1
|
Zvolanek KM, Moore JE, Jarvis K, Moum SJ, Bright MG. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. J Cereb Blood Flow Metab 2025; 45:746-764. [PMID: 39534950 PMCID: PMC11563552 DOI: 10.1177/0271678x241298588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n = 12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity (CVR) in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.
Collapse
Affiliation(s)
- Kristina M Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Jackson E Moore
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly Jarvis
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah J Moum
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Xu F, Xu C, Zhu D, Liu D, Lu H, Qin Q. Evaluating cerebrovascular reactivity measured by velocity selective inversion arterial spin labeling with different post-labeling delays: The effect of fast flow. Magn Reson Med 2024; 92:2065-2073. [PMID: 38852173 PMCID: PMC11341248 DOI: 10.1002/mrm.30166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Velocity selective arterial spin labeling (VSASL) quantification assumes that the labeled bolus continuously moves into the imaging voxel during the post-labeling delay (PLD). Faster blood flow could lead to a bolus duration shorter than the applied PLD of VSASL and cause underestimation of cerebral blood flow (CBF). This study aims to evaluate the performance of velocity-selective inversion (VSI) prepared arterial spin labeling (ASL) with different PLDs and pseudo-continuous ASL (PCASL) for quantification of hypercapnia-induced cerebrovascular reactivity (CVR), using phase-contrast (PC) MRI as a global reference. METHODS We compared CVR obtained by VSI-ASL with PLD of 1520 ms (VSASL-1520), 1000 ms (VSASL-1000), and 500 ms (VSASL-500), PCASL with PLD of 1800 ms (PCASL-1800), and PC MRI on eight healthy volunteers at two sessions. RESULTS Compared with PC MRI, VSASL-1520 produced significantly lower global CVR values, while PCASL-1800, VSASL-1000, and VSASL-500 yielded more consistent results. The reduced CVR in VSASL-1520 was more pronounced in carotid territories including frontal and temporal lobes than in vertebral territories such as the occipital lobe. This is largely caused by the underestimated perfusion during hypercapnia due to the reduced bolus duration being less than the PLD. CONCLUSION Although VSASL offers certain advantages over spatially selective ASL due to its reduced susceptibility to delayed ATT, this technique is prone to biases when the ATT is excessively short. Therefore, a short PLD should be employed for reliable perfusion and CVR quantification in populations or conditions with fast flow.
Collapse
Affiliation(s)
- Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Cuimei Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Dan Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Zvolanek KM, Moore JE, Jarvis K, Moum SJ, Bright MG. Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590312. [PMID: 38746187 PMCID: PMC11092525 DOI: 10.1101/2024.04.26.590312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n=12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.
Collapse
Affiliation(s)
- Kristina M. Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| | - Jackson E. Moore
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly Jarvis
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah J. Moum
- Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
4
|
van der Horn HJ, Vakhtin AA, Julio K, Nitschke S, Shaff N, Dodd AB, Erhardt E, Phillips JP, Pirio Richardson S, Deligtisch A, Stewart M, Suarez Cedeno G, Meles SK, Mayer AR, Ryman SG. Parkinson's disease cerebrovascular reactivity pattern: A feasibility study. J Cereb Blood Flow Metab 2024; 44:1774-1786. [PMID: 38578669 PMCID: PMC11494834 DOI: 10.1177/0271678x241241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
A mounting body of research points to cerebrovascular dysfunction as a fundamental element in the pathophysiology of Parkinson's disease (PD). In the current feasibility study, blood-oxygen-level-dependent (BOLD) MRI was used to measure cerebrovascular reactivity (CVR) in response to hypercapnia in 26 PD patients and 16 healthy controls (HC), and aimed to find a multivariate pattern specific to PD. Whole-brain maps of CVR amplitude (i.e., magnitude of response to CO2) and latency (i.e., time to reach maximum amplitude) were computed, which were further analyzed using scaled sub-profile model principal component analysis (SSM-PCA) with leave-one-out cross-validation. A meaningful pattern based on CVR latency was identified, which was named the PD CVR pattern (PD-CVRP). This pattern was characterized by relatively increased latency in basal ganglia, sensorimotor cortex, supplementary motor area, thalamus and visual cortex, as well as decreased latency in the cerebral white matter, relative to HC. There were no significant associations with clinical measures, though sample size may have limited our ability to detect significant associations. In summary, the PD-CVRP highlights the importance of cerebrovascular dysfunction in PD, and may be a potential biomarker for future clinical research and practice.
Collapse
Affiliation(s)
- Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Kayla Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Stephanie Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Nicholas Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrew B Dodd
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Melanie Stewart
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Gerson Suarez Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
5
|
Bello MO, Mammino KM, Vernon MA, Wakeman DG, Denmon CA, Krishnamurthy LC, Krishnamurthy V, McGregor KM, Novak TS, Nocera JR. Graded Intensity Aerobic Exercise to Improve Cerebrovascular Function and Performance in Older Veterans: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e58316. [PMID: 39326042 PMCID: PMC11467598 DOI: 10.2196/58316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Growing health care challenges resulting from a rapidly expanding aging population necessitate examining effective rehabilitation techniques that mitigate age-related comorbidity and improve quality of life. To date, exercise is one of a few proven interventions known to attenuate age-related declines in cognitive and sensorimotor functions critical to sustained independence. OBJECTIVE This work aims to implement a multimodal imaging approach to better understand the mechanistic underpinnings of the beneficial exercise-induced adaptations to sedentary older adults' brains and behaviors. Due to the complex cerebral and vascular dynamics that encompass neuroplastic change with aging and exercise, we propose an imaging protocol that will model exercise-induced changes to cerebral perfusion, cerebral vascular reactivity (CVR), and cognitive and sensorimotor task-dependent functional magnetic resonance imaging (fMRI) after prescribed exercise. METHODS Sedentary older adults (aged 65-80 years) were randomly assigned to either a 12-week aerobic-based interval-based cycling intervention or a 12-week balance and stretching intervention. Assessments of cardiovascular fitness used the YMCA submaximal VO2 test, basal cerebral perfusion using arterial spin labeling (ASL), CVR using hypercapnic fMRI, and cortical activation using fMRI during verbal fluency and motor tapping tasks. A battery of cognitive-executive and motor function tasks outside the scanning environment will be performed before and after the interventions. RESULTS Our studies and others show that improved cardiovascular fitness in older adults results in improved outcomes related to physical and cognitive health as well as quality of life. A consistent but unexplained finding in many of these studies is a change in cortical activation patterns during task-based fMRI, which corresponds with improved task performance (cognitive-executive and motor). We hypothesize that the 12-week aerobic exercise intervention will increase basal perfusion and improve CVR through a greater magnitude of reactivity in brain areas susceptible to neural and vascular decline (inferior frontal and motor cortices) in previously sedentary older adults. To differentiate between neural and vascular adaptations in these regions, we will map changes in basal perfusion and CVR over the inferior frontal and the motor cortices-regions we have previously shown to be beneficially altered during fMRI BOLD (blood oxygen level dependent), such as verbal fluency and motor tapping, through improved cardiovascular fitness. CONCLUSIONS Exercise is one of the most impactful interventions for improving physical and cognitive health in aging. This study aims to better understand the mechanistic underpinnings of improved health and function of the cerebrovascular system. If our hypothesis of improved perfusion and cerebrovascular reactivity following a 12-week aerobic exercise intervention is supported, it would add critically important insights into the potential of exercise to improve brain health in aging and could inform exercise prescription for older adults at risk for neurodegenerative disease brought on by cerebrovascular dysfunction. TRIAL REGISTRATION ClinicalTrials.gov NCT05932069; https://clinicaltrials.gov/study/NCT05932069. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/58316.
Collapse
Affiliation(s)
- Medina Oneyi Bello
- Joseph Maxwell Cleland Atlanta Veteran Affairs Medical Center, Decatur, GA, United States
| | - Kevin Michael Mammino
- Joseph Maxwell Cleland Atlanta Veteran Affairs Medical Center, Decatur, GA, United States
| | | | - Daniel G Wakeman
- School of Medicine, Emory University, Decatur, GA, United States
| | | | | | | | | | | | | |
Collapse
|
6
|
Sur S, Lin Z, Li Y, Yasar S, Rosenberg PB, Moghekar A, Hou X, Jiang D, Kalyani RR, Hazel K, Pottanat G, Xu C, Pillai JJ, Liu P, Albert M, Lu H. CO 2 cerebrovascular reactivity measured with CBF-MRI in older individuals: Association with cognition, physical function, amyloid and tau proteins. J Cereb Blood Flow Metab 2024; 44:1618-1628. [PMID: 38489769 PMCID: PMC11532674 DOI: 10.1177/0271678x241240582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Vascular pathology is the second leading cause of cognitive impairment and represents a major contributing factor in mixed dementia. However, biomarkers for vascular cognitive impairment and dementia (VCID) are under-developed. Here we aimed to investigate the potential role of CO2 Cerebrovascular Reactivity (CVR) measured with phase-contrast quantitative flow MRI in cognitive impairment and dementia. Forty-five (69 ± 7 years) impaired (37 mild-cognitive-impairment and 8 mild-dementia by syndromic diagnosis) and 22 cognitively-healthy-control (HC) participants were recruited and scanned on a 3 T MRI. Biomarkers of AD pathology were measured in cerebrospinal fluid. We found that CBF-CVR was lower (p = 0.027) in the impaired (mean±SE, 3.70 ± 0.15%/mmHg) relative to HC (4.28 ± 0.21%/mmHg). After adjusting for AD pathological markers (Aβ42/40, total tau, and Aβ42/p-tau181), higher CBF-CVR was associated with better cognitive performance, including Montreal Cognitive Assessment, MoCA (p = 0.001), composite cognitive score (p = 0.047), and language (p = 0.004). Higher CBF-CVR was also associated with better physical function, including gait-speed (p = 0.006) and time for five chair-stands (p = 0.049). CBF-CVR was additionally related to the Clinical-Dementia-Rating, CDR, including global CDR (p = 0.026) and CDR Sum-of-Boxes (p = 0.015). CBF-CVR was inversely associated with hemoglobin A1C level (p = 0.017). In summary, CBF-CVR measured with phase-contrast MRI shows associations with cognitive performance, physical function, and disease-severity, independent of AD pathological markers.
Collapse
Affiliation(s)
- Sandeepa Sur
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Rita R Kalyani
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Kaisha Hazel
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - George Pottanat
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Cuimei Xu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jay J Pillai
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
7
|
Lu J, Yassin MM, Guo Y, Yang Y, Cao F, Fang J, Zaman A, Hassan H, Zeng X, Miao X, Yang H, Cao A, Huang G, Han T, Luo Y, Kang Y. Ischemic perfusion radiomics: assessing neurological impairment in acute ischemic stroke. Front Neurol 2024; 15:1441055. [PMID: 39081344 PMCID: PMC11286473 DOI: 10.3389/fneur.2024.1441055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Accurate neurological impairment assessment is crucial for the clinical treatment and prognosis of patients with acute ischemic stroke (AIS). However, the original perfusion parameters lack the deep information for characterizing neurological impairment, leading to difficulty in accurate assessment. Given the advantages of radiomics technology in feature representation, this technology should provide more information for characterizing neurological impairment. Therefore, with its rigorous methodology, this study offers practical implications for clinical diagnosis by exploring the role of ischemic perfusion radiomics features in assessing the degree of neurological impairment. Methods This study employs a meticulous methodology, starting with generating perfusion parameter maps through Dynamic Susceptibility Contrast-Perfusion Weighted Imaging (DSC-PWI) and determining ischemic regions based on these maps and a set threshold. Radiomics features are then extracted from the ischemic regions, and the t-test and least absolute shrinkage and selection operator (Lasso) algorithms are used to select the relevant features. Finally, the selected radiomics features and machine learning techniques are used to assess the degree of neurological impairment in AIS patients. Results The results show that the proposed method outperforms the original perfusion parameters, radiomics features of the infarct and hypoxic regions, and their combinations, achieving an accuracy of 0.926, sensitivity of 0.923, specificity of 0.929, PPV of 0.923, NPV of 0.929, and AUC of 0.923, respectively. Conclusion The proposed method effectively assesses the degree of neurological impairment in AIS patients, providing an objective auxiliary assessment tool for clinical diagnosis.
