1
|
Bullock L, Forseth KJ, Woolnough O, Rollo PS, Tandon N. Supplementary motor area in speech initiation: A large-scale intracranial EEG evaluation of stereotyped word articulation. iScience 2025; 28:111531. [PMID: 39807169 PMCID: PMC11729016 DOI: 10.1016/j.isci.2024.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Speech production engages a distributed network of cortical and subcortical brain regions. The supplementary motor area (SMA) has long been thought to be a key hub in coordinating across these regions to initiate voluntary movements, including speech. We analyzed direct intracranial recordings from 115 patients with epilepsy as they articulated a single word in a subset of trials from a picture-naming task. We aimed to characterize the temporal dynamics of SMA relative to other cortical regions. SMA and preSMA were among the first regions to activate after cue onset, peaked in activity before articulation onset, and were the earliest regions to predict trial-to-trial response time. Neural activity at single electrodes in SMA and preSMA was closely associated with speech initiation; activity began at a highly predictable time after stimulus onset and extended until speech onset for any given trial. Our results support the idea that SMA is a key node in the speech initiation network.
Collapse
Affiliation(s)
- Latané Bullock
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92093, United States of America
| | - Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, United States of America
| |
Collapse
|
2
|
Tsou M, Chen P, Hung Y, Lim Y, Huang S, Liu Y. Comparison of Brain Activation Between Different Modes of Motor Acquisition: A Functional Near-Infrared Study. Brain Behav 2025; 15:e70238. [PMID: 39778941 PMCID: PMC11710888 DOI: 10.1002/brb3.70238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/20/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation. PURPOSE The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults. METHODS This cross-sectional study recruited 29 healthy young adults. Participants performed a functional reaching and grasping task under ME, MI, AO, and MVF mode with their right arms at a frequency of 0.5 Hz for 1 min per task. Each task was performed three times in a random order. Brain activation in the supplementary motor area (SMA), premotor cortices (PMC), and primary motor cortices (M1) during tasks was measured using functional near-infrared spectroscopy through 16 source-detector channels. RESULTS ME showed significant activation in bilateral PMC, M1, and right SMA, with higher activation in the contralateral M1. MI induced greater activity in the PMC and SMA, particularly in the ipsilateral regions. MVF resulted in significant activation in bilateral PMC, SMA, and M1. AO showed an increasing trend in brain activation, but no significant differences in any channels. Compared to AO, ME and MVF induced significantly greater brain activity in M1. CONCLUSION Activation levels under MI and MVF were comparable to that of ME. MI and MVF induced greater activity in the PMC and SMA, and MVF showed significant activity in all brain areas, especially in the bilateral M1. These findings support the application of different motor acquisition strategies according to individual needs. When ME cannot be executed, such as for individuals with hemiparesis or severe impairments of both upper extremities, MI and MVF may be applied, respectively, to drive neuroplastic changes.
Collapse
Affiliation(s)
- Meng‐Hsuan Tsou
- School and Graduate Institute of Physical Therapy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | | | - Yi‐Ting Hung
- School and Graduate Institute of Physical Therapy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yong‐Wei Lim
- School and Graduate Institute of Physical Therapy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Shiuan‐Ling Huang
- School and Graduate Institute of Physical Therapy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yan‐Ci Liu
- School and Graduate Institute of Physical Therapy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Physical Therapy CenterNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
3
|
Muñoz-Moldes S, Tursic A, Lührs M, Eck J, Benitez Andonegui A, Peters J, Cleeremans A, Goebel R. Online self-evaluation of fMRI-based neurofeedback performance. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230089. [PMID: 39428884 PMCID: PMC11491843 DOI: 10.1098/rstb.2023.0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 06/01/2024] [Indexed: 10/22/2024] Open
Abstract
This study explores the subjective evaluation of supplementary motor area (SMA) regulation performance in a real-time functional magnetic resonance imaging neurofeedback (fMRI-NF) task. In fMRI-NF, people learn how to self-regulate their brain activity by performing mental actions to achieve a certain target level (TL) of blood-oxygen-level-dependent (BOLD) activation. Here, we studied two types of self-evaluation: performance predictions and perceived confidence in the prediction judgement. Participants completed three sessions of SMA regulation in a 7 T fMRI scanner, performing a mental drawing task. During each trial, they modulated their imagery strategy to achieve one of two different levels of SMA activation and reported a performance prediction and their confidence in the prediction before receiving delayed BOLD-activation feedback. Results show that participants' performance predictions improved with learning throughout the three sessions, and that these improvements were not driven exclusively by their knowledge of previous performance. Confidence reports on the other hand showed no change throughout training and did not correlate with better and worse predictions. In addition to shedding light on mechanisms of internal self-evaluation during neurofeedback training, these results also point to a dissociation between predictions of performance and confidence reports in the presence of feedback. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Santiago Muñoz-Moldes
- Consciousness, Cognition and Computation group, Center for Research in Cognition & Neuroscience, Faculty of Psychology and Education, Université Libre de Bruxelles, Brussels, Belgium
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Anita Tursic
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Michael Lührs
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Judith Eck
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Amaia Benitez Andonegui
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Judith Peters
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Axel Cleeremans
- Consciousness, Cognition and Computation group, Center for Research in Cognition & Neuroscience, Faculty of Psychology and Education, Université Libre de Bruxelles, Brussels, Belgium
| | - Rainer Goebel
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Krüger B, Hegele M, Rieger M. The multisensory nature of human action imagery. PSYCHOLOGICAL RESEARCH 2024; 88:1870-1882. [PMID: 36441293 PMCID: PMC11315721 DOI: 10.1007/s00426-022-01771-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
Imagination can appeal to all our senses and may, therefore, manifest in very different qualities (e.g., visual, tactile, proprioceptive, or kinesthetic). One line of research addresses action imagery that refers to a process by which people imagine the execution of an action without actual body movements. In action imagery, visual and kinesthetic aspects of the imagined action are particularly important. However, other sensory modalities may also play a role. The purpose of the paper will be to address issues that include: (i) the creation of an action image, (ii) how the brain generates images of movements and actions, (iii) the richness and vividness of action images. We will further address possible causes that determine the sensory impression of an action image, like task specificity, instruction and experience. In the end, we will outline open questions and future directions.
