1
|
Autio JA, Kimura I, Ose T, Matsumoto Y, Ohno M, Urushibata Y, Ikeda T, Glasser MF, Van Essen DC, Hayashi T. Mapping vascular network architecture in primate brain using ferumoxytol-weighted laminar MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.16.594068. [PMID: 38798334 PMCID: PMC11118324 DOI: 10.1101/2024.05.16.594068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mapping the vascular organization of the brain is of great importance across various domains of basic neuroimaging research, diagnostic radiology, and neurology. However, the intricate task of precisely mapping vasculature across brain regions and cortical layers presents formidable challenges, resulting in a limited understanding of neurometabolic factors influencing the brain's microvasculature. Addressing this gap, our study investigates whole-brain vascular volume using ferumoxytol-weighted laminar-resolution multi-echo gradient-echo imaging in macaque monkeys. We validate the results with published data for vascular densities and compare them with cytoarchitecture, neuron and synaptic densities. The ferumoxytol-induced change in transverse relaxation rate ( Δ R 2 * ), an indirect proxy measure of cerebral blood volume (CBV), was mapped onto twelve equivolumetric laminar cortical surfaces. Our findings reveal that CBV varies 3-fold across the brain, with the highest vascular volume observed in the inferior colliculus and lowest in the corpus callosum. In the cerebral cortex, CBV is notably high in early primary sensory areas and low in association areas responsible for higher cognitive functions. Classification of CBV into distinct groups unveils extensive replication of translaminar vascular network motifs, suggesting distinct computational energy supply requirements in areas with varying cytoarchitecture types. Regionally, baselineR 2 * and CBV exhibit positive correlations with neuron density and negative correlations with receptor densities. Adjusting image resolution based on the critical sampling frequency of penetrating cortical vessels allows us to delineate approximately 30% of the arterial-venous vessels. Collectively, these results mark significant methodological and conceptual advancements, contributing to the refinement of cerebrovascular MRI. Furthermore, our study establishes a linkage between neurometabolic factors and the vascular network architecture in the primate brain.
Collapse
Affiliation(s)
- Joonas A. Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ikko Kimura
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takayuki Ose
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuki Matsumoto
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahiro Ohno
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Matthew F. Glasser
- Department of Radiology, Washington University Medical School, St. Louis, MO, United States
- Department of Neuroscience, Washington University Medical School, St. Louis, MO, United States
| | - David C. Van Essen
- Department of Neuroscience, Washington University Medical School, St. Louis, MO, United States
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
2
|
Nguyen‐Duc J, de Riedmatten I, Spencer APC, Perot J, Olszowy W, Jelescu I. Mapping Activity and Functional Organisation of the Motor and Visual Pathways Using ADC-fMRI in the Human Brain. Hum Brain Mapp 2025; 46:e70110. [PMID: 39835608 PMCID: PMC11747996 DOI: 10.1002/hbm.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function. To demonstrate the specificity and value of ADC-fMRI, both ADC- and BOLD-fMRI data were collected at 3 T in human subjects during visual stimulation and motor tasks. The first aim of this study was to identify an acquisition design for ADC that minimises BOLD contributions. By examining the timings in responses, we report that ADC 0/1 timeseries (acquired with b values of 0 and 1 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ ) exhibit residual vascular contamination, while ADC 0.2/1 timeseries (with b values of 0.2 and 1 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ ) show minimal BOLD influence and higher sensitivity to neuromorphological coupling. Second, a general linear model was employed to identify activation clusters for ADC 0.2/1 and BOLD, from which the average ADC and BOLD responses were calculated. The negative ADC response exhibited a significantly reduced delay relative to the task onset and offset as compared to BOLD. This early onset further supports the notion that ADC is sensitive to neuromorphological rather than neurovascular coupling. Remarkably, in the group-level analysis, positive BOLD activation clusters were detected in the visual and motor cortices, while the negative ADC clusters mainly highlighted pathways in white matter connected to the motor cortex. In the averaged individual level analysis, negative ADC activation clusters were also present in the visual cortex. This finding confirmed the reliability of negative ADC as an indicator of brain function, even in regions with lower vascularisation such as white matter. Finally, we established that ADC-fMRI time courses yield the expected functional organisation of the visual system, including both grey and white matter regions of interest. Functional connectivity matrices were used to perform hierarchical clustering of brain regions, where ADC-fMRI successfully reproduced the expected structure of the dorsal and ventral visual pathways. This organisation was not replicated with the b = 0.2 ms/μm 2 $$ {\upmu \mathrm{m}}^2 $$ diffusion-weighted time courses, which can be seen as a proxy for BOLD (via T2-weighting). These findings underscore the robustness of ADC time courses in functional MRI studies, offering complementary insights into BOLD-fMRI regarding brain function and connectivity patterns.