Collapse
Affiliation(s)
- Jiaxi Lu
- School of Applied Technology, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Mazen M. Yassin
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yingwei Guo
- School of Electrical and Information Engineering, Northeast Petroleum University, Daqing, China
| | - Yingjian Yang
- Department of Radiological Research and Development, Shenzhen Lanmage Medical Technology Co., Ltd., Shenzhen, China
| | - Fengqiu Cao
- School of Information Science and Engineering, Shenyang Polytechnic University, Shenyang, China
| | - Jiajing Fang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, China
| | - Asim Zaman
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Haseeb Hassan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Xueqiang Zeng
- School of Applied Technology, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Xiaoqiang Miao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Huihui Yang
- School of Applied Technology, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Anbo Cao
- School of Applied Technology, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Guangtao Huang
- School of Applied Technology, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Taiyu Han
- School of Applied Technology, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yan Kang
- School of Applied Technology, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang, China
| |
Collapse
|
8
|
Wegener S, Baron JC, Derdeyn CP, Fierstra J, Fromm A, Klijn CJM, van Niftrik CHB, Schaafsma JD. Hemodynamic Stroke: Emerging Concepts, Risk Estimation, and Treatment. Stroke 2024; 55:1940-1950. [PMID: 38864227 DOI: 10.1161/strokeaha.123.044386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Ischemic stroke can arise from the sudden occlusion of a brain-feeding artery by a clot (embolic), or local thrombosis. Hemodynamic stroke occurs when blood flow does not sufficiently meet the metabolic demand of a brain region at a certain time. This discrepancy between demand and supply can occur with cerebropetal arterial occlusion or high-grade stenosis but also arises with systemic conditions reducing blood pressure. Treatment of hemodynamic stroke is targeted toward increasing blood flow to the affected area by either systemically or locally enhancing perfusion. Thus, blood pressure is often maintained above normal values, and extra-intracranial flow augmentation bypass surgery is increasingly considered. Still, current evidence supporting the superiority of pressure or flow increase over conservative measures is limited. However, methods assessing hemodynamic impairment and identifying patients at risk of hemodynamic stroke are rapidly evolving. Sophisticated models incorporating clinical and imaging factors have been suggested to aid patient selection. In this narrative review, we provide current state-of-the-art knowledge about hemodynamic stroke, tools for assessment, and treatment options.
Collapse
Affiliation(s)
- Susanne Wegener
- Department of Neurology (S.W.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Jean Claude Baron
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, FHU NeuroVasc, France (J.C.B.)
| | - Colin P Derdeyn
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville (C.P.D.)
| | - Jorn Fierstra
- Department of Neurosurgery (J.F., C.H.B.v.N.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Annette Fromm
- Department of Neurology, Haukeland University Hospital, Bergen, Norway (A.F.)
| | - Catharina J M Klijn
- Department of Neurology at Radboud University Nijmegen, the Netherlands (C.J.M.K.)
| | - Christiaan Hendrik Bas van Niftrik
- Department of Neurosurgery (J.F., C.H.B.v.N.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Joanna D Schaafsma
- Division of Neurology, Department of Medicine (JDS) and Division of Neuroradiology, Department of Medical Imaging, University Health Network, Toronto, Canada (DJM, DMM) (J.D.S.)
| |
Collapse
|
9
|
Weber AM, Nightingale TE, Jarrett M, Lee AHX, Campbell OL, Walter M, Lucas SJE, Phillips A, Rauscher A, Krassioukov AV. Cerebrovascular Reactivity Following Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2024; 30:78-95. [PMID: 38799609 PMCID: PMC11123610 DOI: 10.46292/sci23-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Spinal cord injuries (SCI) often result in cardiovascular issues, increasing the risk of stroke and cognitive deficits. Objectives This study assessed cerebrovascular reactivity (CVR) using functional magnetic resonance imaging (fMRI) during a hypercapnic challenge in SCI participants compared to noninjured controls. Methods Fourteen participants were analyzed (n = 8 with SCI [unless otherwise noted], median age = 44 years; n = 6 controls, median age = 33 years). CVR was calculated through fMRI signal changes. Results The results showed a longer CVR component (tau) in the grey matter of SCI participants (n = 7) compared to controls (median difference = 3.0 s; p < .05). Time since injury (TSI) correlated negatively with steady-state CVR in the grey matter and brainstem of SCI participants (RS = -0.81, p = .014; RS = -0.84, p = .009, respectively). Lower steady-state CVR in the brainstem of the SCI group (n = 7) correlated with lower diastolic blood pressure (RS = 0.76, p = .046). Higher frequency of hypotensive episodes (n = 7) was linked to lower CVR outcomes in the grey matter (RS = -0.86, p = .014) and brainstem (RS = -0.89, p = .007). Conclusion Preliminary findings suggest a difference in the dynamic CVR component, tau, between the SCI and noninjured control groups, potentially explaining the higher cerebrovascular health burden in SCI individuals. Exploratory associations indicate that longer TSI, lower diastolic blood pressure, and more hypotensive episodes may lead to poorer CVR outcomes. However, further research is necessary to establish causality and support these observations.
Collapse
Affiliation(s)
- Alexander Mark Weber
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, British Columbia, Canada
- Department of Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Tom E. Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Michael Jarrett
- MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - Amanda H. X. Lee
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Olivia Lauren Campbell
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, British Columbia, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, UK
| | - Aaron Phillips
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- RestoreNetwork, Hotchkiss Brain Institute, Libin Cardiovascular Institute, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alexander Rauscher
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Astronomy and Physics, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- G.F. Strong Rehabilitation Centre, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Coverdale NS, Champagne AA, Allen MD, Tremblay JC, Ethier TS, Fernandez-Ruiz J, Marshall RA, MacPherson REK, Pyke KE, Cook DJ, Olver TD. Brain atrophy, reduced cerebral perfusion, arterial stiffening, and wall thickening with aging coincide with stimulus-specific changes in fMRI-BOLD responses. Am J Physiol Regul Integr Comp Physiol 2024; 326:R346-R356. [PMID: 38406844 DOI: 10.1152/ajpregu.00270.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The aim of this study was to investigate how aging affects blood flow and structure of the brain. It was hypothesized older individuals would have lower gray matter volume (GMV), resting cerebral blood flow (CBF0), and depressed responses to isometabolic and neurometabolic stimuli. In addition, increased carotid-femoral pulse-wave velocity (PWV), carotid intima-media thickness (IMT), and decreased brachial flow-mediated dilation (FMD) would be associated with lower CBF0, cerebrovascular reactivity (CVR), and GMV. Brain scans (magnetic resonance imaging) and cardiovascular examinations were conducted in young (age = 24 ± 3 yr, range = 22-28 yr; n = 13) and old (age = 71 ± 4 yr; range = 67-82 yr, n = 14) participants, and CBF0, CVR [isometabolic % blood oxygen level-dependent (BOLD) in response to a breath hold (BH)], brain activation patterns during a working memory task (neurometabolic %BOLD response to N-back trial), GMV, PWV, IMT, and FMD were measured. CBF0 and to a lesser extent CVRBH were lower in the old group (P ≤ 0.050); however, the increase in the %BOLD response to the memory task was not blunted (P ≥ 0.2867). Age-related differential activation patterns during the working memory task were characterized by disinhibition of the default mode network in the old group (P < 0.0001). Linear regression analyses revealed PWV, and IMT were negatively correlated with CBF0, CVRBH, and GMV across age groups, but within the old group alone only the relationships between PWV-CVRBH and IMT-GMV remained significant (P ≤ 0.0183). These findings suggest the impacts of age on cerebral %BOLD responses are stimulus specific, brain aging involves alterations in cerebrovascular and possibly neurocognitive control, and arterial stiffening and wall thickening may serve a role in cerebrovascular aging.NEW & NOTEWORTHY Cerebral perfusion was lower in old versus young adults. %Blood oxygen level-dependent (BOLD) responses to an isometabolic stimulus and gray matter volume were decreased in old versus young adults and associated with arterial stiffening and wall thickening. The increased %BOLD response to a neurometabolic stimulus appeared unaffected by age; however, the old group displayed disinhibition of the default mode network during the stimulus. Thus, age-related alterations in cerebral %BOLD responses were stimulus specific and related to arterial remodeling.
Collapse
Affiliation(s)
- Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Joshua C Tremblay
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Tarrah S Ethier
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Rory A Marshall
- Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Biomedical Sciences, Western College of Veterinary Medicine, the University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, the University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Tomasi D, Manza P, Yan W, Shokri-Kojori E, Demiral ŞB, Yonga MV, McPherson K, Biesecker C, Dennis E, Johnson A, Zhang R, Wang GJ, Volkow ND. Examining the role of dopamine in methylphenidate's effects on resting brain function. Proc Natl Acad Sci U S A 2023; 120:e2314596120. [PMID: 38109535 PMCID: PMC10756194 DOI: 10.1073/pnas.2314596120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
The amplitude of low-frequency fluctuations (ALFF) and global functional connectivity density (gFCD) are fMRI (Functional MRI) metrics widely used to assess resting brain function. However, their differential sensitivity to stimulant-induced dopamine (DA) increases, including the rate of DA rise and the relationship between them, have not been investigated. Here we used, simultaneous PET-fMRI to examine the association between dynamic changes in striatal DA and brain activity as assessed by ALFF and gFCD, following placebo, intravenous (IV), or oral methylphenidate (MP) administration, using a within-subject double-blind placebo-controlled design. In putamen, MP significantly reduced D2/3 receptor availability and strongly reduced ALFF and increased gFCD in the brain for IV-MP (Cohen's d > 1.6) but less so for oral-MP (Cohen's d < 0.6). Enhanced gFCD was associated with both the level and the rate of striatal DA increases, whereas decreased ALFF was only associated with the level of DA increases. These findings suggest distinct representations of neurovascular activation with ALFF and gFCD by stimulant-induced DA increases with differential sensitivity to the rate and the level of DA increases. We also observed an inverse association between gFCD and ALFF that was markedly enhanced during IV-MP, which could reflect an increased contribution from MP's vasoactive properties.
Collapse
Affiliation(s)
- Dardo Tomasi
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Peter Manza
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Weizheng Yan
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Şükrü Barış Demiral
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Michele-Vera Yonga
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Katherine McPherson
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Catherine Biesecker
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Evan Dennis
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Allison Johnson
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Rui Zhang
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Gene-Jack Wang
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Nora D. Volkow
- Laboratory of Neuroimaging (LNI), National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| |
Collapse
|
12
|
Deckers PT, Siero JCW, Mensink MO, Kronenburg A, Braun KPJ, van der Zwan A, Bhogal AA. Anesthesia Depresses Cerebrovascular Reactivity to Acetazolamide in Pediatric Moyamoya Vasculopathy. J Clin Med 2023; 12:4393. [PMID: 37445429 DOI: 10.3390/jcm12134393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Measurements of cerebrovascular reactivity (CVR) are essential for treatment decisions in moyamoya vasculopathy (MMV). Since MMV patients are often young or cognitively impaired, anesthesia is commonly used to limit motion artifacts. Our aim was to investigate the effect of anesthesia on the CVR in pediatric MMV. We compared the CVR with multidelay-ASL and BOLD MRI, using acetazolamide as a vascular stimulus, in all awake and anesthesia pediatric MMV scans at our institution. Since a heterogeneity in disease and treatment influences the CVR, we focused on the (unaffected) cerebellum. Ten awake and nine anesthetized patients were included. The post-acetazolamide CBF and ASL-CVR were significantly lower in anesthesia patients (47.1 ± 15.4 vs. 61.4 ± 12.1, p = 0.04; 12.3 ± 8.4 vs. 23.7 ± 12.2 mL/100 g/min, p = 0.03, respectively). The final BOLD-CVR increase (0.39 ± 0.58 vs. 3.6 ± 1.2% BOLD-change (mean/SD), p < 0.0001), maximum slope of increase (0.0050 ± 0.0040%/s vs. 0.017 ± 0.0059%, p < 0.0001), and time to maximum BOLD-increase (~463 ± 136 and ~697 ± 144 s, p = 0.0028) were all significantly lower in the anesthesia group. We conclude that the response to acetazolamide is distinctively different between awake and anesthetized MMV patients, and we hypothesize that these findings can also apply to other diseases and methods of measuring CVR under anesthesia. Considering that treatment decisions heavily depend on CVR status, caution is warranted when assessing CVR under anesthesia.