Collapse
Affiliation(s)
- Britta Krüger
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany.
| | - Mathias Hegele
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University, Giessen, Germany
| | - Martina Rieger
- Institute for Psychology, UMIT Tirol-University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| |
Collapse
|
5
|
Lim RY, Ang KK, Chew E, Guan C. A Review on Motor Imagery with Transcranial Alternating Current Stimulation: Bridging Motor and Cognitive Welfare for Patient Rehabilitation. Brain Sci 2023; 13:1584. [PMID: 38002544 PMCID: PMC10670393 DOI: 10.3390/brainsci13111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Research has shown the effectiveness of motor imagery in patient motor rehabilitation. Transcranial electrical stimulation has also demonstrated to improve patient motor and non-motor performance. However, mixed findings from motor imagery studies that involved transcranial electrical stimulation suggest that current experimental protocols can be further improved towards a unified design for consistent and effective results. This paper aims to review, with some clinical and neuroscientific findings from literature as support, studies of motor imagery coupled with different types of transcranial electrical stimulation and their experiments onhealthy and patient subjects. This review also includes the cognitive domains of working memory, attention, and fatigue, which are important for designing consistent and effective therapy protocols. Finally, we propose a theoretical all-inclusive framework that synergizes the three cognitive domains with motor imagery and transcranial electrical stimulation for patient rehabilitation, which holds promise of benefiting patients suffering from neuromuscular and cognitive disorders.
Collapse
Affiliation(s)
- Rosary Yuting Lim
- Institute for Infocomm Research, Agency for Science Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore;
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore;
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., #32 Block N4 #02a, Singapore 639798, Singapore;
| | - Effie Chew
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore;
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., #32 Block N4 #02a, Singapore 639798, Singapore;
| |
Collapse
|
6
|
Kim H, Onate JA, Criss CR, Simon JE, Mischkowski D, Grooms DR. The relationship between drop vertical jump action-observation brain activity and kinesiophobia after anterior cruciate ligament reconstruction: A cross-sectional fMRI study. Brain Behav 2023; 13:e2879. [PMID: 36602922 PMCID: PMC9927857 DOI: 10.1002/brb3.2879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Injury and reconstruction of anterior cruciate ligament (ACL) result in central nervous system alteration to control the muscles around the knee joint. Most individuals with ACL reconstruction (ACLR) experience kinesiophobia which can prevent them from returning to activity and is associated with negative outcomes after ACLR. However, it is unknown if kinesiophobia alters brain activity after ACL injury. OBJECTIVES To compare brain activity between an ACLR group and matched uninjured controls during an action-observation drop vertical jump (AO-DVJ) paradigm and to explore the association between kinesiophobia and brain activity in the ACLR group. METHODS This cross-sectional study enrolled 26 individuals, 13 with ACLR (5 males and 8 females, 20.62 ± 1.93 years, 1.71 ± 0.1 m, 68.42 ± 14.75 kg) and 13 matched uninjured controls (5 males and 8 females, 22.92 ± 3.17 years, 1.74 ± 0.10 m, 70.48 ± 15.38 kg). Individuals were matched on sex and activity level. Participants completed the Tampa Scale of Kinesiophobia-11 (TSK-11) to evaluate the level of movement-related fear. To assay the brain activity associated with a functional movement, the current study employed an action-observation/motor imagery paradigm during functional magnetic resonance imaging (fMRI). RESULTS The ACLR group had lower brain activity in the right ventrolateral prefrontal cortex relative to the uninjured control group. Brain activity of the left cerebellum Crus I and Crus II, the right cerebellum lobule IX, amygdala, middle temporal gyrus, and temporal pole were positively correlated with TSK-11 scores in the ACLR group. CONCLUSION Brain activity for the AO-DVJ paradigm was different between the ACLR group and uninjured controls. Secondly, in participants with ACLR, there was a positive relationship between TSK-11 scores and activity in brain areas engaged in fear and cognitive processes during the AO-DVJ paradigm.
Collapse
Affiliation(s)
- HoWon Kim
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Translational Biomedical Sciences Program, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - James A Onate
- Division of Athletic Training, School of Health and Rehabilitation Sciences, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Cody R Criss
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Heritage Fellow, Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Janet E Simon
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Dominik Mischkowski
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Psychology Department, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA.,Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| |
Collapse
|
7
|
Lee M, Kim YH, Lee SW. Motor Impairment in Stroke Patients is Associated with Network Properties During Consecutive Motor Imagery. IEEE Trans Biomed Eng 2022; 69:2604-2615. [PMID: 35171761 DOI: 10.1109/tbme.2022.3151742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Our study aimed to predict the Fugl-Meyer assessment (FMA) upper limb using network properties during motor imagery using electroencephalography (EEG) signals. METHODS The subjects performed a finger tapping imagery task according to consecutive cues. We measured the weighted phase lag index (wPLI) as functional connectivity and directed transfer function (DTF) as causal connectivity in healthy controls and stroke patients. The network properties based on the wPLI and DTF were calculated. We predicted the FMA upper limb using partial least squares regression. RESULTS A higher DTF in the mu band was observed in stroke patients than in healthy controls. Notably, the difference in local properties at node F3 was negatively correlated with motor impairment in stroke patients. Finally, using significant network properties based on the wPLI and DTF, we predicted motor impairments using the FMA upper limb with a root-mean-square error of 1.68 (R2 = 0.97). This outperformed the state-of-the-art predictors. CONCLUSION These findings demonstrate that network properties based on functional and causal connectivity were highly associated with motor function in stroke patients. SIGNIFICANCE Our network properties can help calculate the predictor of motor impairments in stroke rehabilitation and provide insight into the neural correlates related to motor function based on EEG after reorganization induced by stroke.
