1
|
Yashin AS, Shishkin SL, Vasilyev AN. Is there a continuum of agentive awareness across physical and mental actions? The case of quasi-movements. Conscious Cogn 2023; 112:103531. [PMID: 37209425 DOI: 10.1016/j.concog.2023.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
While humans routinely distinguish between physical and mental actions, overt movements (OM) and kinesthetically imagined movements (IM) are often viewed as forming a continuum of activities. Here, we theoretically conceptualized this continuum hypothesis for agentive awareness related to OM and IM and tested it experimentally using quasi-movements (QM), a little studied type of covert actions, which is considered as an inner part of the OM-IM continuum. QM are performed when a movement attempt is minimized down to full extinction of overt movement and muscle activity. We asked participants to perform OM, IM and QM and collected their electromyography data. According to participants' reports, they experienced QM as OM in terms of intentions and expected sensory feedback, while the verbal descriptors were independent from muscle activation. These results do not fit the OM-QM-IM continuum and suggest qualitative distinction for agentive awareness between IM and QM/OM.
Collapse
Affiliation(s)
- Artem S Yashin
- MEG Center, Moscow State University of Psychology and Education, 123290 Moscow, Russia; Faculty of Philosophy, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Sergei L Shishkin
- MEG Center, Moscow State University of Psychology and Education, 123290 Moscow, Russia.
| | - Anatoly N Vasilyev
- MEG Center, Moscow State University of Psychology and Education, 123290 Moscow, Russia; Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
2
|
Li M, Zuo H, Zhou H, Xu G, Qi E. A study of action difference on motor imagery based on delayed matching posture task. J Neural Eng 2023; 20. [PMID: 36645915 DOI: 10.1088/1741-2552/acb386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Objective. Motor imagery (MI)-based brain-computer interfaces (BCIs) provide an additional control pathway for people by decoding the intention of action imagination. The way people imagine greatly affects MI-BCI performance. Action itself is one of the factors that influence the way people imagine. Whether the different actions cause a difference in the MI performance is unknown. What is more important is how to manifest this action difference in the process of imagery, which has the potential to guide people to use their individualized actions to imagine more effectively.Approach.To explore action differences, this study proposes a novel paradigm named as action observation based delayed matching posture task. Ten subjects are required to observe, memorize, match, and imagine three types of actions (cutting, grasping and writing) given by visual images or videos, to accomplish the phases of encoding, retrieval and reinforcement of MI. Event-related potential (ERP), MI features, and classification accuracy of the left or the right hand are used to evaluate the effect of the action difference on the MI difference.Main results.Action differences cause different feature distributions, resulting in that the accuracy with high event-related (de)synchronization (ERD/ERS) is 27.75% higher than the ones with low ERD/ERS (p< 0.05), which indicates that the action difference has impact on the MI difference and the BCI performance. In addition, significant differences in the ERP amplitudes exists among the three actions: the amplitude of P300-N200 potential reaches 9.28μV of grasping, 5.64μV and 5.25μV higher than the cutting and the writing, respectively (p< 0.05).Significance.The ERP amplitudes derived from the supplementary motor area shows positive correlation to the MI classification accuracy, implying that the ERP might be an index of the MI performance when the people is faced with action selection. This study demonstrates that the MI difference is related to the action difference, and can be manifested by the ERP, which is important for improving MI training by selecting suitable action; the relationship between the ERP and the MI provides a novel index to find the suitable action to set up an individualized BCI and improve the performance further.
Collapse
Affiliation(s)
- Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Haoxin Zuo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Huihui Zhou
- Peng Cheng Laboratory, 518000 Guangdong, People's Republic of China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| | - Enming Qi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China.,Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, 300132 Tianjin, People's Republic of China
| |
Collapse
|
3
|
Vasilyev AN, Yashin AS, Shishkin SL. Quasi-Movements and "Quasi-Quasi-Movements": Does Residual Muscle Activation Matter? Life (Basel) 2023; 13:life13020303. [PMID: 36836659 PMCID: PMC9964598 DOI: 10.3390/life13020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Quasi-movements (QM) are observed when an individual minimizes a movement to an extent that no related muscle activation is detected. Likewise to imaginary movements (IM) and overt movements, QMs are accompanied by the event-related desynchronization (ERD) of EEG sensorimotor rhythms. Stronger ERD was observed under QMs compared to IMs in some studies. However, the difference could be caused by the remaining muscle activation in QMs that could escape detection. Here, we re-examined the relation between the electromyography (EMG) signal and ERD in QM using sensitive data analysis procedures. More trials with signs of muscle activation were observed in QMs compared with a visual task and IMs. However, the rate of such trials was not correlated with subjective estimates of actual movement. Contralateral ERD did not depend on the EMG but still was stronger in QMs compared with IMs. These results suggest that brain mechanisms are common for QMs in the strict sense and "quasi-quasi-movements" (attempts to perform the same task accompanied by detectable EMG elevation) but differ between them and IMs. QMs could be helpful in research aimed at better understanding motor action and at modeling the use of attempted movements in the brain-computer interfaces with healthy participants.