Collapse
Affiliation(s)
- Pieter T Deckers
- Department of Neurosurgery, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Radiology and Nuclear Medicine, Meander Medisch Centrum, 3813 TZ Amersfoort, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, 1105 BK Amsterdam, The Netherlands
| | - Maarten O Mensink
- Pediatric Anesthesiology, Prinses Máxima Centrum, 3584 CS Utrecht, The Netherlands
| | - Annick Kronenburg
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| | - Kees P J Braun
- Department of Pediatric Neurology, Wilhelmina Children's Hospital, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| | - Albert van der Zwan
- Department of Neurosurgery, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| | - Alex A Bhogal
- Department of Radiology, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
13
|
Marchena-Romero KJ, Ji X, Sommer R, Centen A, Ramirez J, Poulin JM, Mikulis D, Thrippleton M, Wardlaw J, Lim A, Black SE, MacIntosh BJ. Examining temporal features of BOLD-based cerebrovascular reactivity in clinical populations. Front Neurol 2023; 14:1199805. [PMID: 37396759 PMCID: PMC10310960 DOI: 10.3389/fneur.2023.1199805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Background Conventional cerebrovascular reactivity (CVR) estimation has demonstrated that many brain diseases and/or conditions are associated with altered CVR. Despite the clinical potential of CVR, characterization of temporal features of a CVR challenge remains uncommon. This work is motivated by the need to develop CVR parameters that characterize individual temporal features of a CVR challenge. Methods Data were collected from 54 adults and recruited based on these criteria: (1) Alzheimer's disease diagnosis or subcortical Vascular Cognitive Impairment, (2) sleep apnea, and (3) subjective cognitive impairment concerns. We investigated signal changes in blood oxygenation level dependent (BOLD) contrast images with respect to hypercapnic and normocapnic CVR transition periods during a gas manipulation paradigm. We developed a model-free, non-parametric CVR metric after considering a range of responses through simulations to characterize BOLD signal changes that occur when transitioning from normocapnia to hypercapnia. The non-parametric CVR measure was used to examine regional differences across the insula, hippocampus, thalamus, and centrum semiovale. We also examined the BOLD signal transition from hypercapnia back to normocapnia. Results We found a linear association between isolated temporal features of successive CO2 challenges. Our study concluded that the transition rate from hypercapnia to normocapnia was significantly associated with the second CVR response across all regions of interest (p < 0.001), and this association was highest in the hippocampus (R2 = 0.57, p < 0.0125). Conclusion This study demonstrates that it is feasible to examine individual responses associated with normocapnic and hypercapnic transition periods of a BOLD-based CVR experiment. Studying these features can provide insight on between-subject differences in CVR.
Collapse
Affiliation(s)
- Kayley-Jasmin Marchena-Romero
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Xiang Ji
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| | - Rosa Sommer
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Andrew Centen
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| | - Joshua M. Poulin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| | - David Mikulis
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Michael Thrippleton
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Lim
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sandra E. Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| | - Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| |
Collapse
|
14
|
Shams S, Prokopiou P, Esmaelbeigi A, Mitsis GD, Chen JJ. Modeling the dynamics of cerebrovascular reactivity to carbon dioxide in fMRI under task and resting-state conditions. Neuroimage 2023; 265:119758. [PMID: 36442732 DOI: 10.1016/j.neuroimage.2022.119758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Conventionally, cerebrovascular reactivity (CVR) is estimated as the amplitude of the hemodynamic response to vascular stimuli, most commonly carbon dioxide (CO2). While the CVR amplitude has established clinical utility, the temporal characteristics of CVR (dCVR) have been increasingly explored and may yield even more pathology-sensitive parameters. This work is motivated by the current need to evaluate the feasibility of dCVR modeling in various experimental conditions. In this work, we present a comparison of several recently published/utilized model-based deconvolution (response estimation) approaches for estimating the CO2 response function h(t), including maximum a posteriori likelihood (MAP), inverse logit (IL), canonical correlation analysis (CCA), and basis expansion (using Gamma and Laguerre basis sets). To aid the comparison, we devised a novel simulation framework that incorporates a wide range of SNRs, ranging from 10 to -7 dB, representative of both task and resting-state CO2 changes. In addition, we built ground-truth h(t) into our simulation framework, overcoming the conventional limitation that the true h(t) is unknown. Moreover, to best represent realistic noise found in fMRI scans, we extracted noise from in-vivo resting-state scans. Furthermore, we introduce a simple optimization of the CCA method (CCAopt) and compare its performance to these existing methods. Our findings suggest that model-based methods can accurately estimate dCVR even amidst high noise (i.e. resting-state), and in a manner that is largely independent of the underlying model assumptions for each method. We also provide a quantitative basis for making methodological choices, based on the desired dCVR parameters, the estimation accuracy and computation time. The BEL method provided the highest accuracy and robustness, followed by the CCAopt and IL methods. Of the three, the CCAopt method has the lowest computational requirements. These findings lay the foundation for wider adoption of dCVR estimation in CVR mapping.
Collapse
Affiliation(s)
- Seyedmohammad Shams
- Rotman Research Institute, Baycrest Health Sciences, Canada; Department of Neurology, Henry Ford Health, USA
| | - Prokopis Prokopiou
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Canada; Department of Bioengineering, McGill University, Canada; Department of Medical Biophysics, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
15
|
Tan JL, Ragot DM, Chen JJ. Characterization of the echo-time dependence of spin-echo BOLD fMRI at 3 Tesla in grey and white matter. J Neurosci Methods 2022; 381:109691. [PMID: 36096237 DOI: 10.1016/j.jneumeth.2022.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - Don M Ragot
- Rotman Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
16
|
Lee MJ, Park BY, Cho S, Kim S, Park H, Kim ST, Chung CS. Cerebrovascular reactivity and deep white matter hyperintensities in migraine: A prospective CO 2 targeting study. J Cereb Blood Flow Metab 2022; 42:1879-1889. [PMID: 35607990 PMCID: PMC9536123 DOI: 10.1177/0271678x221103006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies suggested the association of migraine with deep white matter hyperintensities (WMHs). We aimed to explore the cerebrovascular reactivity (CVR), deep WMH burden, and their association in patients with migraine using a state-of-the-art methodology. A total of 31 patients with migraine without aura and 31 age/sex-matched controls underwent 3T MRI with prospective end-tidal carbon dioxide (CO2) targeting. We quantified deep WMH clusters using an automated segmentation tool and measured voxel-wise CVR by changes in blood oxygen level-dependent signal fitted to subjects' end-tidal CO2. The association of migraine and CVR with the presence of WMH in each voxel and interaction of migraine and CVR on WMH were analysed. Patients had a higher number of deep WMHs than controls (p = 0.015). Migraine and reduced CVR were associated with increased probability of having WMHs in each voxel (adjusted OR 30.78 [95% CI 1.89-500.53], p = 0.016 and adjusted OR 0.30 [0.29-0.32], p < 0.001, respectively). Migraine had an effect modification on CVR on deep WMHs (p for interaction <0.001): i.e. the association between CVR and WMH was greater in patients than in controls. We suggest that the migraine-WMH association can be explained by the effect modification on the CVR.
Collapse
Affiliation(s)
- Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Seoul National University College of Medicine, Seoul, South Korea
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea
| | - Soohyun Cho
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, South Korea
| | - Seonwoo Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chin-Sang Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Differential regional cerebrovascular reactivity to end-tidal gas combinations commonly seen during anaesthesia: A blood oxygenation level-dependent MRI observational study in awake adult subjects. Ugeskr Laeger 2022; 39:774-784. [PMID: 35852545 DOI: 10.1097/eja.0000000000001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Regional cerebrovascular reactivity (rCVR) is highly variable in the human brain as measured by blood oxygenation level-dependent (BOLD) MRI to changes in both end-tidal CO 2 and O 2 . OBJECTIVES We examined awake participants under carefully controlled end-tidal gas concentrations to assess how regional CVR changes may present with end-tidal gas changes seen commonly with anaesthesia. DESIGN Observational study. SETTING Tertiary care centre, Winnipeg, Canada. The imaging for the study occurred in 2019. SUBJECTS Twelve healthy adult subjects. INTERVENTIONS Cerebral BOLD response was studied under two end-tidal gas paradigms. First end-tidal oxygen (ETO 2 ) maintained stable whereas ETCO 2 increased incrementally from hypocapnia to hypercapnia (CO 2 ramp); second ETCO 2 maintained stable whereas ETO 2 increased from normoxia to hyperoxia (O 2 ramp). BOLD images were modeled with end-tidal gas sequences split into two equal segments to examine regional CVR. MAIN OUTCOME MEASURES The voxel distribution comparing hypocapnia to mild hypercapnia and mild hyperoxia (mean F I O 2 = 0.3) to marked hyperoxia (mean F I O 2 = 0.7) were compared in a paired fashion ( P < 0.005 to reach threshold for voxel display). Additionally, type analysis was conducted on CO 2 ramp data. This stratifies the BOLD response to the CO 2 ramp into four categories of CVR slope based on segmentation (type A; +/+slope: normal response, type B +/-, type C -/-: intracranial steal, type D -/+.) Types B to D represent altered responses to the CO 2 stimulus. RESULTS Differential regional responsiveness was seen for both end-tidal gases. Hypocapnic regional CVR was more marked than hypercapnic CVR in 0.3% of voxels examined ( P < 0.005, paired comparison); the converse occurred in 2.3% of voxels. For O 2 , mild hyperoxia had more marked CVR in 0.2% of voxels compared with greater hyperoxia; the converse occurred in 0.5% of voxels. All subjects had altered regional CO 2 response based on Type Analysis ranging from 4 ± 2 to 7 ± 3% of voxels. CONCLUSION In awake subjects, regional differences and abnormalities in CVR were observed with changes in end-tidal gases common during the conduct of anaesthesia. On the basis of these findings, consideration could be given to minimising regional CVR fluctuations in patients-at-risk of neurological complications by tighter control of end-tidal gases near the individual's resting values.
Collapse
|
18
|
Cao F, Wang M, Han S, Fan S, Guo Y, Yang Y, Luo Y, Guo J, Kang Y. Quantitative Distribution of Cerebral Venous Oxygen Saturation and Its Prognostic Value in Patients with Acute Ischemic Stroke. Brain Sci 2022; 12:brainsci12081109. [PMID: 36009171 PMCID: PMC9406002 DOI: 10.3390/brainsci12081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the quantitative distribution of cerebral venous oxygen saturation (SvO2) based on quantitative sensitivity mapping (QSM) and determined its prognostic value in patients with acute ischemic stroke (AIS). A retrospective study was conducted on 39 hospitalized patients. Reconstructed QSM was used to calculate the cerebral SvO2 of each region of interest (ROI) in the ischemic hemisphere. The intraclass correlation coefficient (ICC) and Bland−Altman analysis were conducted to define the best resolution of the distribution map. The correlation between the cerebral SvO2 in hypoxic regions (SvO2ROI < 0.7) and clinical scores was obtained by Spearman and power analysis. The associations between cerebral SvO2 and unfavorable prognosis were analyzed using multivariate logistic regression. Excellent agreement was found between the cerebral SvO2 in hypoxic regions with a resolution of 7.18 × 7.18 × 1.6 mm3 and asymmetrically prominent cortical veins regions (ICC: 0.879 (admission), ICC: 0.906 (discharge)). The cerebral SvO2 was significantly negative with clinical scores (all |r| > 0.3). The cerebral SvO2 and its changes at discharge were significantly associated with an unfavorable prognosis (OR: 0.812 and 0.866). Therefore, the cerebral SvO2 in hypoxic regions measured by the quantitative distribution map can be used as an indicator for evaluating the early prognosis of AIS.
Collapse
Affiliation(s)
- Fengqiu Cao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Mingming Wang
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Shanhua Han
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Shengyu Fan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yingwei Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yingjian Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yu Luo
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY 10027, USA
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| | - Yan Kang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| |
Collapse
|
19
|
Forté S, Sobczyk O, Poublanc J, Duffin J, Hare GMT, Fisher JA, Mikulis D, Kuo KHM. Sickle cell cerebrovascular reactivity to a CO2 stimulus: Too little, too slow. Front Physiol 2022; 13:886807. [PMID: 36060689 PMCID: PMC9437621 DOI: 10.3389/fphys.2022.886807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Despite increased cerebral blood flow (CBF), cerebral infarcts occur in patients with sickle cell disease (SCD). This suggests increased CBF does not meet metabolic demand possibly due to compromised cerebral vasodilatory response. Hypothesis: In adult SCD patients, cerebrovascular reactivity (CVR) and speed of vasodilatory response (tau) to a standardized vasodilatory stimulus, are reduced compared to normal subjects. Methods: Functional brain imaging performed as part of routine care in adult SCD patients without known large vessel cerebral vasculopathy was reviewed retrospectively. CVR was calculated as the change in CBF measured as the blood-oxygenation-level-dependent (BOLD)-magnetic resonance imaging signal, in response to a standard vasoactive stimulus of carbon dioxide (CO2). The tau corresponding to the best fit between the convolved end-tidal partial pressures of CO2 and BOLD signal was defined as the speed of vascular response. CVR and tau were normalized using a previously generated atlas of 42 healthy controls. Results: Fifteen patients were included. CVR was reduced in grey and white matter (mean Z-score for CVR −0.5 [−1.8 to 0.3] and −0.6 [−2.3 to 0.7], respectively). Tau Z-scores were lengthened in grey and white matter (+0.9 [−0.5 to 3.3] and +0.8 [−0.7 to 2.7], respectively). Hematocrit was the only significant independent predictor of CVR on multivariable regression. Conclusion: Both measures of cerebrovascular health (CVR and tau) in SCD patients were attenuated compared to normal controls. These findings show that CVR represents a promising tool to assess disease state, stroke risk, and therapeutic efficacy of treatments in SCD and merits further investigation.
