1
|
Tomassini A, Cope TE, Zhang J, Rowe JB. Parkinson's disease impairs cortical sensori-motor decision-making cascades. Brain Commun 2024; 6:fcae065. [PMID: 38505233 PMCID: PMC10950052 DOI: 10.1093/braincomms/fcae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/21/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
The transformation from perception to action requires a set of neuronal decisions about the nature of the percept, identification and selection of response options and execution of the appropriate motor response. The unfolding of such decisions is mediated by distributed representations of the decision variables-evidence and intentions-that are represented through oscillatory activity across the cortex. Here we combine magneto-electroencephalography and linear ballistic accumulator models of decision-making to reveal the impact of Parkinson's disease during the selection and execution of action. We used a visuomotor task in which we independently manipulated uncertainty in sensory and action domains. A generative accumulator model was optimized to single-trial neurophysiological correlates of human behaviour, mapping the cortical oscillatory signatures of decision-making, and relating these to separate processes accumulating sensory evidence and selecting a motor action. We confirmed the role of widespread beta oscillatory activity in shaping the feed-forward cascade of evidence accumulation from resolution of sensory inputs to selection of appropriate responses. By contrasting the spatiotemporal dynamics of evidence accumulation in age-matched healthy controls and people with Parkinson's disease, we identified disruption of the beta-mediated cascade of evidence accumulation as the hallmark of atypical decision-making in Parkinson's disease. In frontal cortical regions, there was inefficient processing and transfer of perceptual information. Our findings emphasize the intimate connection between abnormal visuomotor function and pathological oscillatory activity in neurodegenerative disease. We propose that disruption of the oscillatory mechanisms governing fast and precise information exchanges between the sensory and motor systems contributes to behavioural changes in people with Parkinson's disease.
Collapse
Affiliation(s)
- Alessandro Tomassini
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Thomas E Cope
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Jiaxiang Zhang
- Department of Computer Science, Swansea University, Swansea SA18EN, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
2
|
Wyrobnik M, van der Meer E, Klostermann F. Aberrant neural processing of event boundaries in persons with Parkinson's disease. Sci Rep 2023; 13:8818. [PMID: 37258848 PMCID: PMC10232529 DOI: 10.1038/s41598-023-36063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/29/2023] [Indexed: 06/02/2023] Open
Abstract
The perception of everyday events implies the segmentation into discrete sub-events (i.e. event segmentation). This process is relevant for the prediction of upcoming events and for the recall of recent activities. It is thought to involve dopaminergic networks which are strongly compromised in Parkinson's disease (PD). Indeed, deficits of event segmentation have been previously shown in PD, but underlying neuronal mechanisms remain unknown. We therefore investigated 22 persons with PD and 22 age-matched healthy controls, who performed an event segmentation task with simultaneous electroencephalography (EEG). Both groups had to indicate by button press the beginning of sub-events within three movies showing persons performing everyday activities. The segmentation performance of persons with PD deviated significantly from that of controls. Neurophysiologically, persons with PD expressed reduced theta (4-7 Hz) activity around identified event boundaries compared to healthy controls. Together, these results point to disturbed event processing in PD. According to functions attributed to EEG activities in particular frequency ranges, the PD-related theta reduction could reflect impaired matching of perceptual input with stored event representations and decreased updating processes of event information in working memory and, thus, event boundary identification.
Collapse
Affiliation(s)
- Michelle Wyrobnik
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117, Berlin, Germany.
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany.
| | - Elke van der Meer
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117, Berlin, Germany
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117, Berlin, Germany
| |
Collapse
|
3
|
Li Y, Zeng Y, Lin M, Wang Y, Ye Q, Meng F, Cai G, Cai G. β Oscillations of Dorsal STN as a Potential Biomarker in Parkinson's Disease Motor Subtypes: An Exploratory Study. Brain Sci 2023; 13:737. [PMID: 37239209 PMCID: PMC10216185 DOI: 10.3390/brainsci13050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) can be divided into postural instability and difficult gait (PIGD) and tremor dominance (TD) subtypes. However, potential neural markers located in the dorsal ventral side of the subthalamic nucleus (STN) for delineating the two subtypes of PIGD and TD have not been demonstrated. Therefore, this study aimed to investigate the spectral characteristics of PD on the dorsal ventral side. The differences in the β oscillation spectrum of the spike signal on the dorsal and ventral sides of the STN during deep brain stimulation (DBS) were investigated in 23 patients with PD, and coherence analysis was performed for both subtypes. Finally, each feature was associated with the Unified Parkinson's Disease Rating Scale (UPDRS). The β power spectral density (PSD) in the dorsal STN was found to be the best predictor of the PD subtype, with 82.6% accuracy. The PSD of dorsal STN β oscillations was greater in the PIGD group than in the TD group (22.17% vs. 18.22%; p < 0.001). Compared with the PIGD group, the TD group showed greater consistency in the β and γ bands. In conclusion, dorsal STN β oscillations could be used as a biomarker to classify PIGD and TD subtypes, guide STN-DBS treatment, and relate to some motor symptoms.
Collapse
Affiliation(s)
- Yongjie Li
- College of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (Y.Z.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350001, China
| | - Mangui Lin
- College of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingqing Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (Y.Z.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350001, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (Y.Z.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350001, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China;
| | - Guofa Cai
- College of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; (Y.Z.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
4
|
Association between Beta Oscillations from Subthalamic Nucleus and Quantitative Susceptibility Mapping in Deep Gray Matter Structures in Parkinson's Disease. Brain Sci 2023; 13:brainsci13010081. [PMID: 36672062 PMCID: PMC9857066 DOI: 10.3390/brainsci13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to investigate the association between beta oscillations and brain iron deposition. Beta oscillations were filtered from the microelectrode recordings of local field potentials (LFP) in the subthalamic nucleus (STN), and the ratio of the power spectral density of beta oscillations (PSDXb) to that of the LFP signals was calculated. Iron deposition in the deep gray matter (DGM) structures was indirectly assessed using quantitative susceptibility mapping (QSM). The Unified Parkinson's Disease Rating Scale (UPDRS), part III, was used to assess the severity of symptoms. Spearman correlation coefficients were applied to assess the associations of PSDXb with QSM values in the DGM structures and the severity of symptoms. PSDXb showed a significant positive correlation with the average QSM values in DGM structures, including caudate and substantia nigra (SN) (p = 0.008 and 0.044). Similarly, the PSDXb showed significant negative correlations with the severity of symptoms, including axial symptoms and the gait in the medicine-off state (p = 0.006 for both). The abnormal iron metabolism in the SN and striatum pathways may be one of the underlying mechanisms for the occurrence of abnormal beta oscillations in the STN, and beta oscillations may serve as important pathophysiological biomarkers of PD.