Collapse
Affiliation(s)
- Jasmine Nguyen‐Duc
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Ines de Riedmatten
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Arthur P. C. Spencer
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Jean‐Baptiste Perot
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Wiktor Olszowy
- Data Science Unit, Science and ResearchDsm‐Firmenich AGKaiseraugstSwitzerland
| | - Ileana Jelescu
- Department of RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
3
|
Tan JL, Ragot DM, Chen JJ. Characterization of the echo-time dependence of spin-echo BOLD fMRI at 3 Tesla in grey and white matter. J Neurosci Methods 2022; 381:109691. [PMID: 36096237 DOI: 10.1016/j.jneumeth.2022.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - Don M Ragot
- Rotman Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
4
|
Ma L, Wu J, Yang Q, Zhou Z, He H, Bao J, Bao L, Wang X, Zhang P, Zhong J, Cai C, Cai S, Chen Z. Single-shot multi-parametric mapping based on multiple overlapping-echo detachment (MOLED) imaging. Neuroimage 2022; 263:119645. [PMID: 36155244 DOI: 10.1016/j.neuroimage.2022.119645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Multi-parametric quantitative magnetic resonance imaging (mqMRI) allows the characterization of multiple tissue properties non-invasively and has shown great potential to enhance the sensitivity of MRI measurements. However, real-time mqMRI during dynamic physiological processes or general motions remains challenging. To overcome this bottleneck, we propose a novel mqMRI technique based on multiple overlapping-echo detachment (MOLED) imaging, termed MQMOLED, to enable mqMRI in a single shot. In the data acquisition of MQMOLED, multiple MR echo signals with different multi-parametric weightings and phase modulations are generated and acquired in the same k-space. The k-space data is Fourier transformed and fed into a well-trained neural network for the reconstruction of multi-parametric maps. We demonstrated the accuracy and repeatability of MQMOLED in simultaneous mapping apparent proton density (APD) and any two parameters among T2, T2*, and apparent diffusion coefficient (ADC) in 130-170 ms. The abundant information delivered by the multiple overlapping-echo signals in MQMOLED makes the technique potentially robust to system imperfections, such as inhomogeneity of static magnetic field or radiofrequency field. Benefitting from the single-shot feature, MQMOLED exhibits a strong motion tolerance to the continuous movements of subjects. For the first time, it captured the synchronous changes of ADC, T2, and T1-weighted APD in contrast-enhanced perfusion imaging on patients with brain tumors, providing additional information about vascular density to the hemodynamic parametric maps. We expect that MQMOLED would promote the development of mqMRI technology and greatly benefit the applications of mqMRI, including therapeutics and analysis of metabolic/functional processes.
Collapse
Affiliation(s)
- Lingceng Ma
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Qinqin Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Zihan Zhou
- The Center for Brain Imaging Science and Technology, The Collaborative Innovation Center for Diagnosis and The Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310027, China
| | - Hongjian He
- The Center for Brain Imaging Science and Technology, The Collaborative Innovation Center for Diagnosis and The Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310027, China
| | - Jianfeng Bao
- Department of MRI, Henan Key Laboratory of Magnetic Resonance Function and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lijun Bao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Xiaoyin Wang
- The Center for Brain Imaging Science and Technology, The Collaborative Innovation Center for Diagnosis and The Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310027, China
| | - Pujie Zhang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianhui Zhong
- The Center for Brain Imaging Science and Technology, The Collaborative Innovation Center for Diagnosis and The Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310027, China; Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Nunes D, Gil R, Shemesh N. A rapid-onset diffusion functional MRI signal reflects neuromorphological coupling dynamics. Neuroimage 2021; 231:117862. [PMID: 33592243 DOI: 10.1016/j.neuroimage.2021.117862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function in-vivo. However, the neurovascular coupling mechanisms underlying fMRI are somewhat "distant" from neural activity. Interestingly, evidence from Intrinsic Optical Signals (IOSs) indicates that neural activity is also coupled to (sub)cellular morphological modulations. Diffusion-weighted functional MRI (dfMRI) experiments have been previously proposed to probe such neuromorphological couplings, but the underlying mechanisms have remained highly contested. Here, we provide the first direct link between in vivo ultrafast dfMRI signals upon rat forepaw stimulation and IOSs in acute slices stimulated optogenetically. We reveal a hitherto unreported rapid onset (<100 ms) dfMRI signal component which (i) agrees with fast-rising IOSs dynamics; (ii) evidences a punctate quantitative correspondence to the stimulation period; and (iii) is rather insensitive to a vascular challenge. Our findings suggest that neuromorphological coupling can be detected via dfMRI signals, auguring well for future mapping of neural activity more directly compared with blood-oxygenation-level-dependent mechanisms.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Rita Gil
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal.