Collapse
Affiliation(s)
- Stéphanie Forté
- Division of Medical Oncology and Hematology, Departement of Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
- Department of Anaesthesia and Pain Medicine, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - James Duffin
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Gregory M. T. Hare
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, St. Michael’s Hospital, Toronto, ON, Canada
| | - Joseph Arnold Fisher
- Department of Anaesthesia and Pain Medicine, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David Mikulis
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Kevin H. M. Kuo
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- *Correspondence: Kevin H. M. Kuo,
| |
Collapse
|
20
|
Peng SL, Chu LWL, Su FY. Cerebral hemodynamic response to caffeine: effect of dietary caffeine consumption. NMR IN BIOMEDICINE 2022; 35:e4727. [PMID: 35285102 DOI: 10.1002/nbm.4727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Caffeine has a significant effect on cerebrovascular systems, and the dual action of caffeine on both neural and vascular responses leads to concerns for the interpretation of blood oxygenation level-dependent (BOLD) functional MRI. However, potential differences in the brain response to caffeine with regard to consumption habits have not been fully elucidated, as BOLD responses may vary with the dietary caffeine consumption history. The main aim of this study was to characterize the acute effect of caffeine on cerebral hemodynamic responses in participants with different patterns of caffeine consumption habits. Fifteen non-habitual and 11 habitual volunteers were included in this study. The cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to the breath-hold challenge were measured before and after 200 mg caffeine administration. The non-habitual individuals exhibited a pattern of progressive reduction in CBF with time. The CVR was diminished in the caffeinated condition (P < 0.05). In the habitual group, the pattern of CBF decrease was smaller and homogeneous across the brain, and reached steady state rapidly. The CVR was not affected in the presence of caffeine (P > 0.05). Our results demonstrated that the cerebral hemodynamic response to caffeine was subject to the habitual consumption patterns of the participants. The compromised CVR following caffeine administration in the non-habitual group may partially explain the suppressed BOLD response to a visual stimulation in low-caffeine-level users.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Feng-Yi Su
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
21
|
Guilbert J, Légaré A, De Koninck P, Desrosiers P, Desjardins M. Toward an integrative neurovascular framework for studying brain networks. NEUROPHOTONICS 2022; 9:032211. [PMID: 35434179 PMCID: PMC8989057 DOI: 10.1117/1.nph.9.3.032211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 05/28/2023]
Abstract
Brain functional connectivity based on the measure of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals has become one of the most widely used measurements in human neuroimaging. However, the nature of the functional networks revealed by BOLD fMRI can be ambiguous, as highlighted by a recent series of experiments that have suggested that typical resting-state networks can be replicated from purely vascular or physiologically driven BOLD signals. After going through a brief review of the key concepts of brain network analysis, we explore how the vascular and neuronal systems interact to give rise to the brain functional networks measured with BOLD fMRI. This leads us to emphasize a view of the vascular network not only as a confounding element in fMRI but also as a functionally relevant system that is entangled with the neuronal network. To study the vascular and neuronal underpinnings of BOLD functional connectivity, we consider a combination of methodological avenues based on multiscale and multimodal optical imaging in mice, used in combination with computational models that allow the integration of vascular information to explain functional connectivity.
Collapse
Affiliation(s)
- Jérémie Guilbert
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| | - Antoine Légaré
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Paul De Koninck
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Patrick Desrosiers
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Michèle Desjardins
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| |
Collapse
|
22
|
Stickland RC, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Lag-Optimized Blood Oxygenation Level Dependent Cerebrovascular Reactivity Estimates Derived From Breathing Task Data Have a Stronger Relationship With Baseline Cerebral Blood Flow. Front Neurosci 2022; 16:910025. [PMID: 35801183 PMCID: PMC9254683 DOI: 10.3389/fnins.2022.910025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebrovascular reactivity (CVR), an important indicator of cerebrovascular health, is commonly studied with the Blood Oxygenation Level Dependent functional MRI (BOLD-fMRI) response to a vasoactive stimulus. Theoretical and empirical evidence suggests that baseline cerebral blood flow (CBF) modulates BOLD signal amplitude and may influence BOLD-CVR estimates. We address how acquisition and modeling choices affect the relationship between baseline cerebral blood flow (bCBF) and BOLD-CVR: whether BOLD-CVR is modeled with the inclusion of a breathing task, and whether BOLD-CVR amplitudes are optimized for hemodynamic lag effects. We assessed between-subject correlations of average GM values and within-subject spatial correlations across cortical regions. Our results suggest that a breathing task addition to a resting-state acquisition, alongside lag-optimization within BOLD-CVR modeling, can improve BOLD-CVR correlations with bCBF, both between- and within-subjects, likely because these CVR estimates are more physiologically accurate. We report positive correlations between bCBF and BOLD-CVR, both between- and within-subjects. The physiological explanation of this positive correlation is unclear; research with larger samples and tightly controlled vasoactive stimuli is needed. Insights into what drives variability in BOLD-CVR measurements and related measurements of cerebrovascular function are particularly relevant when interpreting results in populations with altered vascular and/or metabolic baselines or impaired cerebrovascular reserve.
Collapse
Affiliation(s)
- Rachael C. Stickland
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Spain
- University of the Basque Country EHU/UPV, Donostia, Spain
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
23
|
Deckers PT, Bhogal AA, Dijsselhof MBJ, Faraco CC, Liu P, Lu H, Donahue MJ, Siero JCW. Hemodynamic and metabolic changes during hypercapnia with normoxia and hyperoxia using pCASL and TRUST MRI in healthy adults. J Cereb Blood Flow Metab 2022; 42:861-875. [PMID: 34851757 PMCID: PMC9014679 DOI: 10.1177/0271678x211064572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/06/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Blood oxygenation level-dependent (BOLD) or arterial spin labeling (ASL) MRI with hypercapnic stimuli allow for measuring cerebrovascular reactivity (CVR). Hypercapnic stimuli are also employed in calibrated BOLD functional MRI for quantifying neuronally-evoked changes in cerebral oxygen metabolism (CMRO2). It is often assumed that hypercapnic stimuli (with or without hyperoxia) are iso-metabolic; increasing arterial CO2 or O2 does not affect CMRO2. We evaluated the null hypothesis that two common hypercapnic stimuli, 'CO2 in air' and carbogen, are iso-metabolic. TRUST and ASL MRI were used to measure the cerebral venous oxygenation and cerebral blood flow (CBF), from which the oxygen extraction fraction (OEF) and CMRO2 were calculated for room-air, 'CO2 in air' and carbogen. As expected, CBF significantly increased (9.9% ± 9.3% and 12.1% ± 8.8% for 'CO2 in air' and carbogen, respectively). CMRO2 decreased for 'CO2 in air' (-13.4% ± 13.0%, p < 0.01) compared to room-air, while the CMRO2 during carbogen did not significantly change. Our findings indicate that 'CO2 in air' is not iso-metabolic, while carbogen appears to elicit a mixed effect; the CMRO2 reduction during hypercapnia is mitigated when including hyperoxia. These findings can be important for interpreting measurements using hypercapnic or hypercapnic-hyperoxic (carbogen) stimuli.
Collapse
Affiliation(s)
- Pieter T Deckers
- Department of Neurosurgery, University Medical Center Utrecht,
Utrecht, Netherlands
| | - Alex A Bhogal
- Department of Radiology, Center for Image Sciences, University
Medical Center Utrecht, Utrecht, Netherlands
| | - Mathijs BJ Dijsselhof
- Department of Radiology, Center for Image Sciences, University
Medical Center Utrecht, Utrecht, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam
Neuroscience, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Carlos C Faraco
- Radiology and Radiological Sciences, Vanderbilt University
Medical Center, Nashville, Tennessee, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Manus J Donahue
- Radiology and Radiological Sciences, Vanderbilt University
Medical Center, Nashville, Tennessee, USA
| | - Jeroen CW Siero
- Department of Radiology, Center for Image Sciences, University
Medical Center Utrecht, Utrecht, Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| |
Collapse
|
24
|
Champagne AA, Coverdale NS, Allen MD, Tremblay JC, MacPherson REK, Pyke KE, Olver TD, Cook DJ. The physiological basis underlying functional connectivity differences in older adults: A multi-modal analysis of resting-state fMRI. Brain Imaging Behav 2022; 16:1575-1591. [PMID: 35092574 DOI: 10.1007/s11682-021-00570-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/27/2021] [Indexed: 11/02/2022]
Abstract
The purpose of this study was to determine if differences in functional connectivity strength (FCS) with age were confounded by vascular parameters including resting cerebral blood flow (CBF0), cerebrovascular reactivity (CVR), and BOLD-CBF coupling. Neuroimaging data were collected from 13 younger adults (24 ± 2 years) and 14 older adults (71 ± 4 years). A dual-echo resting state pseudo-continuous arterial spin labeling sequence was performed, as well as a BOLD breath-hold protocol. A group independent component analysis was used to identify networks, which were amalgamated into a region of interest (ROI). Within the ROI, FC strength (FCS) was computed for all voxels and compared across the groups. CBF0, CVR and BOLD-CBF coupling were examined within voxels where FCS was different between young and older adults. FCS was greater in old compared to young (P = 0.001). When the effect of CBF0, CVR and BOLD-CBF coupling on FCS was examined, BOLD-CBF coupling had a significant effect (P = 0.003) and group differences in FCS were not present once all vascular parameters were considered in the statistical model (P = 0.07). These findings indicate that future studies of FCS should consider vascular physiological markers in order to improve our understanding of aging processes on brain connectivity.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Physical Medicine and Rehabilitation, Providence Care Hospital, 752 King St., Ontario, West Kingston, Canada
| | - Joshua C Tremblay
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinarian Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada. .,Department of Surgery, Queen's University, Room 232, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
25
|
Wang R, Poublanc J, Crawley AP, Sobczyk O, Kneepkens S, Mcketton L, Tator C, Wu R, Mikulis DJ. Cerebrovascular reactivity changes in acute concussion: a controlled cohort study. Quant Imaging Med Surg 2021; 11:4530-4542. [PMID: 34737921 DOI: 10.21037/qims-20-1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
Background Evidence suggests that cerebrovascular reactivity (CVR) increases within the first week after the incidence of concussion, indicating a disruption of normal autoregulation. We sought to extend these findings by investigating the effects of acute concussion on the speed of CVR response and by visualizing global and regional impairments in individual patients with acute concussion. Methods Twelve patients aged 18-40 years who experienced concussion less than a week before this prospective study were included. Twelve age and sex-matched healthy subjects constituted the control group. In all subjects, CVR was assessed using blood oxygenation level-dependent (BOLD) echo-planar imaging with a 3.0T MRI scanner, in combination with changes in end-tidal partial pressure of CO2 (PETCO2). In each subject, we calculated the CVR amplitude and CVR response time in the gray and white matter using a step and ramp PETCO2 challenge. In addition, a separate group of 39 healthy controls who underwent the same evaluation was used to create atlases with voxel-wise mean and standard deviation of CVR amplitude and CVR response time. This allowed us to convert each metric of the 12 patients with concussion and the 12 healthy controls into z-score maps. These maps were then used to generate and compare z-scores for each of the two groups. Group differences were calculated using an unpaired t-test. Results All studies were well tolerated without any serious adverse events. Anatomical MRI was normal in all study subjects. No differences in CO2 stimulus and O2 targeting were observed between the two participant groups during BOLD MRI. With regard to the gray matter, the CVR magnitude step (P=0.117) and ramp + 10 (P=0.085) were not significantly different between patients with concussion and healthy controls. However, the tau value was significantly lower in patients with concussion than in the healthy controls (P=0.04). With regard to the white matter, the CVR magnitude step (P=0.003) and ramp + 10 (P=0.031) were significantly higher and the tau value (P=0.024) was significantly shorter in patients with concussion than in healthy controls. After z-score transformation, the z tau value was significantly lower in patients with concussion than in healthy controls (Grey matter P=0.021, White matter P=0.003). Comparison of the three parameters, z ramp + 10, z step, and z tau, between the two groups showed that z step (Grey matter P=0.035, White matter P=0.005) was the most sensitive parameter and that z ramp + 10 (Grey matter P=0.073, White matter P=0.126) was the least sensitive parameter. Conclusions Concussion is associated with patient-specific abnormalities in BOLD cerebrovascular responsiveness that occur in the setting of normal global CVR. This study demonstrates that the measurement of CVR using BOLD MRI and precise CO2 control is a safe, reliable, reproducible, and clinically useful method for evaluating the state of patients with concussion. It has the potential to be an important tool for assessing the severity and duration of symptoms after concussion.