Collapse
|
8
|
Orkan Olcay B, Özgören M, Karaçalı B. On the characterization of cognitive tasks using activity-specific short-lived synchronization between electroencephalography channels. Neural Netw 2021; 143:452-474. [PMID: 34273721 DOI: 10.1016/j.neunet.2021.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Accurate characterization of brain activity during a cognitive task is challenging due to the dynamically changing and the complex nature of the brain. The majority of the proposed approaches assume stationarity in brain activity and disregard the systematic timing organization among brain regions during cognitive tasks. In this study, we propose a novel cognitive activity recognition method that captures the activity-specific timing parameters from training data that elicits maximal average short-lived pairwise synchronization between electroencephalography signals. We evaluated the characterization power of the activity-specific timing parameter triplets in a motor imagery activity recognition framework. The activity-specific timing parameter triplets consist of latency of the maximally synchronized signal segments from activity onset Δt, the time lag between maximally synchronized signal segments τ, and the duration of the maximally synchronized signal segments w. We used cosine-based similarity, wavelet bi-coherence, phase-locking value, phase coherence value, linearized mutual information, and cross-correntropy to calculate the channel synchronizations at the specific timing parameters. Recognition performances as well as statistical analyses on both BCI Competition-III dataset IVa and PhysioNet Motor Movement/Imagery dataset, indicate that the inter-channel short-lived synchronization calculated using activity-specific timing parameter triplets elicit significantly distinct synchronization profiles for different motor imagery tasks and can thus reliably be used for cognitive task recognition purposes.
Collapse
Affiliation(s)
- B Orkan Olcay
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| | - Murat Özgören
- Department of Biophysics, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus.
| | - Bilge Karaçalı
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
9
|
Bencivenga F, Sulpizio V, Tullo MG, Galati G. Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach. Neuroimage 2021; 230:117806. [PMID: 33524574 DOI: 10.1016/j.neuroimage.2021.117806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022] Open
Abstract
The parieto-frontal circuit underlying grasping, which requires the serial involvement of the anterior intraparietal area (aIPs) and the ventral premotor cortex (PMv), has been recently extended enlightening the role of the dorsal premotor cortex (PMd). The supplementary motor area (SMA) has been also suggested to encode grip force for grasping actions; furthermore, both PMd and SMA are known to play a crucial role in motor imagery. Here, we aimed at assessing the dynamic couplings between left aIPs, PMv, PMd, SMA and primary motor cortex (M1) by comparing executed and imagined right-hand grasping, using Dynamic Causal Modelling (DCM) and Parametrical Empirical Bayes (PEB) analyses. 24 subjects underwent an fMRI exam (3T) during which they were asked to perform or imagine a grasping movement visually cued by photographs of commonly used objects. We tested whether the two conditions a) exert a modulatory effect on both forward and feedback couplings among our areas of interest, and b) differ in terms of strength and sign of these parameters. Results of the real condition confirmed the serial involvement of aIPs, PMv and M1. PMv also exerted a positive influence on PMd and SMA, but received an inhibitory feedback only from PMd. Our results suggest that a general motor program for grasping is planned by the aIPs-PMv circuit; then, PMd and SMA encode high-level features of the movement. During imagery, the connection strength from aIPs to PMv was weaker and the information flow stopped in PMv; thus, a less complex motor program was planned. Moreover, results suggest that SMA and PMd cooperate to prevent motor execution. In conclusion, the comparison between execution and imagery reveals that during grasping premotor areas dynamically interplay in different ways, depending on task demands.
Collapse
Affiliation(s)
- Federica Bencivenga
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Giulia Tullo
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
10
|
Lee M, Yoon JG, Lee SW. Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling. Front Hum Neurosci 2020; 14:321. [PMID: 32903663 PMCID: PMC7438792 DOI: 10.3389/fnhum.2020.00321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022] Open
Abstract
Motor imagery-based brain–computer interfaces (MI-BCIs) send commands to a computer using the brain activity registered when a subject imagines—but does not perform—a given movement. However, inconsistent MI-BCI performance occurs in variations of brain signals across subjects and experiments; this is considered to be a significant problem in practical BCI. Moreover, some subjects exhibit a phenomenon referred to as “BCI-inefficiency,” in which they are unable to generate brain signals for BCI control. These subjects have significant difficulties in using BCI. The primary goal of this study is to identify the connections of the resting-state network that affect MI performance and predict MI performance using these connections. We used a public database of MI, which includes the results of psychological questionnaires and pre-experimental resting-state taken over two sessions on different days. A dynamic causal model was used to calculate the coupling strengths between brain regions with directionality. Specifically, we investigated the motor network in resting-state, including the dorsolateral prefrontal cortex, which performs motor planning. As a result, we observed a significant difference in the connectivity strength from the supplementary motor area to the right dorsolateral prefrontal cortex between the low- and high-MI performance groups. This coupling, measured in the resting-state, is significantly stronger in the high-MI performance group than the low-MI performance group. The connection strength is positively correlated with MI-BCI performance (Session 1: r = 0.54; Session 2: r = 0.42). We also predicted MI performance using linear regression based on this connection (r-squared = 0.31). The proposed predictors, based on dynamic causal modeling, can develop new strategies for improving BCI performance. These findings can further our understanding of BCI-inefficiency and help BCI users to lower costs and save time.