Collapse
Affiliation(s)
- Anatoly N. Vasilyev
- MEG Center, Moscow State University of Psychology and Education, 123290 Moscow, Russia
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem S. Yashin
- MEG Center, Moscow State University of Psychology and Education, 123290 Moscow, Russia
- Faculty of Philosophy, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergei L. Shishkin
- MEG Center, Moscow State University of Psychology and Education, 123290 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Zhang X, Jiang Y, Hou W, Jiang N. Age-related differences in the transient and steady state responses to different visual stimuli. Front Aging Neurosci 2022; 14:1004188. [PMID: 36158550 PMCID: PMC9493465 DOI: 10.3389/fnagi.2022.1004188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveBrain-computer interface (BCI) has great potential in geriatric applications. However, most BCI studies in the literature used data from young population, and dedicated studies investigating the feasibility of BCIs among senior population are scarce. The current study, we analyzed the age-related differences in the transient electroencephalogram (EEG) response used in visual BCIs, i.e., visual evoked potential (VEP)/motion onset VEP (mVEP), and steady state-response, SSVEP/SSMVEP, between the younger group (age ranges from 22 to 30) and senior group (age ranges from 60 to 75).MethodsThe visual stimulations, including flicker, checkerboard, and action observation (AO), were designed with a periodic frequency. Videos of several hand movement, including grasping, dorsiflexion, the thumb opposition, and pinch were utilized to generate the AO stimuli. Eighteen senior and eighteen younger participants were enrolled in the experiments. Spectral-temporal characteristics of induced EEG were compared. Three EEG algorithms, canonical correlation analysis (CCA), task-related component analysis (TRCA), and extended CCA, were utilized to test the performance of the respective BCI systems.ResultsIn the transient response analysis, the motion checkerboard and AO stimuli were able to elicit prominent mVEP with a specific P1 peak and N2 valley, and the amplitudes of P1 elicited in the senior group were significantly higher than those in the younger group. In the steady-state analysis, SSVEP/SSMVEP could be clearly elicited in both groups. The CCA accuracies of SSVEPs/SSMVEPs in the senior group were slightly lower than those in the younger group in most cases. With extended CCA, the performance of both groups improved significantly. However, for AO targets, the improvement of the senior group (from 63.1 to 71.9%) was lower than that of the younger group (from 63.6 to 83.6%).ConclusionCompared with younger subjects, the amplitudes of P1 elicited by motion onset is significantly higher in the senior group, which might be a potential advantage for seniors if mVEP-based BCIs is used. This study also shows for the first time that AO-based BCI is feasible for the senior population. However, new algorithms for senior subjects, especially in identifying AO targets, are needed.
Collapse
Affiliation(s)
- Xin Zhang
- Bioengineering College, Chongqing University, Chongqing, China
- *Correspondence: Xin Zhang,
| | - Yi Jiang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Med-X Center for Manufacturing, Sichuan University, Chengdu, China
| | - Wensheng Hou
- Bioengineering College, Chongqing University, Chongqing, China
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Med-X Center for Manufacturing, Sichuan University, Chengdu, China
- Ning Jiang,
| |
Collapse
|
5
|
Rimbert S, Lotte F. ERD modulations during motor imageries relate to users' traits and BCI performances. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:203-207. [PMID: 36086209 DOI: 10.1109/embc48229.2022.9871411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving user performances is one of the major issues for Motor Imagery (MI) - based BCI control. MI-BCIs exploit the modulation of sensorimotor rhythms (SMR) over the motor and sensorimotor cortices to discriminate several mental states and enable user interaction. Such modulations are known as Event-Related Desynchronization (ERD) and Synchronization (ERS), coming from the mu (7-13 Hz) and beta (15-30 Hz) frequency bands. This kind of BCI opens up promising fields, particularly to control assistive technologies, for sport training or even for post-stroke motor rehabilitation. However, MI - BCIs remain barely used outside laboratories, notably due to their lack of robustness and usability (15 to 30% of users seem unable to gain control of an MI-BCI). One way to increase user performance would be to better understand the relationships between user traits and ERD/ERS modulations underlying BCI performance. Therefore, in this article we analyzed how cerebral motor patterns underlying MI tasks (i.e., ERDs and ERSs) are modulated depending (i) on nature of the task (i.e., right-hand MI and left-hand MI), (ii) the session during which the task was performed (i.e., calibration or user training) and (iii) on the characteristics of the user (e.g., age, gender, manual activity, personality traits) on a large MI-BCI data base of N=75 participants. One of the originality of this study is to combine the investigation of human factors related to the user's traits and the neurophysiological ERD modulations during the MI task. Our study revealed for the first time an association between ERD and self-control from the 16PF5 questionnaire.