Collapse
Affiliation(s)
- Runrun Wang
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China.,Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Sander Kneepkens
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Larissa Mcketton
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Charles Tator
- Department of Surgery, Division of Neurosurgery, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Renhua Wu
- Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Sabra D, Intzandt B, Desjardins-Crepeau L, Langeard A, Steele CJ, Frouin F, Hoge RD, Bherer L, Gauthier CJ. Sex moderations in the relationship between aortic stiffness, cognition, and cerebrovascular reactivity in healthy older adults. PLoS One 2021; 16:e0257815. [PMID: 34582484 PMCID: PMC8478243 DOI: 10.1371/journal.pone.0257815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
It is well established that sex differences exist in the manifestation of vascular diseases. Arterial stiffness (AS) has been associated with changes in cerebrovascular reactivity (CVR) and cognitive decline in aging. Specifically, older adults with increased AS show a decline on executive function (EF) tasks. Interestingly, the relationship between AS and CVR is more complex, where some studies show decreased CVR with increased AS, and others demonstrate preserved CVR despite higher AS. Here, we investigated the possible role of sex on these hemodynamic relationships. Acquisitions were completed in 48 older adults. Pseudo-continuous arterial spin labeling (pCASL) data were collected during a hypercapnia challenge. Aortic pulse wave velocity (PWV) data was acquired using cine phase contrast velocity series. Cognitive function was assessed with a comprehensive neuropsychological battery, and a composite score for EF was calculated using four cognitive tests from the neuropsychological battery. A moderation model test revealed that sex moderated the relationship between PWV and CVR and PWV and EF, but not between CVR and EF. Together, our results indicate that the relationships between central stiffness, cerebral hemodynamics and cognition are in part mediated by sex.
Collapse
Affiliation(s)
- Dalia Sabra
- Faculty of Medicine, Department of Biomedical Science, Université de Montreal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Brittany Intzandt
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- INDI Department, Concordia University, Montreal, QC, Canada
| | - Laurence Desjardins-Crepeau
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Antoine Langeard
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Christopher J. Steele
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | | | - Richard D. Hoge
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Louis Bherer
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Claudine J. Gauthier
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- Physics Department, Concordia University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
27
|
Differential regional cerebral blood flow reactivity to alterations in end-tidal gases in healthy volunteers. Can J Anaesth 2021; 68:1497-1506. [PMID: 34105067 DOI: 10.1007/s12630-021-02042-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Anesthesia is associated with alterations in end-tidal (ET) respiratory gases from the awake state. These alterations result in marked vasoactive changes in regional cerebral blood flow (rCBF). Altered regional cerebrovascular reactivity (rCVR) is linked to neurologic dysfunction. We examined these differences in reactivity from prior work by focusing on the ratio of vasoconstriction with hyperoxia/hypocapnia (HO/hc):vasodilation with hypercapnia (HC) using magnetic resonance imaging pseudo-continuous arterial spin labelling (pCASL) to measure rCBF and compare rCVR The distribution and magnitude of these ratios could provide insights into rCBF during clinical anesthesia and inform future research into the origins of postoperative delirium (POD). METHODS Ten healthy subjects underwent cerebral blood flow (CBF) studies using pCASL with computer-controlled delivery of ET gases to assess flow effects of hyperoxia, hypercapnia, and hyperoxia/hypocapnia as part of a larger study into cerebrovascular reactivity. The vasoconstrictor stimulus was compared with the vasodilator stimulus by the ratio HO/hc:HC. RESULTS Hyperoxia minimally decreased whole brain CBF by - 0.6%/100 mm Hg increase in ETO2. Hypercapnia increased CBF by +4.6%/mm Hg carbon dioxide (CO2) and with HO/hc CBF decreased by - 5.1%/mm Hg CO2. The brain exhibited markedly different rCVR-regional HO/hc:HC ratios varied from 7.2:1 (greater response to vasoconstriction) to 0.49:1 (greater response to vasodilation). Many of the ratios greater than 1, where vasoconstriction predominated, were seen in regions associated with memory, cognition, and executive function, including the entorhinal cortex, hippocampus, parahippocampus, and dorsolateral prefrontal cortex. CONCLUSIONS In awake humans, marked rCBF changes occurred with alterations in ET respiratory gases common under anesthesia. Such heterogeneous reactivity may be relevant to future studies to identify those at risk of POD.
Collapse
|
28
|
Rangaprakash D, Tadayonnejad R, Deshpande G, O'Neill J, Feusner JD. FMRI hemodynamic response function (HRF) as a novel marker of brain function: applications for understanding obsessive-compulsive disorder pathology and treatment response. Brain Imaging Behav 2021; 15:1622-1640. [PMID: 32761566 PMCID: PMC7865013 DOI: 10.1007/s11682-020-00358-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hemodynamic response function (HRF) represents the transfer function linking neural activity with the functional MRI (fMRI) signal, modeling neurovascular coupling. Since HRF is influenced by non-neural factors, to date it has largely been considered as a confound or has been ignored in many analyses. However, underlying biophysics suggests that the HRF may contain meaningful correlates of neural activity, which might be unavailable through conventional fMRI metrics. Here, we estimated the HRF by performing deconvolution on resting-state fMRI data from a longitudinal sample of 25 healthy controls scanned twice and 44 adults with obsessive-compulsive disorder (OCD) before and after 4-weeks of intensive cognitive-behavioral therapy (CBT). HRF response height, time-to-peak and full-width at half-maximum (FWHM) in OCD were abnormal before treatment and normalized after treatment in regions including the caudate. Pre-treatment HRF predicted treatment outcome (OCD symptom reduction) with 86.4% accuracy, using machine learning. Pre-treatment HRF response height in the caudate head and time-to-peak in the caudate tail were top-predictors of treatment response. Time-to-peak in the caudate tail, a region not typically identified in OCD studies using conventional fMRI activation or connectivity measures, may carry novel importance. Additionally, pre-treatment response height in caudate head predicted post-treatment OCD severity (R = -0.48, P = 0.001), and was associated with treatment-related OCD severity changes (R = -0.44, P = 0.0028), underscoring its relevance. With HRF being a reliable marker sensitive to brain function, OCD pathology, and intervention-related changes, these results could guide future studies towards novel discoveries not possible through conventional fMRI approaches like standard BOLD activation or connectivity.
Collapse
Affiliation(s)
- D Rangaprakash
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School and Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02129, USA
| | - Reza Tadayonnejad
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
- Department of Psychological Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, Auburn, AL, USA
- Center for Health Ecology and Equity Research, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
- School of Psychology, Capital Normal University, Beijing, China
- Key Laboratory for Learning and Cognition, Capital Normal University, Beijing, China
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Joseph O'Neill
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Kim D, Hughes TM, Lipford ME, Craft S, Baker LD, Lockhart SN, Whitlow CT, Okonmah-Obazee SE, Hugenschmidt CE, Bobinski M, Jung Y. Relationship Between Cerebrovascular Reactivity and Cognition Among People With Risk of Cognitive Decline. Front Physiol 2021; 12:645342. [PMID: 34135768 PMCID: PMC8201407 DOI: 10.3389/fphys.2021.645342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vascular risk factors (e.g., obesity and hypertension) are associated with cerebral small vessel disease, Alzheimer's disease (AD) pathology, and dementia. Reduced perfusion may reflect the impaired ability of blood vessels to regulate blood flow in reaction to varying circumstances such as hypercapnia (increased end-tidal partial pressures of CO2). It has been shown that cerebrovascular reactivity (CVR) measured with blood-oxygen-level-dependent (BOLD) MRI is correlated with cognitive performance and alterations of CVR may be an indicator of vascular disfunction leading to cognitive decline. However, the underlying mechanism of CVR alterations in BOLD signal may not be straight-forward because BOLD signal is affected by multiple physiological parameters, such as cerebral blood flow (CBF), cerebral blood volume, and oxygen metabolism. Arterial spin labeling (ASL) MRI quantitatively measures blood flow in the brain providing images of local CBF. Therefore, in this study, we measured CBF and its changes using a dynamic ASL technique during a hypercapnia challenge and tested if CBF or CVR was related to cognitive performance using the Mini-mental state examination (MMSE) score. Seventy-eight participants underwent cognitive testing and MRI including ASL during a hypercapnia challenge with a RespirAct computer-controlled gas blender, targeting 10 mmHg higher end-tidal CO2 level than the baseline while end-tidal O2 level was maintained. Pseudo-continuous ASL (PCASL) was collected during a 2-min baseline and a 2-min hypercapnic period. CVR was obtained by calculating a percent change of CBF per the end-tidal CO2 elevation in mmHg between the baseline and the hypercapnic challenge. Multivariate regression analyses demonstrated that baseline resting CBF has no significant relationship with MMSE, while lower CVR in the whole brain gray matter (β = 0.689, p = 0.005) and white matter (β = 0.578, p = 0.016) are related to lower MMSE score. In addition, region of interest (ROI) based analysis showed positive relationships between MMSE score and CVR in 26 out of 122 gray matter ROIs.
Collapse
Affiliation(s)
- Donghoon Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Timothy M. Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Megan E. Lipford
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Laura D. Baker
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Samuel N. Lockhart
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | | | - Matthew Bobinski
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Youngkyoo Jung
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Radiology, University of California, Davis, Davis, CA, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
30
|
Champagne AA, Coverdale NS, Fernandez-Ruiz J, Mark CI, Cook DJ. Compromised resting cerebral metabolism after sport-related concussion: A calibrated MRI study. Brain Imaging Behav 2021; 15:133-146. [PMID: 32307673 DOI: 10.1007/s11682-019-00240-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Altered resting cerebral blood flow (CBF0) in the acute phase post-concussion may contribute to neurobehavioral deficiencies, often reported weeks after the injury. However, in addition to changes in CBF0, little is known about other physiological mechanisms that may be disturbed within the cerebrovasculature. The aim of this study was to assess whether changes in baseline perfusion following sport-related concussion (SRC) were co-localized with changes in cerebral metabolic demand. Forty-two subjects (15 SRC patients 8.0 ± 4.6 days post-injury and 27 age-matched healthy control athletes) were studied cross-sectionally. CBF0, cerebrovascular reactivity (CVR), resting oxygen extraction (OEF0) and cerebral metabolic rate of oxygen consumption (CMRO2|0) were measured using a combination of hypercapnic and hyperoxic breathing protocols, and the biophysical model developed in calibrated MRI. Blood oxygenation level dependent and perfusion data were acquired simultaneously using a dual-echo arterial spin labelling sequence. SRC patients showed significant decreases in CBF0 spread across the grey-matter (P < 0.05, corrected), and these differences were also confounded by the effects of baseline end-tidal CO2 (P < 0.0001). Lower perfusion was co-localized with reductions in regional CMRO2|0 (P = 0.006) post-SRC, despite finding no group-differences in OEF0 (P = 0.800). Higher CVR within voxels showing differences in CBF was also observed in the SRC group (P = 0.001), compared to controls. Reductions in metabolic demand despite no significant changes in OEF0 suggests that hypoperfusion post-SRC may reflect compromised metabolic function after the injury. These results provide novel insight about the possible pathophysiological mechanisms underlying concussion that may affect the clinical recovery of athletes after sport-related head injuries.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Clarisse I Mark
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
- Department of Surgery, Queen's University, Room 232, 18 Stuart St., Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
31
|
Chen JJ, Gauthier CJ. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Front Physiol 2021; 12:657362. [PMID: 33841190 PMCID: PMC8027080 DOI: 10.3389/fphys.2021.657362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Task and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI. In particular, CVR estimation is part of a family of techniques called calibrated BOLD fMRI, the purpose of which is to allow the mapping of cerebral oxidative metabolism (CMRO2) using a combination of BOLD and cerebral-blood flow (CBF) measurements. Moreover, CVR has recently been shown to be a major source of vascular bias in computing resting-state functional connectivity, in much the same way that it is used to neutralize the vascular contribution in calibrated fMRI. Furthermore, due to the obvious challenges in estimating CVR using gas challenges, a rapidly growing field of study is the estimation of CVR without any form of challenge, including the use of resting-state fMRI for that purpose. This review addresses all of these aspects in which CVR interacts with fMRI and the role of CVR in calibrated fMRI, provides an overview of the physiological biases and assumptions underlying hypercapnia-based CVR and calibrated fMRI, and provides a view into the future of non-invasive CVR measurement.