Collapse
Affiliation(s)
- Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Jae-Geun Yoon
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Seong-Whan Lee
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
11
|
Hramov AE, Grubov V, Badarin A, Maksimenko VA, Pisarchik AN. Functional Near-Infrared Spectroscopy for the Classification of Motor-Related Brain Activity on the Sensor-Level. SENSORS 2020; 20:s20082362. [PMID: 32326270 PMCID: PMC7219246 DOI: 10.3390/s20082362] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022]
Abstract
Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement. The recognition accuracy of real movements is close to 100%, while the classification accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of the proposed method is its ability to classify real and imaginary movements with sufficiently high efficiency without the need for recalculating parameters. The proposed system can serve as a sensor of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas and strokes.
Collapse
Affiliation(s)
- Alexander E. Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
- Saratov State Medical University, Bolshaya Kazachya Str., 112, 410012 Saratov, Russia
- Correspondence: ; Tel.: +7-927-123-3294
| | - Vadim Grubov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
| | - Artem Badarin
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
| | - Vladimir A. Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
| | - Alexander N. Pisarchik
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaja Str., 1, 420500 Innopolis, Russia; (V.G.); (A.B.); (V.A.M.); (A.N.P.)
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
12
|
Privodnova EY, Volf NV, Knyazev GG. The Evaluation of Creative Ideas in Older and Younger Adults. J PSYCHOPHYSIOL 2020. [DOI: 10.1027/0269-8803/a000232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The ability to solve problems of divergent type is one of the most intact functions in successful aging. However, neurophysiologic mechanisms that support the efficiency of creative thinking remain largely unknown. This study was aimed to investigate age-related difference in localized induced electroencephalogram (EEG) changes during creative idea evaluation stage of divergent problem-solving (Alternate Uses Task), using standardized low-resolution brain electromagnetic tomography. Younger (45 women, 44 men, Mage = 22.1 years, age range: 18–30 years) and older adults (46 women, 43 men, Mage = 64.9 years, age range: 55–75 years) participated in the study. Higher synchronization in individually adjusted theta frequency band [from (individual alpha peak frequency −6 Hz) to (individual alpha peak frequency −4 Hz)] in anterior areas with the maximum values in anterior cingulate gyrus was revealed in older as compared with younger participants by group contrast. Higher desynchronization in wide beta range [from (individual alpha peak frequency +2 Hz) to 30 Hz] was localized in posterior brain regions with the highest values in posterior cingulate gyrus, precuneus, and parietal lobule in older adults. Induced beta 2 synchronization was positively correlated with originality (as measured by the mean frequency of ideas) in younger and years of education in older subjects. Based on the data, it was supposed that controlling the decision-making processes is more important for older adults while maintenance of the internal image of elements’ recombination may play essential role for younger subjects.
Collapse
Affiliation(s)
- Evgeniya Yu. Privodnova
- Federal State Budgetary Scientific Institution “Scientific Research Institute of Physiology and Basic Medicine”, Novosibirsk, Russian Federation
- Department of Psychology, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nina V. Volf
- Federal State Budgetary Scientific Institution “Scientific Research Institute of Physiology and Basic Medicine”, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Gennady G. Knyazev
- Federal State Budgetary Scientific Institution “Scientific Research Institute of Physiology and Basic Medicine”, Novosibirsk, Russian Federation
| |
Collapse
|
13
|
Lee WH, Kim E, Seo HG, Oh BM, Nam HS, Kim YJ, Lee HH, Kang MG, Kim S, Bang MS. Target-oriented motor imagery for grasping action: different characteristics of brain activation between kinesthetic and visual imagery. Sci Rep 2019; 9:12770. [PMID: 31484971 PMCID: PMC6726765 DOI: 10.1038/s41598-019-49254-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
Motor imagery (MI) for target-oriented movements, which is a basis for functional activities of daily living, can be more appropriate than non-target-oriented MI as tasks to promote motor recovery or brain-computer interface (BCI) applications. This study aimed to explore different characteristics of brain activation among target-oriented kinesthetic imagery (KI) and visual imagery (VI) in the first-person (VI-1) and third-person (VI-3) perspectives. Eighteen healthy volunteers were evaluated for MI ability, trained for the three types of target-oriented MIs, and scanned using 3 T functional magnetic resonance imaging (fMRI) under MI and perceptual control conditions, presented in a block design. Post-experimental questionnaires were administered after fMRI. Common brain regions activated during the three types of MI were the left premotor area and inferior parietal lobule, irrespective of the MI modalities or perspectives. Contrast analyses showed significantly increased brain activation only in the contrast of KI versus VI-1 and KI versus VI-3 for considerably extensive brain regions, including the supplementary motor area and insula. Neural activity in the orbitofrontal cortex and cerebellum during VI-1 and KI was significantly correlated with MI ability measured by mental chronometry and a self-reported questionnaire, respectively. These results can provide a basis in developing MI-based protocols for neurorehabilitation to improve motor recovery and BCI training in severely paralyzed individuals.
Collapse
Affiliation(s)
- Woo Hyung Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyung Seok Nam
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yoon Jae Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyun Haeng Lee
- Department of Rehabilitation Medicine, Konkuk University Hospital, 120-1 Hwayang-dong, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Min-Gu Kang
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Institute of Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Moon Suk Bang
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Ruggirello S, Campioni L, Piermanni S, Sebastiani L, Santarcangelo EL. Does hypnotic assessment predict the functional equivalence between motor imagery and action? Brain Cogn 2019; 136:103598. [PMID: 31472426 DOI: 10.1016/j.bandc.2019.103598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023]
Abstract
Motor imagery is influenced by individual and contextual factors. We investigated whether the psychophysiological trait of hypnotisability modulates its subjective experience and cortical correlates similarly to what was previously shown for head postures mental images. EEG was acquired in 18 high (highs) and 15 low (lows) hypnotizable subjects (Stanford Hypnotic Susceptibility Scale, A). The experimental conditions were: baseline, a complex arm/hand movement, visual (1st person) and kinesthetic imagery of the movement. After each imagery condition, participants scored the vividness and easeness of their performance and their ability to mantain the requested modality of imagery. Subjective reports, chronometric visual/kinesthetic indices, absolute beta and fronto-central midline alpha powers were analyzed. Findings confirmed earlier reports of better kinestetic imagery ability in highs than in lows and better visual than kinesthetic imagery in lows, as well as smaller restructuring of the cortical activity in highs than in lows, during all tasks. Also, they show that hypnotisability accounts for most of the correlations between brain regions for both alpha and beta changes. Thus, imagined and actual movements were less demanding processes in highs at subjective and cortical levels. Finally, hypnotic assessment assists to plan personalized mental training for neuro-rehabilitation and sports and predict their efficacy.