Collapse
|
5
|
Reduced sensorimotor beta dynamics could represent a “slowed movement state” in healthy individuals. Neuropsychologia 2022; 172:108276. [DOI: 10.1016/j.neuropsychologia.2022.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
6
|
Jin L, Shi W, Zhang C, Yeh CH. Frequency Nesting Interactions in the Subthalamic Nucleus Correlate With the Step Phases for Parkinson's Disease. Front Physiol 2022; 13:890753. [PMID: 35574448 PMCID: PMC9100409 DOI: 10.3389/fphys.2022.890753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Gait disturbance in Parkinson's disease (PD) can be ameliorated by sound stimulation. Given that excessive β synchronization in basal ganglia is linked to motor impairment in PD, whether the frequency nesting interactions are associated with the gait problem is far from clear. To this end, the masking phase-amplitude coupling (PAC) method was proposed to overcome the trade-off between intrinsic nonlinearity/non-stationarity and demand for predetermined frequencies, normally extracted by the filter. In this study, we analyzed LFPs recorded from 13 patients (one female) with PD during stepping with bilateral deep brain electrodes implanted in the subthalamic nucleus (STN). We found that not only high-frequency oscillation (100-300 Hz) was modulated by β (13-30 Hz) but also β and γ amplitude were modulated by their low-frequency components in δ/θ/α and δ/θ/α/β bands. These PAC values were suppressed by sound stimulation, along with an improvement in gait. We also showed that gait-related high-β (Hβ) modulation in the STN was sensitive to auditory cues, and Hβ gait-phase modulation increased with a metronome. Meanwhile, phase-locking values (PLVs) across all frequencies were significantly suppressed around contralateral heel strikes, manifesting the contralateral step as a critical gait phase in gait initiation for PD. Only the PLVs around contralateral steps were sensitive to auditory cues. Our results support masking PAC as an effective method in exploring frequency nesting interactions in LFPs and reveal the linkages between sound stimulation and couplings related to gait phases in the STN. These findings raise the possibility that nesting interactions in the STN work as feasible biomarkers in alleviating gait disorders.
Collapse
Affiliation(s)
- Luyao Jin
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chien-Hung Yeh
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
The Impact of Exercise Intervention with Rhythmic Auditory Stimulation to Improve Gait and Mobility in Parkinson Disease: An Umbrella Review. Brain Sci 2021; 11:brainsci11060685. [PMID: 34067458 PMCID: PMC8224645 DOI: 10.3390/brainsci11060685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Difficulties in walking, controlling balance, and performing activities of daily living are common problems encountered by individuals affected by Parkinson disease. Scientific evidence suggests that exercise performed with music or auditory or rhythmical cues facilitates movement and improves balance, gait, mobility, and activities of daily living (ADL) performance in patients with PD. The aim of this umbrella review was to summarize available high-quality evidence from systematic reviews and meta-analyses on the effectiveness of rhythmically cued exercise to improve gait, mobility, and ADL performance in individuals with PD. PubMed, Cochrane, and Embase databases were searched from January 2010 to October 2020 for systematic reviews and meta-analyses which had to be (1) written in English, (2) include studies on populations of males and females with PD of any age, (3) analyze outcomes related to gait, mobility, and ADL, and (4) apply exercise interventions with music or auditory or rhythmical cues. Two independent authors screened potentially eligible studies and assessed the methodological quality of the studies using the AMSTAR 2 tool. Four studies, two systematic reviews and meta-analyses, one a systematic review, and one a meta-analysis, were selected. Overall results indicated positive effects for gait and mobility of the use of rhythmic auditory cueing with exercise and suggested that it should be incorporated into a regular rehabilitation program for patients affected by PD. Nonetheless, more primary level research is needed to address the identified gaps regarding the application of this method to physical exercise interventions.
Collapse
|
8
|
Phase-Dependent Deep Brain Stimulation: A Review. Brain Sci 2021; 11:brainsci11040414. [PMID: 33806170 PMCID: PMC8103241 DOI: 10.3390/brainsci11040414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Neural oscillations are repetitive patterns of neural activity in the central nervous systems. Oscillations of the neurons in different frequency bands are evident in electroencephalograms and local field potential measurements. These oscillations are understood to be one of the key mechanisms for carrying out normal functioning of the brain. Abnormality in any of these frequency bands of oscillations can lead to impairments in different cognitive and memory functions leading to different pathological conditions of the nervous system. However, the exact role of these neural oscillations in establishing various brain functions is still under investigation. Closed loop deep brain stimulation paradigms with neural oscillations as biomarkers could be used as a mechanism to understand the function of these oscillations. For making use of the neural oscillations as biomarkers to manipulate the frequency band of the oscillation, phase of the oscillation, and stimulation signal are of importance. This paper reviews recent trends in deep brain stimulation systems and their non-invasive counterparts, in the use of phase specific stimulation to manipulate individual neural oscillations. In particular, the paper reviews the methods adopted in different brain stimulation systems and devices for stimulating at a definite phase to further optimize closed loop brain stimulation strategies.