Collapse
Affiliation(s)
- J Jean Chen
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
32
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol 2021; 11:608475. [PMID: 33536935 PMCID: PMC7848198 DOI: 10.3389/fphys.2020.608475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ability of vessels to alter their caliber in response to vasoactive factors, by means of dilating or constricting, in order to increase or decrease regional cerebral blood flow (CBF). Importantly, CVR may provide a sensitive biomarker for pathologies where vasculature is compromised. Furthermore, the spatiotemporal dynamics of CVR observed in healthy subjects, reflecting regional differences in cerebral vascular tone and response, may also be important in functional MRI studies based on neurovascular coupling mechanisms. Assessment of CVR is usually based on the use of a vasoactive stimulus combined with a CBF measurement technique. Although transcranial Doppler ultrasound has been frequently used to obtain global flow velocity measurements, MRI techniques are being increasingly employed for obtaining CBF maps. For the vasoactive stimulus, vasodilatory hypercapnia is usually induced through the manipulation of respiratory gases, including the inhalation of increased concentrations of carbon dioxide. However, most of these methods require an additional apparatus and complex setups, which not only may not be well-tolerated by some populations but are also not widely available. For these reasons, strategies based on voluntary breathing fluctuations without the need for external gas challenges have been proposed. These include the task-based methodologies of breath holding and paced deep breathing, as well as a new generation of methods based on spontaneous breathing fluctuations during resting-state. Despite the multitude of alternatives to gas challenges, existing literature lacks definitive conclusions regarding the best practices for the vasoactive modulation and associated analysis protocols. In this work, we perform an extensive review of CVR mapping techniques based on MRI and CO2 variations without gas challenges, focusing on the methodological aspects of the breathing protocols and corresponding data analysis. Finally, we outline a set of practical guidelines based on generally accepted practices and available data, extending previous reports and encouraging the wider application of CVR mapping methodologies in both clinical and academic MRI settings.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
35
|
Abstract
Blood oxygen level dependent (BOLD) fMRI is a common technique for measuring brain activation that could be affected by low-level carbon monoxide (CO) exposure from, e.g. smoking. This study aimed to probe the vulnerability of BOLD fMRI to CO and determine whether it may constitute a significant neuroimaging confound. Low-level (6 ppm exhaled) CO effects on BOLD response were assessed in 12 healthy never-smokers on two separate experimental days (CO and air control). fMRI tasks were breath-holds (hypercapnia), visual stimulation and fingertapping. BOLD fMRI response was lower during breath holds, visual stimulation and fingertapping in the CO protocol compared to the air control protocol. Behavioural and physiological measures remained unchanged. We conclude that BOLD fMRI might be vulnerable to changes in baseline CO, and suggest exercising caution when imaging populations exposed to elevated CO levels. Further work is required to fully elucidate the impact on CO on fMRI and its underlying mechanisms.
Collapse
Affiliation(s)
- Caroline Bendell
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Shakeeb H Moosavi
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Mari Herigstad
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
36
|
Milej D, Shahid M, Abdalmalak A, Rajaram A, Diop M, St. Lawrence K. Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4571-4585. [PMID: 32923065 PMCID: PMC7449704 DOI: 10.1364/boe.392113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
This study presents the characterization of dynamic cerebrovascular reactivity (CVR) in healthy adults by a hybrid optical system combining time-resolved (TR) near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS). Blood flow and oxygenation (oxy- and deoxy-hemoglobin) responses to a step hypercapnic challenge were recorded to characterize dynamic and static components of CVR. Data were acquired at short and long source-detector separations (r SD) to assess the impact of scalp hemodynamics, and moment analysis applied to the TR-NIRS to further enhance the sensitivity to the brain. Comparing blood flow and oxygenation responses acquired at short and long r SD demonstrated that scalp contamination distorted the CVR time courses, particularly for oxyhemoglobin. This effect was significantly diminished by the greater depth sensitivity of TR NIRS and less evident in the DCS data due to the higher blood flow in the brain compared to the scalp. The reactivity speed was similar for blood flow and oxygenation in the healthy brain. Given the ease-of-use, portability, and non-invasiveness of this hybrid approach, it is well suited to investigate if the temporal relationship between CBF and oxygenation is altered by factors such as age and cerebrovascular disease.
Collapse
Affiliation(s)
- Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Marwan Shahid
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
37
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Cerebrovascular Reactivity After Sport Concussion: From Acute Injury to 1 Year After Medical Clearance. Front Neurol 2020; 11:558. [PMID: 32760336 PMCID: PMC7371921 DOI: 10.3389/fneur.2020.00558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 01/26/2023] Open
Abstract
Neuroimaging has identified significant disturbances in cerebrovascular reactivity (CVR) in the early symptomatic phase of sport-related concussion. However, less is known about how whole-brain alterations in CVR evolve after concussion and whether they remain present beyond medical clearance to return to play (RTP). In the present study, CVR was evaluated using blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) during a respiratory challenge. Imaging data were collected for 110 university-level athletes, including 39 concussed athletes and 71 athletic controls. The concussed athletes were imaged at the acute phase of injury (1–7 days post-injury), the subacute phase (8-14 days post-injury), medical clearance to RTP, 1 month post-RTP, and 1 year post-RTP. Enhanced negative BOLD response to controlled breathing was seen at acute injury, with attenuation of the effect mainly occurring by 1 year post-RTP. Secondary analyses showed that greater symptom severity and prolonged recovery were associated with enhanced BOLD response in the acute phase of injury, but a more attenuated BOLD response in the subacute phase. This study provides novel information characterizing the CVR response after concussion and shows CVR to be a sensitive technique for evaluating long-term brain recovery.
Collapse
Affiliation(s)
- Nathan W Churchill
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael G Hutchison
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Medicine (Neurosurgery) University of Toronto, Toronto, ON, Canada.,The Institute of Biomaterials & Biomedical Engineering (IBBME) at the University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Englund EK, Fernández-Seara MA, Rodríguez-Soto AE, Lee H, Rodgers ZB, Vidorreta M, Detre JA, Wehrli FW. Calibrated fMRI for dynamic mapping of CMRO 2 responses using MR-based measurements of whole-brain venous oxygen saturation. J Cereb Blood Flow Metab 2020; 40:1501-1516. [PMID: 31394960 PMCID: PMC7308517 DOI: 10.1177/0271678x19867276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional MRI (fMRI) can identify active foci in response to stimuli through BOLD signal fluctuations, which represent a complex interplay between blood flow and cerebral metabolic rate of oxygen (CMRO2) changes. Calibrated fMRI can disentangle the underlying contributions, allowing quantification of the CMRO2 response. Here, whole-brain venous oxygen saturation (Yv) was computed alongside ASL-measured CBF and BOLD-weighted data to derive the calibration constant, M, using the proposed Yv-based calibration. Data were collected from 10 subjects at 3T with a three-part interleaved sequence comprising background-suppressed 3D-pCASL, 2D BOLD-weighted, and single-slice dual-echo GRE (to measure Yv via susceptometry-based oximetry) acquisitions while subjects breathed normocapnic/normoxic, hyperoxic, and hypercapnic gases, and during a motor task. M was computed via Yv-based calibration from both hypercapnia and hyperoxia stimulus data, and results were compared to conventional hypercapnia or hyperoxia calibration methods. Mean M in gray matter did not significantly differ between calibration methods, ranging from 8.5 ± 2.8% (conventional hyperoxia calibration) to 11.7 ± 4.5% (Yv-based calibration in response to hyperoxia), with hypercapnia-based M values between (p = 0.56). Relative CMRO2 changes from finger tapping were computed from each M map. CMRO2 increased by ∼20% in the motor cortex, and good agreement was observed between the conventional and proposed calibration methods.
Collapse
Affiliation(s)
- Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ana E Rodríguez-Soto
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyunyeol Lee
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary B Rodgers
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Vidorreta
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.,Siemens Healthineers, Madrid, Spain
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Intzandt B, Sabra D, Foster C, Desjardins-Crépeau L, Hoge RD, Steele CJ, Bherer L, Gauthier CJ. Higher cardiovascular fitness level is associated with lower cerebrovascular reactivity and perfusion in healthy older adults. J Cereb Blood Flow Metab 2020; 40:1468-1481. [PMID: 31342831 PMCID: PMC7308519 DOI: 10.1177/0271678x19862873] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/02/2019] [Indexed: 01/01/2023]
Abstract
Aging is accompanied by vascular and structural changes in the brain, which include decreased grey matter volume (GMV), cerebral blood flow (CBF), and cerebrovascular reactivity (CVR). Enhanced fitness in aging has been related to preservation of GMV and CBF, and in some cases CVR, although there are contradictory relationships reported between CVR and fitness. To gain a better understanding of the complex interplay between fitness and GMV, CBF and CVR, the present study assessed these factors concurrently. Data from 50 participants, aged 55 to 72, were used to derive GMV, CBF, CVR and VO2peak. Results revealed that lower CVR was associated with higher VO2peak throughout large areas of the cerebral cortex. Within these regions lower fitness was associated with higher CBF and a faster hemodynamic response to hypercapnia. Overall, our results indicate that the relationships between age, fitness, cerebral health and cerebral hemodynamics are complex, likely involving changes in chemosensitivity and autoregulation in addition to changes in arterial stiffness. Future studies should collect other physiological outcomes in parallel with quantitative imaging, such as measures of chemosensitivity and autoregulation, to further understand the intricate effects of fitness on the aging brain, and how this may bias quantitative measures of cerebral health.
Collapse
Affiliation(s)
- Brittany Intzandt
- INDI Department, Concordia University,
Montreal, Canada
- PERFORM Centre, Concordia University,
Montreal, Canada
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - Dalia Sabra
- Départment de Médecine, Université de
Montréal, Canada
| | - Catherine Foster
- PERFORM Centre, Concordia University,
Montreal, Canada
- Physics Department, Concordia
University, Montreal, Canada
| | - Laurence Desjardins-Crépeau
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| | - Richard D Hoge
- Department of Neurology and
Neurosurgery, McGill University, Canada
| | - Christopher J Steele
- Department of Psychology, Concordia
University, Montreal, Canada
- Department of Neurology, Max Planck
Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Louis Bherer
- PERFORM Centre, Concordia University,
Montreal, Canada
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
- Départment de Médecine, Université de
Montréal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| | - Claudine J Gauthier
- PERFORM Centre, Concordia University,
Montreal, Canada
- Physics Department, Concordia
University, Montreal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| |
Collapse
|
40
|
Evanoff NG, Mueller BA, Marlatt KL, Geijer JR, Lim KO, Dengel DR. Reproducibility of a ramping protocol to measure cerebral vascular reactivity using functional magnetic resonance imaging. Clin Physiol Funct Imaging 2020; 40:183-189. [PMID: 31984617 DOI: 10.1111/cpf.12621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 12/14/2019] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
Though individual differences in arterial carbon dioxide and oxygen levels inherently exist, the degree of their influence on cerebral vascular reactivity (CVR) is less clear. We examined the reproducibility of BOLD signal changes to an iso-oxic ramping Pet CO2 protocol. CVR changes were induced by altering Pet CO2 while holding Pet O2 constant using a computer-controlled sequential gas delivery (SGD) device. Two MRI scans, each including a linear change in Pet CO2 , were performed using a 3-Tesla (3T) scanner. This ramp sequence consisted of 1 min at 30 mmHg followed by 4 min period during where Pet CO2 was linearly increased from 30 to 50 mmHg, 1 min at 51 mmHg, and concluded with 4 min at baseline. The protocol was repeated at a separate visit with 3 days between visits (minimum). Intraclass correlation coefficients (ICC) and coefficients of variation (CV) were used to verify reproducibility. Eleven subjects (6 females; mean age 26.5 ± 5.7 years) completed the full testing protocol. Good reproducibility was observed for the within-visit ramp sequence (Visit 1: ICC = 0.82, CV = 6.5%; Visit 2: ICC = 0.74, CV = 6.4%). Similarly, ramp sequence were reproducible between visits (Scan 1: ICC = 0.74, CV = 6.5%; Scan 2: ICC = 0.66, CV = 6.1%). Establishing reproducible methodologies for measuring BOLD signal changes in response to Pet CO2 alterations using a ramp protocol will allow researchers to study CVR functionality. Finally, adding a ramping protocol to CVR studies could provide information about changes in CVR over a broad range of Pet CO2 .