Collapse
Affiliation(s)
- Simona Ruggirello
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Lisa Campioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Samuele Piermanni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| | - Enrica L Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| |
Collapse
|
15
|
Visual and kinesthetic modes affect motor imagery classification in untrained subjects. Sci Rep 2019; 9:9838. [PMID: 31285468 PMCID: PMC6614413 DOI: 10.1038/s41598-019-46310-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/21/2019] [Indexed: 11/20/2022] Open
Abstract
The understanding of neurophysiological mechanisms responsible for motor imagery (MI) is essential for the development of brain-computer interfaces (BCI) and bioprosthetics. Our magnetoencephalographic (MEG) experiments with voluntary participants confirm the existence of two types of motor imagery, kinesthetic imagery (KI) and visual imagery (VI), distinguished by activation and inhibition of different brain areas in motor-related α- and β-frequency regions. Although the brain activity corresponding to MI is usually observed in specially trained subjects or athletes, we show that it is also possible to identify particular features of MI in untrained subjects. Similar to real movement, KI implies muscular sensation when performing an imaginary moving action that leads to event-related desynchronization (ERD) of motor-associated brain rhythms. By contrast, VI refers to visualization of the corresponding action that results in event-related synchronization (ERS) of α- and β-wave activity. A notable difference between KI and VI groups occurs in the frontal brain area. In particular, the analysis of evoked responses shows that in all KI subjects the activity in the frontal cortex is suppressed during MI, while in the VI subjects the frontal cortex is always active. The accuracy in classification of left-arm and right-arm MI using artificial intelligence is similar for KI and VI. Since untrained subjects usually demonstrate the VI imagery mode, the possibility to increase the accuracy for VI is in demand for BCIs. The application of artificial neural networks allows us to classify MI in raising right and left arms with average accuracy of 70% for both KI and VI using appropriate filtration of input signals. The same average accuracy is achieved by optimizing MEG channels and reducing their number to only 13.
Collapse
|
16
|
Zabicki A, de Haas B, Zentgraf K, Stark R, Munzert J, Krüger B. Subjective vividness of motor imagery has a neural signature in human premotor and parietal cortex. Neuroimage 2019; 197:273-283. [PMID: 31051294 DOI: 10.1016/j.neuroimage.2019.04.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/17/2019] [Accepted: 04/27/2019] [Indexed: 01/27/2023] Open
Abstract
Motor imagery (MI) is the process in which subjects imagine executing a body movement with a strong kinesthetic component from a first-person perspective. The individual capacity to elicit such mental images is not universal but varies within and between subjects. Neuroimaging studies have shown that these inter-as well as intra-individual differences in imagery quality mediate the amplitude of neural activity during MI on a group level. However, these analyses were not sensitive to forms of representation that may not map onto a simple modulation of overall amplitude. Therefore, the present study asked how far the subjective impression of motor imagery vividness is reflected by a spatial neural code, and how patterns of neural activation in different motor regions relate to specific imagery impressions. During fMRI scanning, 20 volunteers imagined three different types of right-hand actions. After each imagery trial, subjects were asked to evaluate the perceived vividness of their imagery. A correlation analysis compared the rating differences and neural dissimilarity values of the rating groups separately for each region of interest. Results showed a significant positive correlation in the left vPMC and right IPL, indicating that these regions particularly reflect perceived imagery vividness in that similar rated trials evoke more similar neural patterns. A decoding analysis revealed that the vividness of the motor image related systematically to the action specificity of neural activation patterns in left vPMC and right SPL. Imagined actions accompanied by higher vividness ratings were significantly more distinguishable within these areas. Altogether, results showed that spatial patterns of neural activity within the human motor cortices reflect the individual vividness of imagined actions. Hence, the findings reveal a link between the subjective impression of motor imagery vividness and objective physiological markers.
Collapse
Affiliation(s)
- Adam Zabicki
- Neuromotor Behavior Laboratory, Institute of Sport Sciences, Justus Liebig University Giessen, Germany.
| | - Benjamin de Haas
- Experimental Psychology, Justus Liebig University Giessen, Germany
| | - Karen Zentgraf
- Institute of Sport and Exercise Sciences, Goethe University Frankfurt, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Jörn Munzert
- Neuromotor Behavior Laboratory, Institute of Sport Sciences, Justus Liebig University Giessen, Germany
| | - Britta Krüger
- Neuromotor Behavior Laboratory, Institute of Sport Sciences, Justus Liebig University Giessen, Germany; Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| |
Collapse
|
17
|
Mehler DMA, Williams AN, Krause F, Lührs M, Wise RG, Turner DL, Linden DEJ, Whittaker JR. The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback. Neuroimage 2019; 184:36-44. [PMID: 30205210 PMCID: PMC6264383 DOI: 10.1016/j.neuroimage.2018.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 01/28/2023] Open
Abstract
There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.