Collapse
|
9
|
Zokaei N, Gillebert CR, Chauvin JJ, Gresch D, Board AG, Rolinski M, Hu MT, Nobre AC. Temporal orienting in Parkinson's disease. Eur J Neurosci 2021; 53:2713-2725. [PMID: 33450082 PMCID: PMC8290223 DOI: 10.1111/ejn.15114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Temporal orienting of attention can affect multiple stages of processing to guide adaptive behaviour. We tested whether temporal expectation in different task contexts is compromised in individuals with Parkinson's disease (PD). In Experiment 1 two temporal-orienting tasks were used: a speeded task emphasizing motor preparation and a non-speeded task emphasizing perceptual discrimination using rapid serial visual presentation. In both tasks, auditory cues indicated the likelihood of a target appearing after a short or long interval. In the speeded-response task, participants used the cues to anticipate an easily detectable target stimulus. In the non-speeded perceptual-discrimination task, participants used the cues to help discriminate a target letter embedded in a stream of letters. Relative to healthy participants, participants with PD did not show altered temporal orienting effects in the speeded-response task. However, they were impaired in using temporal cues to improve perceptual discrimination. In Experiment 2, we tested whether the temporal-orienting deficits in the perceptual-discrimination task depended on the requirement to ignore temporally distracting stimuli. We replicated the impaired temporal orienting for perceptual discrimination in an independent group of individuals with PD, and showed the impairment was abolished when individuals were on their dopaminergic medication. In a task without any distracting letters, however, patients off or on medication benefited normally from temporal orienting cues. Our findings suggest that deficits in temporal orienting in individuals with PD interact with specific task demands, such as the requirement to select target from temporally competing distractors.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Celine R Gillebert
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Joshua J Chauvin
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniela Gresch
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Alexander G Board
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Michal Rolinski
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michele T Hu
- Department of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anna Christina Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Breska A, Ivry RB. Context-specific control over the neural dynamics of temporal attention by the human cerebellum. SCIENCE ADVANCES 2020; 6:6/49/eabb1141. [PMID: 33268365 PMCID: PMC7821877 DOI: 10.1126/sciadv.abb1141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the involvement of the human cerebellum in the generation and/or temporal adjustment of anticipatory neural dynamics, measuring scalp electroencephalography in individuals with cerebellar degeneration. When the temporal prediction relied on an interval representation, duration-dependent adjustments were impaired in the cerebellar group compared to matched controls. This impairment was evident in ramping activity, beta-band power, and phase locking of delta-band activity. These same neural adjustments were preserved when the prediction relied on a rhythmic stream. Thus, the cerebellum has a context-specific causal role in the adjustment of anticipatory neural dynamics of temporal prediction, providing the requisite modulation to optimize behavior.
Collapse
Affiliation(s)
- Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA.
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Meissner SN, Krause V, Südmeyer M, Hartmann CJ, Pollok B. Pre-stimulus beta power modulation during motor sequence learning is reduced in 'Parkinson's disease. Neuroimage Clin 2020; 24:102057. [PMID: 31715558 PMCID: PMC6849445 DOI: 10.1016/j.nicl.2019.102057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/25/2019] [Accepted: 10/23/2019] [Indexed: 11/01/2022]
Abstract
Beta oscillations within motor-cortical areas have been linked to sensorimotor function. In line with this, pathologically altered beta activity in cortico-basal ganglia pathways has been suggested to contribute to the pathophysiology of Parkinson's disease (PD), a neurodegenerative disorder primarily characterized by motor impairment. Although its precise function is still discussed, beta activity might subserve an anticipatory role in preparation of future actions. By reanalyzing previously published data, we aimed at investigating the role of pre-stimulus motor-cortical beta power modulation in motor sequence learning and its alteration in PD. 20 PD patients and 20 healthy controls (HC) performed a serial reaction time task (SRTT) in which reaction time gain presumably reflects the ability to anticipate subsequent sequence items. Randomly varying patterns served as control trials. Neuromagnetic activity was recorded using magnetoencephalography (MEG) and data was reanalyzed with respect to task stimuli onset. Assuming that pre-stimulus beta power modulation is functionally related to motor sequence learning, reaction time gain due to training on the SRTT should vary depending on the amount of beta power suppression prior to stimulus onset. We hypothesized to find less pre-stimulus beta power suppression in PD patients as compared to HC associated with reduced motor sequence learning in patients. Behavioral analyses revealed that PD patients exhibited smaller reaction time gain in sequence relative to random control trials than HC indicating reduced learning in PD. This finding was indeed paralleled by reduced pre-stimulus beta power suppression in PD patients. Further strengthening its functional relevance, the amount of pre-stimulus beta power suppression during sequence training significantly predicted subsequent reaction time advantage in sequence relative to random trials in patients. In conclusion, the present data provide first evidence for the contribution of pre-stimulus motor-cortical beta power suppression to motor sequence learning and support the hypothesis that beta oscillations may subserve an anticipatory, predictive function, possibly compromised in PD.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany; Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany; Department of Neuropsychology, Mauritius Hospital, Meerbusch, Germany
| | - Martin Südmeyer
- Department of Neurology, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
12
|
Leuk JSP, Low LLN, Teo WP. An Overview of Acoustic-Based Interventions to Improve Motor Symptoms in Parkinson's Disease. Front Aging Neurosci 2020; 12:243. [PMID: 32922283 PMCID: PMC7457064 DOI: 10.3389/fnagi.2020.00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/13/2020] [Indexed: 01/23/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by motor and cognitive deficits that negatively impact on activities of daily living. While dopaminergic medications are used to attenuate motor symptoms, adjuvant therapies such as acoustic-based non-pharmacological interventions are used as a complement to standard drug treatments. At present, preliminary studies of acoustic-based interventions such as rhythmic-auditory stimulation (RAS) and vibroacoustic therapy (VAT) suggest two competing hypotheses: (1) RAS may recruit alternative motor networks that may bypass faulty spatiotemporal motor networks of movement in PD; or (2) the use of RAS enhances BG function through entrainment of beta oscillatory activities. In this mini review article, we discuss the mechanisms underlying the role of acoustic-based interventions and how it may serve to improve motor deficits such as gait impairments and tremors. We further provide suggestions for future work that may use a combination of RAS, VAT, and physical therapy to improve motor function in PD.