Collapse
Affiliation(s)
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Kara L Marlatt
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Justin R Geijer
- Department of Health, Exercise and Rehabilitative Sciences, Winona State University, Winona, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
41
|
Co-localized impaired regional cerebrovascular reactivity in chronic concussion is associated with BOLD activation differences during a working memory task. Brain Imaging Behav 2020; 14:2438-2449. [PMID: 31903527 DOI: 10.1007/s11682-019-00194-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to quantify differences in blood oxygen level dependent (BOLD) activation on a working memory task, baseline cerebral blood flow (CBF0), and cerebrovascular reactivity (CVR) between participants with and without a history of concussion. A dual-echo pseudo-continuous arterial spin labelling (pCASL) sequence was performed on a group of 10 subjects with a previous concussion (126 ± 15 days prior) and on a control group (n = 10) during a visual working memory protocol. A separate dual-echo pCASL sequence was used to derive CVR and CBF0 measurements from a boxcar hypercapnic breathing protocol. Brain areas with significant activation differences on the working memory task between groups were identified and combined as an aggregate region of interest for CBF and CVR analyses. Areas of reduced BOLD activation during the working memory task in the concussed group included the ventral anterior cingulate cortex (ACC), the medial temporal gyrus (MTG), and the lateral occipital cortex in two loci. A single area of increased activation was located in the parietal operculum. Further analyses of CBF0 and CVR in these regions revealed reduced CVR in the concussed group in the MTG and ACC, while CBF0 did not differ. The differences in CVR between the two groups in these regions suggest that concussive injury may result in microvascular dysfunction. In turn, the decreased BOLD response during the task could be due to altered neurovascular coupling, rather than an impairment in neural activation alone. However, in other regions associated with working memory, unchanged CBF0 and CVR suggests that neural injury also persists after concussion. In the future, BOLD results should be normalized to CVR in order achieve a clearer understanding of the neural and vascular contributions to the differences in the signal.
Collapse
|
42
|
Climie RE, Gallo A, Picone DS, Di Lascio N, van Sloten TT, Guala A, Mayer CC, Hametner B, Bruno RM. Measuring the Interaction Between the Macro- and Micro-Vasculature. Front Cardiovasc Med 2019; 6:169. [PMID: 31824963 PMCID: PMC6882776 DOI: 10.3389/fcvm.2019.00169] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Structural and functional dysfunction in both the macro- and microvasculature are a feature of essential hypertension. In a healthy cardiovascular system, the elastic properties of the large arteries ensure that pulsations in pressure and flow generated by cyclic left ventricular contraction are dampened, so that less pulsatile pressure and flow are delivered at the microvascular level. However, in response to aging, hypertension, and other disease states, arterial stiffening limits the buffering capacity of the elastic arteries, thus exposing the microvasculature to increased pulsatile stress. This is thought to be particularly pertinent to high flow/low resistance organs such as the brain and kidney, which may be sensitive to excess pressure and flow pulsatility, damaging capillary networks, and resulting in target organ damage. In this review, we describe the clinical relevance of the pulsatile interaction between the macro- and microvasculature and summarize current methods for measuring the transmission of pulsatility between the two sites.
Collapse
Affiliation(s)
- Rachel E Climie
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Paris Descartes University, Paris, France.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmanian, Hobart, TAS, Australia
| | - Antonio Gallo
- Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière Hospital, Paris, France.,Laboratoire d'imagerie Biomédicale, INSERM 1146 - CNRS 7371, Sorbonne University, Paris, France
| | - Dean S Picone
- Menzies Institute for Medical Research, University of Tasmanian, Hobart, TAS, Australia
| | - Nicole Di Lascio
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Thomas T van Sloten
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Paris Descartes University, Paris, France.,Cardiovascular Research Institute Maastricht and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Guala
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Christopher C Mayer
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Biomedical Systems, Vienna, Austria
| | - Bernhard Hametner
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Biomedical Systems, Vienna, Austria
| | - Rosa Maria Bruno
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Paris Descartes University, Paris, France
| |
Collapse
|
43
|
The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO 2 in healthy subjects. Neuroimage 2019; 207:116365. [PMID: 31734432 PMCID: PMC8080082 DOI: 10.1016/j.neuroimage.2019.116365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Cerebrovascular reactivity (CVR) mapping using CO2-inhalation can provide important insight into vascular health. At present, blood-oxygenation-level-dependent (BOLD) MRI acquisition is the most commonly used CVR method due to its high sensitivity, high spatial resolution, and relatively straightforward processing. However, large variations in CVR across subjects and across different sessions of the same subject are often observed, which can cloud the ability of this promising measure in detecting diseases or monitoring treatment responses. The present work aims to identify the physiological components underlying the observed variability in CVR data. When studying the association between CVR value and the subject’s CO2 levels in a total of N = 253 healthy participants, we found that CVR was lower in individuals with a higher basal end-tidal CO2, EtCO2 (slope = −0.0036 ± 0.0008%/mmHg2, p < 0.001), or with a greater EtCO2 change (ΔEtCO2) with hypercapnic condition (slope = −0.0072 ± 0.0018%/mmHg2, p < 0.001). In a within-subject setting, when studying the CVR difference between two repeated scans (with repositioning) in relation to the corresponding differences in basal EtCO2 and ΔEtCO2 (n = 11), it was found that CVR values were lower if the basal EtCO2 or ΔEtCO2 during that particular scan session was greater. The present work suggests that basal physiological state and the level of hypercapnic stimulus intensity should be considered in application studies of CVR in order to reduce inter-subject and intra-subject variations in the data. Potential approaches to use these findings to reduce noise and augment sensitivity are proposed.
Collapse
|
44
|
Zhao MY, Václavů L, Petersen ET, Biemond BJ, Sokolska MJ, Suzuki Y, Thomas DL, Nederveen AJ, Chappell MA. Quantification of cerebral perfusion and cerebrovascular reserve using Turbo-QUASAR arterial spin labeling MRI. Magn Reson Med 2019; 83:731-748. [PMID: 31513311 PMCID: PMC6899879 DOI: 10.1002/mrm.27956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
Abstract
Purpose To compare cerebral blood flow (CBF) and cerebrovascular reserve (CVR) quantification from Turbo‐QUASAR (quantitative signal targeting with alternating radiofrequency labeling of arterial regions) arterial spin labeling (ASL) and single post‐labeling delay pseudo‐continuous ASL (PCASL). Methods A model‐based method was developed to quantify CBF and arterial transit time (ATT) from Turbo‐QUASAR, including a correction for magnetization transfer effects caused by the repeated labeling pulses. Simulations were performed to assess the accuracy of the model‐based method. Data from an in vivo experiment conducted on a healthy cohort were retrospectively analyzed to compare the CBF and CVR (induced by acetazolamide) measurement from Turbo‐QUASAR and PCASL on the basis of global and regional differences. The quality of the two ASL data sets was examined using the coefficient of variation (CoV). Results The model‐based method for Turbo‐QUASAR was accurate for CBF estimation (relative error was 8% for signal‐to‐noise ratio = 5) in simulations if the bolus duration was known. In the in vivo experiment, the mean global CVR estimated by Turbo‐QUASAR and PCASL was between 63% and 64% and not significantly different. Although global CBF values of the two ASL techniques were not significantly different, regional CBF differences were found in deep gray matter in both pre‐ and postacetazolamide conditions. The CoV of Turbo‐QUASAR data was significantly higher than PCASL. Conclusion Both ASL techniques were effective for quantifying CBF and CVR, despite the regional differences observed. Although CBF estimated from Turbo‐QUASAR demonstrated a higher variability than PCASL, Turbo‐QUASAR offers the advantage of being able to measure and control for variation in ATT.
Collapse
Affiliation(s)
- Moss Y Zhao
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lena Václavů
- Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - Esben T Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Centre for Magnetic Resonance, DTU Elektro, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Bart J Biemond
- Amsterdam UMC, University of Amsterdam, Haematology, Internal Medicine, Amsterdam, Netherlands
| | - Magdalena J Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospitals, London, United Kingdom
| | - Yuriko Suzuki
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Aart J Nederveen
- Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - Michael A Chappell
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Champagne AA, Coverdale NS, Germuska M, Cook DJ. Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD-based cerebrovascular reactivity associated with a history of sport concussion. Brain Inj 2019; 33:1479-1489. [PMID: 31354054 PMCID: PMC7115911 DOI: 10.1080/02699052.2019.1644375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Objective: Identify alterations in cerebrovascular reactivity (CVR) based on the history of sport-related concussion (SRC). Further explore possible mechanisms underlying differences in vascular physiology using hemodynamic parameters modeled using calibrated magnetic resonance imaging (MRI). Method: End-tidal targeting and dual-echo MRI were combined to probe hypercapnic and hyperoxic challenges in athletes with (n = 32) and without (n = 31) a history of SRC. Concurrent blood oxygenation level dependent (BOLD) and arterial spin labeling (ASL) data were used to compute BOLD-CVR, ASL-CVR, and other physiological parameters including resting oxygen extraction fraction (OEF0) and cerebral blood volume (CBV0). Multiple linear and logistic regressions were then used to identify dominant parameters driving group-differences in BOLD-CVR. Results: Robust evidence for elevated BOLD-CVR were found in athletes with SRC history spreading over parts of the cortical hemispheres. Follow-up analyses showed co-localized differences in ASL-CVR (representing modulation of cerebral blood flow) and hemodynamic factors representing static vascular (i.e., CBV0) and metabolic (i.e., OEF0) effects suggesting that group-based differences in BOLD-CVR may be driven by a mixed effect from factors with vascular and metabolic origins. Conclusion: These results emphasize that while BOLD-CVR offers promises as a surrogate non-specific biomarker for cerebrovascular health following SRC, multiple hemodynamic parameters can affect its relative measurements. Abbreviations: [dHb]: concentration of deoxyhemoglobin; AFNI: Analysis of Functional NeuroImages ( https://afni.nimh.nih.gov ); ASL: arterial spin labeling; BIG: position group: defensive and offensive linemen; BIG-SKILL: position group: full backs, linebackers, running backs, tight-ends; BOLD: blood oxygen level dependent; CBF: cerebral blood flow; CMRO2: cerebral metabolic rate of oxygen consumption; CTL: group of control subjects; CVR: cerebrovascular reactivity; fMRI: functional magnetic resonance imaging; FSL: FMRIB software library ( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ ); HC: hypercapnia; HO: hyperoxia; HX: group with history of concussion; M: maximal theoretical BOLD signal upon complete removal of venous dHb; pCASL: pseudo-continuous arterial spin labeling; PETCO2: end-tidal carbon dioxide; PETO2: end-tidal oxygen; SCAT: sport-concussion assessment tool; SKILL: position group: defensive backs, kickers, quarterbacks, safeties, wide-receivers; SRC: sport-related concussion.
