human gait in order to extract and use it on future integrated brain-computer interface using virtual reality (VR). We analyzed event related potentials (ERP), the event related spectral perturbation (ERSP) and the inter-trial coherence (ITC) from high-density EEG recording during video display onset (−200–600 ms) and the steady state visual evoked potentials (SSVEP) inside the video of human walking 3D-animation in three conditions: Normal; Upside-down (inverted images); and Uncoordinated (pseudo-randomly mixed images). We found that early visual evoked response P120 was decreased in Upside-down condition. The N170 and P300b amplitudes were decreased in Uncoordinated condition. In Upside-down and Uncoordinated conditions, we found decreased alpha power and theta phase-locking. As regards gamma oscillation, power was increased during the Upside-down animation and decreased during the Uncoordinated animation. An SSVEP-like response oscillating at about 10 Hz was also described showing that the oscillating pattern is enhanced 300 ms after the heel strike event only in the Normal but not in the Upside-down condition. Our results are consistent with most of previous point-light display studies, further supporting possible use of virtual reality for neurofeedback applications.
Collapse
Affiliation(s)
- David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium
| | - Carlos Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium
| | - Thomas Hoellinger
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium ; Department of Neurology, Hopital Universitaire des Enfants reine Fabiola, Université Libre de Bruxelles Bruxelles, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles Brussels, Belgium ; Laboratory of Electrophysiology, Université de Mons-Hainaut Bruxelles, Belgium
| |
Collapse
|
25
|
Flindall JW, Gonzalez CLR. Eating interrupted: the effect of intent on hand-to-mouth actions. J Neurophysiol 2014; 112:2019-25. [PMID: 24990561 DOI: 10.1152/jn.00295.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence from recent neurophysiological studies on nonhuman primates as well as from human behavioral studies suggests that actions with similar kinematic requirements but different end-state goals are supported by separate neural networks. It is unknown whether these different networks supporting seemingly similar reach-to-grasp actions are lateralized, or if they are equally represented in both hemispheres. Recently published behavioral evidence suggests certain networks are lateralized to the left hemisphere. Specifically, when participants used their right hand, their maximum grip aperture (MGA) was smaller when grasping to eat food items than when grasping to place the same items. Left-handed movements showed no difference between tasks. The present study investigates whether the differences between grasp-to-eat and grasp-to-place actions are driven by an intent to eat, or if placing an item into the mouth (sans ingestion) is sufficient to produce asymmetries. Twelve right-handed adults were asked to reach to grasp food items to 1) eat them, 2) place them in a bib, or 3) place them between their lips and then toss them into a nearby receptacle. Participants performed each task with large and small food items, using both their dominant and nondominant hands. The current study replicated the previous finding of smaller MGAs for the eat condition during right-handed but not left-handed grasps. MGAs in the eat and spit conditions did not significantly differ from each other, suggesting that eating and bringing a food item to the mouth both utilize similar motor plans, likely originating within the same neural network. Results are discussed in relation to neurophysiology and development.
Collapse
Affiliation(s)
- Jason W Flindall
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|