Collapse
Affiliation(s)
- Jessie Siew Pin Leuk
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Linette Li Neng Low
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Wei-Peng Teo
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore.,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
Meng Q, Meng J, Xu M, Liu S, Chen L, Ming D. Timing Prediction Changes the Signatures of Alpha-Band Functional and Effective Connectivity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2392-2395. [PMID: 33018488 DOI: 10.1109/embc44109.2020.9175389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Timing prediction plays a key role in optimizing sensory perception and guiding adaptive behaviors. It is critical to study the neural signatures of timing prediction. Comparing to numerous studies focusing on the local brain area, less is known about how the timing prediction influences the functional and effective connectivity of the whole brain network. This study designed a double-tap task, in which the period before the first tap had no timing prediction (NTP), while that of the second tap was influenced by timing prediction (TP). Twelve subjects participated in this study. The functional connectivity was measured by an undirected network constructed by phase-lag index (PLI), while the effective connectivity was measured by a directed network constructed by partial directed coherence (PDC). By comparing the connection strength and modes between NTP and TP, it's found that in alpha-band, timing prediction could improve the global efficiency and transitivity of PLI networks, and shift the in-degree center of PDC networks from frontal area to parieto-occipital area. These results could provide neural evidence for the modeling of timing prediction.
Collapse
|
14
|
Boon LI, Geraedts VJ, Hillebrand A, Tannemaat MR, Contarino MF, Stam CJ, Berendse HW. A systematic review of MEG-based studies in Parkinson's disease: The motor system and beyond. Hum Brain Mapp 2019; 40:2827-2848. [PMID: 30843285 PMCID: PMC6594068 DOI: 10.1002/hbm.24562] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 01/29/2023] Open
Abstract
Parkinson's disease (PD) is accompanied by functional changes throughout the brain, including changes in the electromagnetic activity recorded with magnetoencephalography (MEG). An integrated overview of these changes, its relationship with clinical symptoms, and the influence of treatment is currently missing. Therefore, we systematically reviewed the MEG studies that have examined oscillatory activity and functional connectivity in the PD‐affected brain. The available articles could be separated into motor network‐focused and whole‐brain focused studies. Motor network studies revealed PD‐related changes in beta band (13–30 Hz) neurophysiological activity within and between several of its components, although it remains elusive to what extent these changes underlie clinical motor symptoms. In whole‐brain studies PD‐related oscillatory slowing and decrease in functional connectivity correlated with cognitive decline and less strongly with other markers of disease progression. Both approaches offer a different perspective on PD‐specific disease mechanisms and could therefore complement each other. Combining the merits of both approaches will improve the setup and interpretation of future studies, which is essential for a better understanding of the disease process itself and the pathophysiological mechanisms underlying specific PD symptoms, as well as for the potential to use MEG in clinical care.
Collapse
Affiliation(s)
- Lennard I Boon
- Amsterdam UMC, location VUmc, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Amsterdam UMC, location VUmc, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Victor J Geraedts
- Amsterdam UMC, location VUmc, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC, location VUmc, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Haga Teaching Hospital, The Hague, The Netherlands
| | - Cornelis J Stam
- Amsterdam UMC, location VUmc, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Henk W Berendse
- Amsterdam UMC, location VUmc, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Buard I, Dewispelaere WB, Thaut M, Kluger BM. Preliminary Neurophysiological Evidence of Altered Cortical Activity and Connectivity With Neurologic Music Therapy in Parkinson's Disease. Front Neurosci 2019; 13:105. [PMID: 30837830 PMCID: PMC6390231 DOI: 10.3389/fnins.2019.00105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/29/2019] [Indexed: 11/23/2022] Open
Abstract
Neurologic Music Therapy (NMT) is a novel impairment-focused behavioral intervention system whose techniques are based on the clinical neuroscience of music perception, cognition, and production. Auditory Stimulation (RAS) is one of the NMT techniques, which aims to develop and maintain a physiological rhythmic motor activity through rhythmic auditory cues. In a series of breakthrough studies beginning in the mid-nineties, we discovered that RAS durably improves gait velocity, stride length, and cadence in Parkinson's disease (PD). No study to date reports the neurophysiological evidence of auditory-motor frequency entrainment after a NMT intervention in the Parkinson's community. We hypothesized that NMT-related motor improvements in PD are due to entrainment-related coupling between auditory and motor activity resulting from an increased functional communication between the auditory and the motor cortices. Spectral analysis in the primary motor and auditory cortices during a cued finger tapping task showed a simultaneous increase in evoked power in the beta-range along with an increased functional connectivity after a course of NMT in a small sample of three older adults with PD. This case study provides preliminary evidence that NMT-based motor rehabilitation may enhance cortical activation in the auditory and motor areas in a synergic manner. With a lack of both control subjects and control conditions, this neuroimaging case-proof of concept series of visible changes suggests potential mechanisms and offers further education on the clinical applications of musical interventions for motor impairments.