Collapse
Affiliation(s)
- David M A Mehler
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Angharad N Williams
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Florian Krause
- Donders Institute for Brain, Cognition and Behaviour Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Michael Lührs
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Duncan L Turner
- Neurorehabilitation Unit, School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, United Kingdom
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom; School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom.
| |
Collapse
|
18
|
Ge S, Liu H, Lin P, Gao J, Xiao C, Li Z. Neural Basis of Action Observation and Understanding From First- and Third-Person Perspectives: An fMRI Study. Front Behav Neurosci 2018; 12:283. [PMID: 30524253 PMCID: PMC6262037 DOI: 10.3389/fnbeh.2018.00283] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding the intentions of others while observing their actions is a fundamental aspect of social behavior. However, the differences in neural and functional mechanisms between observing actions from the first-person perspective (1PP) and third-person perspective (3PP) are poorly understood. The present study had two aims: (1) to delineate the neural basis of action observation and understanding from the 1PP and 3PP; and (2) to identify whether there are different activation patterns during action observation and understanding from 1PP and 3PP. We used a blocked functional magnetic resonance imaging (fMRI) experimental design. Twenty-six right-handed participants observed interactions between the right hand and a cup from 1PP and 3PP. The results indicated that both 1PP and 3PP were associated with similar patterns of activation in key areas of the mirror neuron system underlying action observation and understanding. Importantly, besides of the core network of mirror neuron system, we also found that parts of the basal ganglia and limbic system were involved in action observation in both the 1PP and 3PP tasks, including the putamen, insula and hippocampus, providing a more complete understanding of the neural basis for action observation and understanding. Moreover, compared with the 3PP, the 1PP task caused more extensive and stronger activation. In contrast, the opposite comparison revealed that no regions exhibited significantly more activation in the 3PP compared with the 1PP condition. The current results have important implications for understanding the role of the core network underlying the mirror neuron system, as well as parts of the basal ganglia and limbic system, during action observation and understanding.
Collapse
Affiliation(s)
- Sheng Ge
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Hui Liu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Pan Lin
- Key Laboratory of Cognitive Science, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Junfeng Gao
- Key Laboratory of Cognitive Science, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zonghong Li
- Department of Radiology, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Andoh J, Milde C, Tsao J, Flor H. Cortical plasticity as a basis of phantom limb pain: Fact or fiction? Neuroscience 2018; 387:85-91. [DOI: 10.1016/j.neuroscience.2017.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/04/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
|
20
|
Zabicki A, de Haas B, Zentgraf K, Stark R, Munzert J, Krüger B. Imagined and Executed Actions in the Human Motor System: Testing Neural Similarity Between Execution and Imagery of Actions with a Multivariate Approach. Cereb Cortex 2018; 27:4523-4536. [PMID: 27600847 DOI: 10.1093/cercor/bhw257] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Simulation theory proposes motor imagery (MI) to be a simulation based on representations also used for motor execution (ME). Nonetheless, it is unclear how far they use the same neural code. We use multivariate pattern analysis (MVPA) and representational similarity analysis (RSA) to describe the neural representations associated with MI and ME within the frontoparietal motor network. During functional magnetic resonance imaging scanning, 20 volunteers imagined or executed 3 different types of right-hand actions. Results of MVPA showed that these actions as well as their modality (MI or ME) could be decoded significantly above chance from the spatial patterns of BOLD signals in premotor and posterior parietal cortices. This was also true for cross-modal decoding. Furthermore, representational dissimilarity matrices of frontal and parietal areas showed that MI and ME representations formed separate clusters, but that the representational organization of action types within these clusters was identical. For most ROIs, this pattern of results best fits with a model that assumes a low-to-moderate degree of similarity between the neural patterns associated with MI and ME. Thus, neural representations of MI and ME are neither the same nor totally distinct but exhibit a similar structural geometry with respect to different types of action.
Collapse
Affiliation(s)
- Adam Zabicki
- Institute for Sports Science, Justus Liebig University Giessen, Giessen, 35394, Germany
| | - Benjamin de Haas
- Institute of Cognitive Neuroscience, University College London, London, WC1H 0AP, UK.,Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Karen Zentgraf
- Institute of Sport and Exercise Sciences, University of Münster, Münster, 48149, Germany.,Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, 35394, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, 35394, Germany
| | - Jörn Munzert
- Institute for Sports Science, Justus Liebig University Giessen, Giessen, 35394, Germany
| | - Britta Krüger
- Institute for Sports Science, Justus Liebig University Giessen, Giessen, 35394, Germany.,Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, 35394, Germany
| |
Collapse
|
21
|
Bruno V, Fossataro C, Garbarini F. Inhibition or facilitation? Modulation of corticospinal excitability during motor imagery. Neuropsychologia 2018; 111:360-368. [PMID: 29462639 DOI: 10.1016/j.neuropsychologia.2018.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/21/2017] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
Abstract
Motor imagery (MI) is the mental simulation of an action without any overt movement. Functional evidences show that brain activity during MI and motor execution (ME) largely overlaps. However, the role of the primary motor cortex (M1) during MI is controversial. Effective connectivity techniques show a facilitation on M1 during ME and an inhibition during MI, depending on whether an action should be performed or suppressed. Conversely, Transcranial Magnetic Stimulation (TMS) studies report facilitatory effects during both ME and MI. The present TMS study shed light on MI mechanisms, by manipulating the instructions given to the participants. In both Experimental and Control groups, participants were asked to mentally simulate a finger-thumb opposition task, but only the Experimental group received the explicit instruction to avoid any unwanted fingers movements. The amplitude of motor evoked potentials (MEPs) to TMS during MI was compared between the two groups. If the M1 facilitation actually pertains to MI per se, we should have expected to find it, irrespective of the instructions. Contrariwise, we found opposite results, showing facilitatory effects (increased MEPs amplitude) in the Control group and inhibitory effects (decreased MEPs amplitude) in the Experimental group. Control experiments demonstrated that the inhibitory effect was specific for the M1 contralateral to the hand performing the MI task and that the given instructions did not compromise the subjects' MI abilities. The present findings suggest a crucial role of motor inhibition when a "pure" MI task is performed and the subjects are explicitly instructed to avoid overt movements.