| |
Collapse
|
6
|
Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T. Magn Reson Imaging 2019; 57:328-336. [DOI: 10.1016/j.mri.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/06/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022]
|
7
|
Nunes D, Ianus A, Shemesh N. Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway. Neuroimage 2019; 184:646-657. [PMID: 30267858 PMCID: PMC6264401 DOI: 10.1016/j.neuroimage.2018.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating neural activity from a global brain perspective in-vivo has been in the domain of functional Magnetic Resonance Imaging (fMRI) over the past few decades. The intricate neurovascular couplings that govern fMRI's blood-oxygenation-level-dependent (BOLD) functional contrast are invaluable in mapping active brain regions, but they also entail significant limitations, such as non-specificity of the signal to active foci. Diffusion-weighted functional MRI (dfMRI) with relatively high diffusion-weighting strives to ameliorate this shortcoming as it offers functional contrasts more intimately linked with the underlying activity. Insofar, apart from somewhat smaller activation foci, dfMRI's contrasts have not been convincingly shown to offer significant advantages over BOLD-driven fMRI, and its activation maps relied on significant modelling. Here, we study whether dfMRI could offer a better representation of neural activity in the thalamocortical pathway compared to its (spin-echo (SE)) BOLD counterpart. Using high-end forepaw stimulation experiments in the rat at 9.4 T, and with significant sensitivity enhancements due to the use of cryocoils, we show for the first time that dfMRI signals exhibit layer specificity, and, additionally, display signals in areas devoid of SE-BOLD responses. We find that dfMRI signals in the thalamocortical pathway cohere with each other, namely, dfMRI signals in the ventral posterolateral (VPL) thalamic nucleus cohere specifically with layers IV and V in the somatosensory cortex. These activity patterns are much better correlated (compared with SE-BOLD signals) with literature-based electrophysiological recordings in the cortex as well as thalamus. All these findings suggest that dfMRI signals better represent the underlying neural activity in the pathway. In turn, these advanatages may have significant implications towards a much more specific and accurate mapping of neural activity in the global brain in-vivo.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andrada Ianus
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Centre for Medical Image Computing, University College London, London, UK
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
8
|
Williams RJ, Reutens DC, Hocking J. Influence of BOLD Contributions to Diffusion fMRI Activation of the Visual Cortex. Front Neurosci 2016; 10:279. [PMID: 27445654 PMCID: PMC4923189 DOI: 10.3389/fnins.2016.00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/06/2016] [Indexed: 11/24/2022] Open
Abstract
Reliance on the hemodynamic response as a surrogate marker of neural activity imposes an intrinsic limit on the spatial specificity of functional MRI. An alternative approach based on diffusion-weighted functional MRI (DfMRI) has been reported as a contrast less reliant on hemodynamic effects, however current evidence suggests that both hemodynamic and unique neural sources contribute to the diffusion signal. Here we compare activation patterns obtained with the standard blood oxygenation level-dependent (BOLD) contrast to DfMRI in order to gain a deeper understanding of how the BOLD proportion contributes to the observable diffusion signal. Both individual and group-level activation patterns obtained with DfMRI and BOLD to a visual field stimulation paradigm were analyzed. At the individual level, the DfMRI contrast showed a strong, positive relationship between the volumes of cortex activated in response to quadrant- and hemi-field visual stimulation. This was not observed in the corresponding BOLD experiment. Overall, the DfMRI response indicated less between-subject variability, with random effects analyses demonstrating higher statistical values at the peak voxel for DfMRI. Furthermore, the spatial extent of the activation was more restricted to the primary visual region for DfMRI than BOLD. However, the diffusion signal was sensitive to the hemodynamic response in a manner dependent on experimental manipulation. It was also limited by its low signal-to-noise ratio (SNR), demonstrating lower sensitivity than BOLD. Together these findings both support DfMRI as a contrast that bears a closer spatial relationship to the underlying neural activity than BOLD, and raise important caveats regarding its utilization. Models explaining the DfMRI signal change need to consider the dynamic vascular contributions that may vary with neural activity.
Collapse
Affiliation(s)
- Rebecca J Williams
- Hotchkiss Brain Institute and Department of Radiology, University of CalgaryCalgary, AB, Canada; Centre for Advanced Imaging, The University of QueenslandSt. Lucia, QLD, Australia; Queensland Brain Institute, The University of QueenslandSt. Lucia, QLD, Australia; Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland St. Lucia, QLD, Australia
| | - Julia Hocking
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology Kelvin Grove, QLD, Australia
| |
Collapse
|
9
|
Williams RJ, Reutens DC, Hocking J. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI. Brain Behav 2015; 5:e00408. [PMID: 26664792 PMCID: PMC4667755 DOI: 10.1002/brb3.408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 09/06/2015] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. METHODS Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. RESULTS At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. CONCLUSIONS DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Collapse
Affiliation(s)
- Rebecca J Williams
- Centre for Advanced Imaging The University of Queensland St Lucia Qld 4067 Australia ; Queensland Brain Institute The University of Queensland St Lucia Qld 4067 Australia ; Centre for Clinical Research The University of Queensland Brisbane Qld 4006 Australia ; Hotchkiss Brain Institute and Department of Radiology University of Calgary Calgary AB T2N 4N1 Canada
| | - David C Reutens
- Centre for Advanced Imaging The University of Queensland St Lucia Qld 4067 Australia
| | - Julia Hocking
- School of Psychology and Counselling Queensland University of Technology Kelvin Grove Qld 4059 Australia
| |
Collapse
|