Collapse
Affiliation(s)
- Isabelle Buard
- Department of Neurology, University of Colorado Denver, Denver, CO, United States
| | | | - Michael Thaut
- Department of Music, University of Toronto, Toronto, ON, Canada
| | - Benzi M Kluger
- Department of Neurology, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
16
|
Meissner SN, Krause V, Südmeyer M, Hartmann CJ, Pollok B. The significance of brain oscillations in motor sequence learning: Insights from Parkinson's disease. NEUROIMAGE-CLINICAL 2018; 20:448-457. [PMID: 30128283 PMCID: PMC6095950 DOI: 10.1016/j.nicl.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023]
Abstract
Motor sequence learning plays a pivotal role in various everyday activities. Motor-cortical beta oscillations have been suggested to be involved in this type of learning. In Parkinson's disease (PD), oscillatory activity within cortico-basal-ganglia circuits is altered. Pathologically increased beta oscillations have received particular attention as they may be associated with motor symptoms such as akinesia. In the present magnetoencephalography (MEG) study, we investigated PD patients and healthy controls (HC) during implicit motor sequence learning with the aim to shed light on the relation between changes of cortical brain oscillations and motor learning in PD with a particular focus on beta power. To this end, 20 PD patients (ON medication) and 20 age- and sex-matched HC were trained on a serial reaction time task while neuromagnetic activity was recorded using a 306-channel whole-head MEG system. PD patients showed reduced motor sequence acquisition and were more susceptible to interference by random trials after training on the task as compared to HC. Behavioral differences were paralleled by changes at the neurophysiological level. Diminished sequence acquisition was paralleled by less training-related beta power suppression in motor-cortical areas in PD patients as compared to HC. In addition, PD patients exhibited reduced training-related theta activity in motor-cortical areas paralleling susceptibility to interference. The results support the hypothesis that the acquisition of a new motor sequence relies on suppression of motor-cortical beta oscillations, while motor-cortical theta activity might be related to stabilization of the learned sequence as indicated by reduced susceptibility to interference. Both processes appear to be impaired in PD. Motor sequence acquisition and susceptibility to interference is altered in PD. Diminished sequence acquisition is paralleled by less beta power suppression in PD. Higher susceptibility to interference is accompanied by less theta activity in PD. The data imply the relevance of beta and theta activity to motor sequence learning.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany.
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Martin Südmeyer
- Department of Neurology, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
17
|
te Woerd ES, Oostenveld R, de Lange FP, Praamstra P. Entrainment for attentional selection in Parkinson's disease. Cortex 2018; 99:166-178. [DOI: 10.1016/j.cortex.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/05/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022]
|
18
|
Processing of implicit versus explicit predictive contextual information in Parkinson's disease. Neuropsychologia 2018; 109:39-51. [DOI: 10.1016/j.neuropsychologia.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/24/2022]
|
19
|
|
20
|
Sörös P, Doñamayor N, Wittke C, Al-Khaled M, Brüggemann N, Münte TF. Increase in Beta-Band Activity during Preparation for Overt Speech in Patients with Parkinson's Disease. Front Hum Neurosci 2017; 11:371. [PMID: 28790903 PMCID: PMC5522874 DOI: 10.3389/fnhum.2017.00371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
Speech impairment is a frequent and often serious symptom of Parkinson's disease (PD), characterized by a disorder of phonation, articulation and prosody. While research on the pathogenesis of the prominent limb motor symptoms has made considerable progress in recent years, the pathophysiology of PD speech impairment is still incompletely understood. To investigate the neural correlates of speech production in PD, EEG was recorded in 14 non-demented patients with idiopathic PD and preserved verbal fluency on regular dopaminergic medication (8 women; mean age ± SD: 69.5 ± 8.0 years). The control group consisted of 15 healthy age-matched individuals (7 women; age: 69.7 ± 7.0 years). All participants performed a visually-cued, overt speech production task; required utterances were papapa and pataka. During the preparatory phase of speech production, in a time window of 200-400 ms after presentation of the visual cue, β-power was significantly increased in PD patients compared to healthy controls. Previous research has shown that the physiological decrease of β-power preceding limb movement onset is delayed and smaller in PD patients off medication and normalizes under dopaminergic treatment. By contrast, our study demonstrates that β-power during preparation for speech production is higher in patients on dopaminergic therapy than controls. Thus, our results suggest that the mechanisms that regulate β-activity preceding limb movement and speech production differ in PD. The pathophysiological role of this increase in β-power during speech preparation needs to be determined.
Collapse
Affiliation(s)
- Peter Sörös
- Department of Neurology, University of LübeckLübeck, Germany
- Psychiatry and Psychotherapy, School of Medicine and Health Sciences, University Hospital Karl-Jaspers-Klinik, University of OldenburgOldenburg, Germany
- Neuroimaging Unit, University of OldenburgOldenburg, Germany
- Research Center Neurosensory Science, University of OldenburgOldenburg, Germany
| | - Nuria Doñamayor
- Department of Neurology, University of LübeckLübeck, Germany
- Department of Psychiatry, University of CambridgeCambridge, United Kingdom
| | | | | | | | - Thomas F. Münte
- Department of Neurology, University of LübeckLübeck, Germany
- Institute of Psychology II, University of LübeckLübeck, Germany
| |
Collapse
|
21
|
Nelson AB, Moisello C, Lin J, Panday P, Ricci S, Canessa A, Di Rocco A, Quartarone A, Frazzitta G, Isaias IU, Tononi G, Cirelli C, Ghilardi MF. Beta Oscillatory Changes and Retention of Motor Skills during Practice in Healthy Subjects and in Patients with Parkinson's Disease. Front Hum Neurosci 2017; 11:104. [PMID: 28326029 PMCID: PMC5339296 DOI: 10.3389/fnhum.2017.00104] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 11/20/2022] Open
Abstract
Recently we found that modulation depth of beta power during movement increases with practice over sensory-motor areas in normal subjects but not in patients with Parkinson's disease (PD). As such changes might reflect use-dependent modifications, we concluded that reduction of beta enhancement in PD represents saturation of cortical plasticity. A few questions remained open: What is the relation between these EEG changes and retention of motor skills? Would a second task exposure restore beta modulation enhancement in PD? Do practice-induced increases of beta modulation occur within each block? We thus recorded EEG in patients with PD and age-matched controls in two consecutive days during a 40-min reaching task divided in fifteen blocks of 56 movements each. The results confirmed that, with practice, beta modulation depth over the contralateral sensory-motor area significantly increased across blocks in controls but not in PD, while performance improved in both groups without significant correlations between behavioral and EEG data. The same changes were seen the following day in both groups. Also, beta modulation increased within each block with similar values in both groups and such increases were partially transferred to the successive block in controls, but not in PD. Retention of performance improvement was present in the controls but not in the patients and correlated with the increase in day 1 modulation depth. Therefore, the lack of practice-related increase beta modulation in PD is likely due to deficient potentiation mechanisms that permit between-block saving of beta power enhancement and trigger mechanisms of memory formation.