Collapse
Affiliation(s)
- Valentina Bruno
- SpAtial, Motor & Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Via Po 14, 10123 Turin, Italy
| | - Carlotta Fossataro
- SpAtial, Motor & Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Via Po 14, 10123 Turin, Italy
| | - Francesca Garbarini
- SpAtial, Motor & Bodily Awareness (SAMBA) Research Group, Department of Psychology, University of Turin, Via Po 14, 10123 Turin, Italy.
| |
Collapse
|
22
|
Lee D, Yun S, Jang C, Park HJ. Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions. PLoS One 2017; 12:e0182657. [PMID: 28777830 PMCID: PMC5544208 DOI: 10.1371/journal.pone.0182657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/22/2017] [Indexed: 11/26/2022] Open
Abstract
This study proposes a method for classifying event-related fMRI responses in a specialized setting of many known but few unknown stimuli presented in a rapid event-related design. Compared to block design fMRI signals, classification of the response to a single or a few stimulus trial(s) is not a trivial problem due to contamination by preceding events as well as the low signal-to-noise ratio. To overcome such problems, we proposed a single trial-based classification method of rapid event-related fMRI signals utilizing sparse multivariate Bayesian decoding of spatio-temporal fMRI responses. We applied the proposed method to classification of memory retrieval processes for two different classes of episodic memories: a voluntarily conducted experience and a passive experience induced by watching a video of others’ actions. A cross-validation showed higher classification performance of the proposed method compared to that of a support vector machine or of a classifier based on the general linear model. Evaluation of classification performances for one, two, and three stimuli from the same class and a correlation analysis between classification accuracy and target stimulus positions among trials suggest that presenting two target stimuli at longer inter-stimulus intervals is optimal in the design of classification experiments to identify the target stimuli. The proposed method for decoding subject-specific memory retrieval of voluntary behavior using fMRI would be useful in forensic applications in a natural environment, where many known trials can be extracted from a simulation of everyday tasks and few target stimuli from a crime scene.
Collapse
Affiliation(s)
- Dongha Lee
- Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Sungjae Yun
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changwon Jang
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Foldes ST, Weber DJ, Collinger JL. Altered modulation of sensorimotor rhythms with chronic paralysis. J Neurophysiol 2017; 118:2412-2420. [PMID: 28768745 DOI: 10.1152/jn.00878.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023] Open
Abstract
After paralysis, the disconnection between the cortex and its peripheral targets leads to neuroplasticity throughout the nervous system. However, it is unclear how chronic paralysis specifically impacts cortical oscillations associated with attempted movement of impaired limbs. We hypothesized that μ- (8-13 Hz) and β- (15-30 Hz) event-related desynchronization (ERD) would be less modulated for individuals with hand paralysis due to cervical spinal cord injury (SCI). To test this, we compared the modulation of ERD from magnetoencephalography (MEG) during attempted and imagined grasping performed by participants with cervical SCI (n = 12) and able-bodied controls (n = 13). Seven participants with tetraplegia were able to generate some electromyography (EMG) activity during attempted grasping, whereas the other five were not. The peak and area of ERD were significantly decreased for individuals without volitional muscle activity when they attempted to grasp compared with able-bodied subjects and participants with SCI,with some residual EMG activity. However, no significant differences were found between subject groups during mentally simulated tasks (i.e., motor imagery) where no muscle activity or somatosensory consequences were expected. These findings suggest that individuals who are unable to produce muscle activity are capable of generating ERD when attempting to move, but the characteristics of this ERD are altered. However, for people who maintain volitional muscle activity after SCI, there are no significant differences in ERD characteristics compared with able-bodied controls. These results provide evidence that ERD is dependent on the level of intact muscle activity after SCI.NEW & NOTEWORTHY Source space MEG was used to investigate sensorimotor cortical oscillations in individuals with SCI. This study provides evidence that individuals with cervical SCI exhibit decreased ERD when they attempt to grasp if they are incapable of generating muscle activity. However, there were no significant differences in ERD between paralyzed and able-bodied participants during motor imagery. These results have important implications for the design and evaluation of new therapies, such as motor imagery and neurofeedback interventions.
Collapse
Affiliation(s)
- Stephen T Foldes
- Veterans Affairs Pittsburgh Healthcare System, Department of Veterans Affairs, Pittsburgh, Pennsylvania.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona; and
| | - Douglas J Weber
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer L Collinger
- Veterans Affairs Pittsburgh Healthcare System, Department of Veterans Affairs, Pittsburgh, Pennsylvania; .,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2017; 2017:5491296. [PMID: 28546809 PMCID: PMC5435907 DOI: 10.1155/2017/5491296] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/18/2017] [Accepted: 04/06/2017] [Indexed: 11/26/2022]
Abstract
Motor-activity-related mental tasks are widely adopted for brain-computer interfaces (BCIs) as they are a natural extension of movement intention, requiring no training to evoke brain activity. The ideal BCI aims to eliminate neuromuscular movement, making motor imagery tasks, or imagined actions with no muscle movement, good candidates. This study explores cortical activation differences between motor imagery and motor execution for both upper and lower limbs using functional near-infrared spectroscopy (fNIRS). Four simple finger- or toe-tapping tasks (left hand, right hand, left foot, and right foot) were performed with both motor imagery and motor execution and compared to resting state. Significant activation was found during all four motor imagery tasks, indicating that they can be detected via fNIRS. Motor execution produced higher activation levels, a faster response, and a different spatial distribution compared to motor imagery, which should be taken into account when designing an imagery-based BCI. When comparing left versus right, upper limb tasks are the most clearly distinguishable, particularly during motor execution. Left and right lower limb activation patterns were found to be highly similar during both imagery and execution, indicating that higher resolution imaging, advanced signal processing, or improved subject training may be required to reliably distinguish them.