Collapse
Affiliation(s)
- Allen A. Champagne
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | | | - Michael Germuska
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, United Kingdom
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Surgery, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
46
|
van Niftrik CHB, Piccirelli M, Muscas G, Sebök M, Fisher JA, Bozinov O, Stippich C, Valavanis A, Regli L, Fierstra J. The voxel-wise analysis of false negative fMRI activation in regions of provoked impaired cerebrovascular reactivity. PLoS One 2019; 14:e0215294. [PMID: 31059517 PMCID: PMC6502350 DOI: 10.1371/journal.pone.0215294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/30/2019] [Indexed: 12/30/2022] Open
Abstract
Task-evoked Blood-oxygenation-level-dependent (BOLD-fMRI) signal activation is widely used to interrogate eloquence of brain areas. However, data interpretation can be improved, especially in regions with absent BOLD-fMRI signal activation. Absent BOLD-fMRI signal activation may actually represent false-negative activation due to impaired cerebrovascular reactivity (BOLD-CVR) of the vascular bed. The relationship between impaired BOLD-CVR and BOLD-fMRI signal activation may be better studied in healthy subjects where neurovascular coupling is known to be intact. Using a model-based prospective end-tidal carbon dioxide (CO2) targeting algorithm, we performed two controlled 3 tesla BOLD-CVR studies on 17 healthy subjects: 1: at the subjects’ individual resting end-tidal CO2 baseline. 2: Around +6.0 mmHg CO2 above the subjects’ individual resting baseline. Two BOLD-fMRI finger-tapping experiments were performed at similar normo- and hypercapnic levels. Relative BOLD fMRI signal activation and t-values were calculated for BOLD-CVR and BOLD-fMRI data. For each component of the cerebral motor-network (precentral gyrus, postcentral gyrus, supplementary motor area, cerebellum und fronto-operculum), the correlation between BOLD-CVR and BOLD-fMRI signal changes and t-values was investigated. Finally, a voxel-wise quantitative analysis of the impact of BOLD-CVR on BOLD-fMRI was performed. For the motor-network, the linear correlation coefficient between BOLD-CVR and BOLD-fMRI t-values were significant (p<0.01) and in the range 0.33–0.55, similar to the correlations between the CVR and fMRI Δ%signal (p<0.05; range 0.34–0.60). The linear relationship between CVR and fMRI is challenged by our voxel-wise analysis of Δ%signal and t-value change between normo- and hypercapnia. Our main finding is that BOLD fMRI signal activation maps are markedly dampened in the presence of impaired BOLD-CVR and highlights the importance of a complementary BOLD-CVR assessment in addition to a task-evoked BOLD fMRI to identify brain areas at risk for false-negative BOLD-fMRI signal activation.
Collapse
Affiliation(s)
- Christiaan Hendrik Bas van Niftrik
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Marco Piccirelli
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni Muscas
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Careggi University Hospital, Florence, University of Florence, Florence, Italy
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joseph Arnold Fisher
- Department of Anesthesiology, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Oliver Bozinov
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christoph Stippich
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonios Valavanis
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Prokopiou PC, Pattinson KTS, Wise RG, Mitsis GD. Modeling of dynamic cerebrovascular reactivity to spontaneous and externally induced CO 2 fluctuations in the human brain using BOLD-fMRI. Neuroimage 2018; 186:533-548. [PMID: 30423427 DOI: 10.1016/j.neuroimage.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/09/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022] Open
Abstract
In this work, we investigate the regional characteristics of the dynamic interactions between arterial CO2 and BOLD (dynamic cerebrovascular reactivity - dCVR) during normal breathing and hypercapnic, externally induced step CO2 challenges. To obtain dCVR curves at each voxel, we use a custom set of basis functions based on the Laguerre and gamma basis sets. This allows us to obtain robust dCVR estimates both in larger regions of interest (ROIs), as well as in individual voxels. We also implement classification schemes to identify brain regions with similar dCVR characteristics. Our results reveal considerable variability of dCVR across different brain regions, as well as during different experimental conditions (normal breathing and hypercapnic challenges), suggesting a differential response of cerebral vasculature to spontaneous CO2 fluctuations and larger, externally induced CO2 changes that are possibly associated with the underlying differences in mean arterial CO2 levels. The clustering results suggest that anatomically distinct brain regions are characterized by different dCVR curves that in some cases do not exhibit the standard, positive valued curves that have been previously reported. They also reveal a consistent set of dCVR cluster shapes for resting and forcing conditions, which exhibit different distribution patterns across brain voxels.
Collapse
Affiliation(s)
- Prokopis C Prokopiou
- Integrated Program in Neuroscience, McGill University, Montreal Neurological Institude, H3A 2B4, QC, Canada
| | - Kyle T S Pattinson
- Nuffield Department of Anaesthetics, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Richard G Wise
- CUBRIC, School of Psychology, University of Cardiff, CF10 3AT, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill Univesity, Montreal, QC, H3A 0C3, Canada; Integrated Program in Neuroscience, McGill University, Montreal Neurological Institude, H3A 2B4, QC, Canada.
| |
Collapse
|
48
|
Duffin J, Sobczyk O, McKetton L, Crawley A, Poublanc J, Venkatraghavan L, Sam K, Mutch WA, Mikulis D, Fisher JA. Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity. Front Neurosci 2018; 12:409. [PMID: 29973862 PMCID: PMC6020782 DOI: 10.3389/fnins.2018.00409] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
The cerebral vascular network regulates blood flow distribution by adjusting vessel diameters, and consequently resistance to flow, in response to metabolic demands (neurovascular coupling) and changes in perfusion pressure (autoregulation). Deliberate changes in carbon dioxide (CO2) partial pressure may be used to challenge this regulation and assess its performance since CO2 also acts to change vessel diameter. Cerebrovascular reactivity (CVR), the ratio of cerebral blood flow (CBF) response to CO2 stimulus is currently used as a performance metric. However, the ability of CVR to reflect the responsiveness of a particular vascular region is confounded by that region’s inclusion in the cerebral vascular network, where all regions respond to the global CO2 stimulus. Consequently, local CBF responses reflect not only changes in the local vascular resistance but also the effect of changes in local perfusion pressure resulting from redistribution of flow within the network. As a result, the CBF responses to CO2 take on various non-linear patterns that are not well-described by straight lines. We propose a method using a simple model to convert these CBF response patterns to the pattern of resistance responses that underlie them. The model, which has been used previously to explain the steal phenomenon, consists of two vascular branches in parallel fed by a major artery with a fixed resistance unchanging with CO2. One branch has a reference resistance with a sigmoidal response to CO2, representative of a voxel with a robust response. The other branch has a CBF equal to the measured CBF response to CO2 of any voxel under examination. Using the model to calculate resistance response patterns of the examined branch showed sigmoidal patterns of resistance response, regardless of the measured CBF response patterns. The sigmoid parameters of the resistance response pattern of examined voxels may be mapped to their anatomical location. We show an example for a healthy subject and for a patient with steno-occlusive disease to illustrate. We suggest that these maps provide physiological insight into the regulation of CBF distribution.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Larissa McKetton
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Adrian Crawley
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Lashmi Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Kevin Sam
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - W Alan Mutch
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - David Mikulis
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
De Vis JB, Bhogal AA, Hendrikse J, Petersen ET, Siero JCW. Effect sizes of BOLD CVR, resting-state signal fluctuations and time delay measures for the assessment of hemodynamic impairment in carotid occlusion patients. Neuroimage 2018; 179:530-539. [PMID: 29913284 PMCID: PMC6057274 DOI: 10.1016/j.neuroimage.2018.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022] Open
Abstract
Background and purpose The BOLD signal amplitude as a response to a hypercapnia stimulus is commonly used to assess cerebrovascular reserve. Despite recent advances, the implementation remains cumbersome and alternative ways to assess hemodynamic impairment are desirable. Resting-state BOLD signal fluctuations (rsBOLD) have been proposed however data on its sensitivity and dependence on baseline venous cerebral blood volume (vCBV) is limited. The primary aim of this study was to compare the effect sizes of resting-state and hypercapnia induced BOLD signal changes in the detection of hemodynamic impairment. The second aim of the study was to assess the dependence of BOLD signal variability on vCBV. Materials and methods Fifteen patients with internal carotid artery occlusive disease and 15 matched healthy controls were included in this study. The BOLD signal was derived from a dual-echo gradient-echo echo-planar sequence during hypercapnia (HC) and hyperoxia (HO) gas modulations. BOLD (fractional) amplitude of low frequency fluctuations ((f)ALFF) was compared to HC-BOLD, BOLD response delays derived from time delay analysis and ΔBOLD in response to progressively increasing HC. Effect sizes (i.e. the standard mean difference between patients and controls) were calculated. HO-BOLD was used to estimate vCBV, and its contribution to the variability in rsBOLD signal was evaluated. Results The effect sizes of ALFF and fALFF (0.61 and 0.72) were lower than the effect sizes related to hypercapnia-based hemodynamic assessment analysis; 1.62, 1.56 and 0.90 for HC-BOLD, BOLD response delays and ΔBOLD in response to progressively increasing HC. A moderate relation was found between (f)ALFF and HC-BOLD in controls (R2 of 0.61 and 0.42), but this relation decreased in patients (R2 of 0.33 and 0.15). (f)ALFF did not differ between patients and controls whereas HC-BOLD did (p < 0.005). The ΔBOLD response to progressively increasing HC was significantly different in between patients and controls for ΔEtCO2 values ≥ 2 mmHg (at +2 mmHg F(1, 18) = 5.85, p = 0.026). Up to 31% and 53% of the variance in the ALFF and HC-BOLD spatial distribution could be explained by HO-BOLD. Conclusion ALFF and fALFF demonstrated a moderate effect size to detect hemodynamic impairment whereas the effect size was large for methods employing a hypercapnia-based vascular stress stimulus. Based on our analysis of BOLD signal change as a response to a progressively increasing hypercapnia stimulus we can argue that a hypercapnia stimulus of at least 2 mmHg above baseline EtCO2 is necessary to evaluate hemodynamic impairment. We also demonstrated that a substantial amount of information imbedded in the rsBOLD and HC-BOLD was explained by HO-BOLD. HO-BOLD can serve as a proxy for vCBV and this thus indicates that one should be careful when adopting these techniques in disease cases with compromised CBV.
Collapse
Affiliation(s)
- Jill B De Vis
- National Institute of Health (NIH) / National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA.
| | - Alex A Bhogal
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Esben T Petersen
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Danish Research Centre for Magnetic Resonance, Hvidovre Hospital, Denmark.
| | - Jeroen C W Siero
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Haber M, Amyot F, Kenney K, Meredith-Duliba T, Moore C, Silverman E, Podell J, Chou YY, Pham DL, Butman J, Lu H, Diaz-Arrastia R, Sandsmark D. Vascular Abnormalities within Normal Appearing Tissue in Chronic Traumatic Brain Injury. J Neurotrauma 2018; 35:2250-2258. [PMID: 29609518 DOI: 10.1089/neu.2018.5684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful tool for visualizing traumatic brain injury(TBI)-related lesions. Trauma-induced encephalomalacia is frequently identified by its hyperintense appearance on fluid-attenuated inversion recovery (FLAIR) sequences. In addition to parenchymal lesions, TBI commonly results in cerebral microvascular injury, but its anatomical relationship to parenchymal encephalomalacia is not well characterized. The current study utilized a multi-modal MRI protocol to assess microstructural tissue integrity (by mean diffusivity [MD] and fractional aniosotropy [FA]) and altered vascular function (by cerebral blood flow [CBF] and cerebral vascular reactivity [CVR]) within regions of visible encephalomalacia and normal appearing tissue in 27 chronic TBI (minimum 6 months post-injury) subjects. Fifteen subjects had visible encephalomalacias whereas 12 did not have evident lesions on MRI. Imaging from 14 age-matched healthy volunteers were used as controls. CBF was assessed by arterial spin labeling (ASL) and CVR by measuring the change in blood-oxygen-level-dependent (BOLD) MRI during a hypercapnia challenge. There was a significant reduction in FA, CBF, and CVR with a complementary increase in MD within regions of FLAIR-visible encephalomalacia (p < 0.05 for all comparisons). In normal-appearing brain regions, only CVR was significantly reduced relative to controls (p < 0.05). These findings indicate that vascular dysfunction represents a TBI endophenotype that is distinct from structural injury detected using conventional MRI, may be present even in the absence of visible structural injury, and persists long after trauma. CVR may serve as a useful diagnostic and pharmacodynamic imaging biomarker of traumatic microvascular injury.
Collapse
Affiliation(s)
- Margalit Haber
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Franck Amyot
- 6 National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Kimbra Kenney
- 2 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Tawny Meredith-Duliba
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Carol Moore
- 2 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Erika Silverman
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Jamie Podell
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Yi-Yu Chou
- 3 Center for Neuroscience and Regenerative Medicine , Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Dzung L Pham
- 3 Center for Neuroscience and Regenerative Medicine , Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - John Butman
- 4 National Institutes of Health , Clinical Center, Radiology and Imaging Sciences, Bethesda, Maryland
| | - Hanzhang Lu
- 5 Department of Radiology, Johns Hopkins University Baltimore , Maryland
| | - Ramon Diaz-Arrastia
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Danielle Sandsmark
- 1 Department of Neurology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|