Collapse
Affiliation(s)
- Aaron B Nelson
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine New York, NY, USA
| | - Clara Moisello
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine New York, NY, USA
| | - Jing Lin
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine New York, NY, USA
| | - Priya Panday
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine New York, NY, USA
| | - Serena Ricci
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of MedicineNew York, NY, USA; Department of Informatics, Bioengineering, Robotics and System Engineering, University of GenoaGenoa, Italy
| | - Andrea Canessa
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of GenoaGenoa, Italy; Fondazione Europea di Ricerca BiomedicaCernusco sul Naviglio, Milan, Italy
| | - Alessandro Di Rocco
- The Fresco Institute at New York University School of Medicine New York, NY, USA
| | - Angelo Quartarone
- The Fresco Institute at New York University School of MedicineNew York, NY, USA; Centro Neurolesi, University of MessinaMessina, Italy
| | | | - Ioannis U Isaias
- The Fresco Institute at New York University School of MedicineNew York, NY, USA; Department of Neurology, University Hospital and Julius-Maximillian-UniversityWuerzburg, Germany; Parkinson Institute ASST Gaetano Pini-CTOMilan, Italy
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison Madison, WI, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison Madison, WI, USA
| | - M Felice Ghilardi
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of MedicineNew York, NY, USA; The Fresco Institute at New York University School of MedicineNew York, NY, USA
| |
Collapse
|
22
|
Te Woerd ES, Oostenveld R, de Lange FP, Praamstra P. Impaired auditory-to-motor entrainment in Parkinson's disease. J Neurophysiol 2017; 117:1853-1864. [PMID: 28179479 DOI: 10.1152/jn.00547.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/23/2017] [Accepted: 02/05/2017] [Indexed: 11/22/2022] Open
Abstract
Several electrophysiological studies suggest that Parkinson's disease (PD) patients have a reduced tendency to entrain to regular environmental patterns. Here we investigate whether this reduced entrainment concerns a generalized deficit or is confined to movement-related activity, leaving sensory entrainment intact. Magnetoencephalography was recorded during a rhythmic auditory target detection task in 14 PD patients and 14 control subjects. Participants were instructed to press a button when hearing a target tone amid an isochronous sequence of standard tones. The variable pitch of standard tones indicated the probability of the next tone to be a target. In addition, targets were occasionally omitted to evaluate entrainment uncontaminated by stimulus effects. Response times were not significantly different between groups and both groups benefited equally from the predictive value of standard tones. Analyses of oscillatory beta power over auditory cortices showed equal entrainment to the tones in both groups. By contrast, oscillatory beta power and event-related fields demonstrated a reduced engagement of motor cortical areas in PD patients, expressed in the modulation depth of beta power, in the response to omitted stimuli, and in an absent motor area P300 effect. Together, these results show equally strong entrainment of neural activity over sensory areas in controls and patients, but, in patients, a deficient translation of the adjustment to the task rhythm to motor circuits. We suggest that the reduced activation reflects not merely altered resonance to rhythmic external events, but a compromised recruitment of an endogenous response reflecting internal rhythm generation.NEW & NOTEWORTHY Previous studies suggest that motor cortical activity in PD patients has a reduced tendency to entrain to regular environmental patterns. This study demonstrates that the deficient entrainment in PD concerns the motor system only, by showing equally strong entrainment of neural activity over sensory areas in controls and patients but, in patients, a deficient translation of this adjustment to the task rhythm to motor circuits.
Collapse
Affiliation(s)
- Erik S Te Woerd
- Radboud University Medical Centre, Dept. of Neurology, Radboud University, Nijmegen, The Netherlands; and.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter Praamstra
- Radboud University Medical Centre, Dept. of Neurology, Radboud University, Nijmegen, The Netherlands; and .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Barroso-Flores J, Herrera-Valdez MA, Galarraga E, Bargas J. Models of Short-Term Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:41-57. [PMID: 29080020 DOI: 10.1007/978-3-319-62817-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We focus on dynamical descriptions of short-term synaptic plasticity. Instead of focusing on the molecular machinery that has been reviewed recently by several authors, we concentrate on the dynamics and functional significance of synaptic plasticity, and review some mathematical models that reproduce different properties of the dynamics of short term synaptic plasticity that have been observed experimentally. The complexity and shortcomings of these models point to the need of simple, yet physiologically meaningful models. We propose a simplified model to be tested in synapses displaying different types of short-term plasticity.
Collapse
Affiliation(s)
- Janet Barroso-Flores
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico.
| | - Marco A Herrera-Valdez
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico.