Collapse
|
25
|
The Relationship between Neurocircuitry Dysfunctions and Attention Deficit Hyperactivity Disorder: A Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3821579. [PMID: 27689077 PMCID: PMC5023827 DOI: 10.1155/2016/3821579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/19/2016] [Indexed: 01/16/2023]
Abstract
The prefrontal cortex is the superlative structure of brain that needs the longest developmental and maturational duration that highlights the region of attention deficit hyperactivity disorder (ADHD) in neuroimaging studies. Prefrontal cortex functions generate enormously complex and its abundant feedback neurocircuitries with subcortical structures such as striatum and thalamus established through dual neural fibers. These microneurocircuitries are called corticostriatothalamocortical (CSTC) circuits. The CSTC circuits paly an essential role in flexible behaviors. The impaired circuits increase the risk of behavioral and psychological symptoms. ADHD is an especial developmental stage of paediatric disease. It has been reported that the CSTC circuits dysfunctions in ADHD are related to homologous symptoms. This study aimed to review the symptoms of ADHD and discuss the recent advances on the effects of the disease as well as the new progress of treatments with each circuit.
Collapse
|
26
|
Macedonia M, Mueller K. Exploring the Neural Representation of Novel Words Learned through Enactment in a Word Recognition Task. Front Psychol 2016; 7:953. [PMID: 27445918 PMCID: PMC4923151 DOI: 10.3389/fpsyg.2016.00953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/09/2016] [Indexed: 01/03/2023] Open
Abstract
Vocabulary learning in a second language is enhanced if learners enrich the learning experience with self-performed iconic gestures. This learning strategy is called enactment. Here we explore how enacted words are functionally represented in the brain and which brain regions contribute to enhance retention. After an enactment training lasting 4 days, participants performed a word recognition task in the functional Magnetic Resonance Imaging (fMRI) scanner. Data analysis suggests the participation of different and partially intertwined networks that are engaged in higher cognitive processes, i.e., enhanced attention and word recognition. Also, an experience-related network seems to map word representation. Besides core language regions, this latter network includes sensory and motor cortices, the basal ganglia, and the cerebellum. On the basis of its complexity and the involvement of the motor system, this sensorimotor network might explain superior retention for enactment.
Collapse
Affiliation(s)
- Manuela Macedonia
- Information Engineering, Johannes Kepler University LinzLinz, Austria; Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Karsten Mueller
- Nuclear Magnetic Resonance Unit, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| |
Collapse
|
27
|
Subramanian L, Morris MB, Brosnan M, Turner DL, Morris HR, Linden DEJ. Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson's Disease: Randomized Trial. Front Behav Neurosci 2016; 10:111. [PMID: 27375451 PMCID: PMC4896907 DOI: 10.3389/fnbeh.2016.00111] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient's own brain activity to self-regulate brain networks which in turn could lead to a change in behavior and clinical symptoms. The objective was to determine the effect of NF and motor training (MOT) alone on motor and non-motor functions in Parkinson's Disease (PD) in a 10-week small Phase I randomized controlled trial. METHODS Thirty patients with Parkinson's disease (PD; Hoehn and Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with MOT. Group 2 (MOT: 15 patients) received MOT alone. The primary outcome measure was the Movement Disorder Society-Unified PD Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention "off-medication". The secondary outcome measures were the "on-medication" MDS-UPDRS, the PD Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. RESULTS Patients in the NF group were able to upregulate activity in the supplementary motor area (SMA) by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the "off-medication" state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). The improvement in the intervention group meets the minimal clinically important difference which is also on par with other non-invasive therapies such as repetitive Transcranial Magnetic Stimulation (rTMS). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. INTERPRETATION This Phase I study suggests that NF combined with MOT is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions.
Collapse
Affiliation(s)
- Leena Subramanian
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiff, UK
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff UniversityCardiff, UK
| | - Monica Busse Morris
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiff, UK
| | - Meadhbh Brosnan
- Trinity College Institute of Neuroscience, Trinity CollegeDublin, Ireland
- Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands
| | - Duncan L. Turner
- Neurorehabilitation Unit, School of Health, Sport and Bioscience, University of East LondonLondon, UK
| | - Huw R. Morris
- Department of Clinical Neuroscience, Institute of Neurology, University College LondonLondon, UK
| | - David E. J. Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiff, UK
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff UniversityCardiff, UK
| |
Collapse
|
28
|
Hanakawa T. Organizing motor imageries. Neurosci Res 2016; 104:56-63. [DOI: 10.1016/j.neures.2015.11.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
|
29
|
Pilgramm S, de Haas B, Helm F, Zentgraf K, Stark R, Munzert J, Krüger B. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Hum Brain Mapp 2015; 37:81-93. [PMID: 26452176 PMCID: PMC4737127 DOI: 10.1002/hbm.23015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action‐specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI‐scanning, 20 right‐handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right‐hand actions: an aiming movement, an extension–flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor‐ and motor‐associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. Hum Brain Mapp 37:81–93, 2016. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sebastian Pilgramm
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Benjamin de Haas
- Institute of Cognitive Neuroscience, University College London, United Kingdom.,Experimental Psychology, University College London, United Kingdom
| | - Fabian Helm
- Institute for Sports Science, Justus Liebig University Giessen, Germany
| | - Karen Zentgraf
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany.,Institute of Sport and Exercise Sciences, University of Muenster, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany
| | - Jörn Munzert
- Institute for Sports Science, Justus Liebig University Giessen, Germany
| | - Britta Krüger
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Germany.,Institute for Sports Science, Justus Liebig University Giessen, Germany
| |
Collapse
|