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico
| |
Collapse
|
24
|
Wilson TW, Heinrichs-Graham E, Proskovec AL, McDermott TJ. Neuroimaging with magnetoencephalography: A dynamic view of brain pathophysiology. Transl Res 2016; 175:17-36. [PMID: 26874219 PMCID: PMC4959997 DOI: 10.1016/j.trsl.2016.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/12/2023]
Abstract
Magnetoencephalography (MEG) is a noninvasive, silent, and totally passive neurophysiological imaging method with excellent temporal resolution (∼1 ms) and good spatial precision (∼3-5 mm). In a typical experiment, MEG data are acquired as healthy controls or patients with neurologic or psychiatric disorders perform a specific cognitive task, or receive sensory stimulation. The resulting data are generally analyzed using standard electrophysiological methods, coupled with advanced image reconstruction algorithms. To date, the total number of MEG instruments and associated users is significantly smaller than comparable human neuroimaging techniques, although this is likely to change in the near future with advances in the technology. Despite this small base, MEG research has made a significant impact on several areas of translational neuroscience, largely through its unique capacity to quantify the oscillatory dynamics of activated brain circuits in humans. This review focuses on the clinical areas where MEG imaging has arguably had the greatest impact in regard to the identification of aberrant neural dynamics at the regional and network level, monitoring of disease progression, determining how efficacious pharmacologic and behavioral interventions modulate neural systems, and the development of neural markers of disease. Specifically, this review covers recent advances in understanding the abnormal neural oscillatory dynamics that underlie Parkinson's disease, autism spectrum disorders, human immunodeficiency virus (HIV)-associated neurocognitive disorders, cerebral palsy, attention-deficit hyperactivity disorder, cognitive aging, and post-traumatic stress disorder. MEG imaging has had a major impact on how clinical neuroscientists understand the brain basis of these disorders, and its translational influence is rapidly expanding with new discoveries and applications emerging continuously.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb; Department of Neurological Sciences, UNMC, Omaha, Neb.
| | - Elizabeth Heinrichs-Graham
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb
| | - Amy L Proskovec
- Center for Magnetoencephalography, UNMC, Omaha, Neb; Department of Psychology, University of Nebraska - Omaha, Neb
| | - Timothy J McDermott
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb
| |
Collapse
|
25
|
de Bondt CC, Gerrits NJHM, Veltman DJ, Berendse HW, van den Heuvel OA, van der Werf YD. Reduced task-related functional connectivity during a set-shifting task in unmedicated early-stage Parkinson's disease patients. BMC Neurosci 2016; 17:20. [PMID: 27194153 PMCID: PMC4872364 DOI: 10.1186/s12868-016-0254-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
Background Patients with Parkinson’s disease (PD) often suffer from cognitive impairments, including set-shifting deficits, in addition to the characteristic motor symptoms. It is hypothesized that the striatal dopamine depletion leads to a sub-optimal functional connectivity between task-related brain areas and consequently results in impaired task-performance. In this study, we aimed to examine this hypothesis by investigating the task-related functional connectivity of brain areas that are believed to be involved in set-shifting, such as the dorsolateral prefrontal cortex (DLPFC), posterior parietal cortex (PPC) and the superior frontal gyrus (SFG), during a set-shifting task. We obtained functional imaging data from 18 early-stage PD patients and 35 healthy controls, matched at the group level, using a newly developed rule-based set-shifting task that required participants to manually respond to arrow stimuli based on their location on the screen of their direction. Results We found that early stage PD patients, compared with controls, showed (1) a decrease in positive coupling between the left DLPFC and the right insular cortex, and the right SFG and anterior cingulate cortex, (2) an increase in negative coupling between the right SFG and the anterior cingulate cortex, primary motor cortex, precuneus, and PPC, and (3) an increase in negative coupling between the left DLPFC and the left and right SFG. These results indicate that important task-related areas of PD patients have decreased functional connectivity with task-related regions and increased connectivity with task-unrelated areas. Conclusions The disruption of functional connectivity in early stage PD patients during set-shifting reported here is likely compensated for by the local hyperactivation we reported earlier, thereby forestalling behavioural deficits.
Collapse
Affiliation(s)
- Corine C de Bondt
- Department of Anatomy and Neurosciences, VU University Medical Center (VUmc), Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Niels J H M Gerrits
- Department of Anatomy and Neurosciences, VU University Medical Center (VUmc), Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands. .,Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands.
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| | - Henk W Berendse
- Department of Neurology, VU University Medical Center (VUmc), Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Anatomy and Neurosciences, VU University Medical Center (VUmc), Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, VU University Medical Center (VUmc), Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| |
Collapse
|
26
|
Moisello C, Blanco D, Lin J, Panday P, Kelly SP, Quartarone A, Di Rocco A, Cirelli C, Tononi G, Ghilardi MF. Practice changes beta power at rest and its modulation during movement in healthy subjects but not in patients with Parkinson's disease. Brain Behav 2015; 5:e00374. [PMID: 26516609 PMCID: PMC4614055 DOI: 10.1002/brb3.374] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND PD (Parkinson's disease) is characterized by impairments in cortical plasticity, in beta frequency at rest and in beta power modulation during movement (i.e., event-related ERS [synchronization] and ERD [desynchronization]). Recent results with experimental protocols inducing long-term potentiation in healthy subjects suggest that cortical plasticity phenomena might be reflected by changes of beta power recorded with EEG during rest. Here, we determined whether motor practice produces changes in beta power at rest and during movements in both healthy subjects and patients with PD. We hypothesized that such changes would be reduced in PD. METHODS We thus recorded EEG in patients with PD and age-matched controls before, during and after a 40-minute reaching task. We determined posttask changes of beta power at rest and assessed the progressive changes of beta ERD and ERS during the task over frontal and sensorimotor regions. RESULTS We found that beta ERS and ERD changed significantly with practice in controls but not in PD. In PD compared to controls, beta power at rest was greater over frontal sensors but posttask changes, like those during movements, were far less evident. In both groups, kinematic characteristics improved with practice; however, there was no correlation between such improvements and the changes in beta power. CONCLUSIONS We conclude that prolonged practice in a motor task produces use-dependent modifications that are reflected in changes of beta power at rest and during movement. In PD, such changes are significantly reduced; such a reduction might represent, at least partially, impairment of cortical plasticity.
Collapse
Affiliation(s)
- Clara Moisello
- Department of Physiology, Pharmacology and Neuroscience CUNY Medical School New York New York 10031
| | - Daniella Blanco
- Department of Physiology, Pharmacology and Neuroscience CUNY Medical School New York New York 10031
| | - Jing Lin
- Department of Physiology, Pharmacology and Neuroscience CUNY Medical School New York New York 10031
| | - Priya Panday
- Department of Physiology, Pharmacology and Neuroscience CUNY Medical School New York New York 10031
| | - Simon P Kelly
- Department of Biomedical Engineering CCNY New York New York 10031
| | - Angelo Quartarone
- Department of Physiology, Pharmacology and Neuroscience CUNY Medical School New York New York 10031 ; Department of Neurosciences, Psychiatry and Anaesthesiological Sciences University of Messina Messina 98125 Italy ; The Fresco Institute for Parkinson's and Movement Disorders NYU-Langone School of Medicine New York New York 10016
| | - Alessandro Di Rocco
- The Fresco Institute for Parkinson's and Movement Disorders NYU-Langone School of Medicine New York New York 10016
| | - Chiara Cirelli
- Department of Psychiatry University of Madison Madison Wisconsin 53719
| | - Giulio Tononi
- Department of Psychiatry University of Madison Madison Wisconsin 53719
| | - M Felice Ghilardi
- Department of Physiology, Pharmacology and Neuroscience CUNY Medical School New York New York 10031 ; The Fresco Institute for Parkinson's and Movement Disorders NYU-Langone School of Medicine New York New York 10016
| |
Collapse
|
27
|
Rowland NC, De Hemptinne C, Swann NC, Qasim S, Miocinovic S, Ostrem JL, Knight RT, Starr PA. Task-related activity in sensorimotor cortex in Parkinson's disease and essential tremor: changes in beta and gamma bands. Front Hum Neurosci 2015; 9:512. [PMID: 26441609 PMCID: PMC4585033 DOI: 10.3389/fnhum.2015.00512] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/03/2015] [Indexed: 11/25/2022] Open
Abstract
In Parkinson's disease patients in the OFF medication state, basal ganglia local field potentials exhibit changes in beta and gamma oscillations that correlate with reduced voluntary movement, manifested as rigidity and akinesia. However, magnetoencephalography and low-resolution electrocorticography (ECoG) studies in Parkinson's patients suggest that changes in sensorimotor cortical oscillations differ from those of the basal ganglia. To more clearly define the role of sensorimotor cortex oscillatory activity in Parkinson's, we performed intraoperative, high-resolution (4 mm spacing) ECoG recordings in 10 Parkinson's patients (2 females, ages 47–72) undergoing deep brain stimulation (DBS) lead placement in the awake, OFF medication state. We analyzed ECoG potentials during a computer-controlled reaching task designed to separate movement preparation from movement execution and compared findings to similar invasive recordings in eight patients with essential tremor (3 females, ages 59–78), a condition not associated with rigidity or akinesia. We show that (1) cortical beta spectral power at rest does not differ between Parkinson's and essential tremor patients (p = 0.85), (2) early motor preparation in Parkinson's patients in the OFF medication state is associated with a larger beta desynchronization compared to patients with essential tremor (p = 0.0061), and (3) cortical broadband gamma power is elevated in Parkinson's patients compared to essential tremor patients during both rest and task recordings (p = 0.004). Our findings suggest an oscillatory profile in sensorimotor cortex of Parkinson's patients that, in contrast to the basal ganglia, may act to promote movement to oppose the anti-kinetic bias of the dopamine-depleted state.
Collapse
Affiliation(s)
- Nathan C Rowland
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Coralie De Hemptinne
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Nicole C Swann
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Salman Qasim
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Svjetlana Miocinovic
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Jill L Ostrem
- Department of Neurology, University of California, San Francisco San Francisco, CA, USA
| | - Robert T Knight
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA ; Department of Neurology, University of California, San Francisco San Francisco, CA, USA ; Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA ; Department of Psychology, University of California, Berkeley Berkeley, CA, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
28
|
Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease. NEUROIMAGE-CLINICAL 2015; 9:300-9. [PMID: 26509117 PMCID: PMC4579287 DOI: 10.1016/j.nicl.2015.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Abstract
The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways. We investigate how rhythmic cues improve movement in Parkinson’s disease MEG-recorded slow and fast oscillatory activity was analysed Predictive modulation of beta oscillations was reduced in PD patients Yet rhythmicity promoted a predictive mode of cue utilization and beta modulation Results point to a facilitation of basal ganglia-cortical interaction in rhythmic cueing
Collapse
|
29
|
Stegemöller EL, Allen DP, Simuni T, MacKinnon CD. Motor cortical oscillations are abnormally suppressed during repetitive movement in patients with Parkinson's disease. Clin Neurophysiol 2015; 127:664-674. [PMID: 26089232 DOI: 10.1016/j.clinph.2015.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Impaired repetitive movement in persons with Parkinson's disease (PD) is associated with reduced amplitude, paradoxical hastening and hesitations or arrest at higher movement rates. This study examined the effects of movement rate and medication on movement-related cortical oscillations in persons with PD. METHODS Nine participants with PD were studied off and on medication and compared to nine control participants. Participants performed index finger movements cued by tones from 1 to 3 Hz. Movement-related oscillations were derived from electroencephalographic recordings over the region of the contralateral sensorimotor cortex (S1/M1) during rest, listening, or synchronized movement. RESULTS At rest, spectral power recorded over the region of the contralateral S1/M1 was increased in the alpha band and decreased in the beta band in participants with PD relative to controls. During movement, the level of alpha and beta band power relative to baseline was significantly reduced in the PD group, off and on medication, compared to controls. Reduced movement amplitude and hastening at movement rates near 2 Hz was associated with abnormally suppressed and persistent desynchronization of oscillations in alpha and beta bands. CONCLUSION Motor cortical oscillations in the alpha and beta bands are abnormally suppressed in PD, particularly during higher rate movements. SIGNIFICANCE These findings contribute to the understanding of mechanisms underlying impaired repetitive movement in PD.
Collapse
Affiliation(s)
- Elizabeth L Stegemöller
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Kinesiology, Iowa State University, Ames, IA 50011, USA.
| | - David P Allen
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Tanya Simuni
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Colum D MacKinnon
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|