Collapse
|
6
|
Kumari R, Janković M, Costa A, Savić A, Konstantinović L, Djordjević O, Vucković A. Short term priming effect of brain-actuated muscle stimulation using bimanual movements in stroke. Clin Neurophysiol 2022; 138:108-121. [DOI: 10.1016/j.clinph.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
|
7
|
Abstract
Abstract
Neurofeedback (NF) is a versatile non-invasive neuromodulation technique. In combination with motor imagery (MI), NF has considerable potential for enhancing motor performance or supplementing motor rehabilitation. However, not all users achieve reliable NF control. While research has focused on various brain signal properties and the optimisation of signal processing to solve this issue, the impact of context, i.e. the conditions in which NF motor tasks occur, is comparatively unknown. We review current research on the impact of context on MI NF and related motor domains. We identify long-term factors that act at the level of the individual or of the intervention, and short-term factors, with levels before/after and during a session. The reviewed literature indicates that context plays a significant role. We propose considering context factors as well as within-level and across-level interactions when studying MI NF.
Collapse
|
8
|
Wu Q, Ge Y, Ma D, Pang X, Cao Y, Zhang X, Pan Y, Zhang T, Dou W. Analysis of Prognostic Risk Factors Determining Poor Functional Recovery After Comprehensive Rehabilitation Including Motor-Imagery Brain-Computer Interface Training in Stroke Patients: A Prospective Study. Front Neurol 2021; 12:661816. [PMID: 34177767 PMCID: PMC8222567 DOI: 10.3389/fneur.2021.661816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Upper limb (UL) motor function recovery, especially distal function, is one of the main goals of stroke rehabilitation as this function is important to perform activities of daily living (ADL). The efficacy of the motor-imagery brain-computer interface (MI-BCI) has been demonstrated in patients with stroke. Most patients with stroke receive comprehensive rehabilitation, including MI-BCI and routine training. However, most aspects of MI-BCI training for patients with subacute stroke are based on routine training. Risk factors for inadequate distal UL functional recovery in these patients remain unclear; therefore, it is more realistic to explore the prognostic factors of this comprehensive treatment based on clinical practice. The present study aims to investigate the independent risk factors that might lead to inadequate distal UL functional recovery in patients with stroke after comprehensive rehabilitation including MI-BCI (CRIMI-BCI). Methods: This prospective study recruited 82 patients with stroke who underwent CRIMI-BCI. Motor-imagery brain-computer interface training was performed for 60 min per day, 5 days per week for 4 weeks. The primary outcome was improvement of the wrist and hand dimensionality of Fugl-Meyer Assessment (δFMA-WH). According to the improvement score, the patients were classified into the efficient group (EG, δFMA-WH > 2) and the inefficient group (IG, δFMA-WH ≤ 2). Binary logistic regression was used to analyze clinical and demographic data, including aphasia, spasticity of the affected hand [assessed by Modified Ashworth Scale (MAS-H)], initial UL function, age, gender, time since stroke (TSS), lesion hemisphere, and lesion location. Results: Seventy-three patients completed the study. After training, all patients showed significant improvement in FMA-UL (Z = 7.381, p = 0.000**), FMA-SE (Z = 7.336, p = 0.000**), and FMA-WH (Z = 6.568, p = 0.000**). There were 35 patients (47.9%) in the IG group and 38 patients (52.1%) in the EG group. Multivariate analysis revealed that presence of aphasia [odds ratio (OR) 4.617, 95% confidence interval (CI) 1.435-14.860; p < 0.05], initial FMA-UL score ≤ 30 (OR 5.158, 95% CI 1.150-23.132; p < 0.05), and MAS-H ≥ level I+ (OR 3.810, 95% CI 1.231-11.790; p < 0.05) were the risk factors for inadequate distal UL functional recovery in patients with stroke after CRIMI-BCI. Conclusion: We concluded that CRIMI-BCI improved UL function in stroke patients with varying effectiveness. Inferior initial UL function, significant hand spasticity, and presence of aphasia were identified as independent risk factors for inadequate distal UL functional recovery in stroke patients after CRIMI-BCI.
Collapse
Affiliation(s)
- Qiong Wu
- School of Rehabilitation Medicine, China Rehabilitation Research Center, Capital Medical University, Beijing, China.,Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunxiang Ge
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Di Ma
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xue Pang
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yingyu Cao
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xiaofei Zhang
- Department of Clinical Epidemiology and Biostatistics, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yu Pan
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Classification of visuomotor tasks based on electroencephalographic data depends on age-related differences in brain activity patterns. Neural Netw 2021; 142:363-374. [PMID: 34116449 DOI: 10.1016/j.neunet.2021.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022]
Abstract
Classification of physiological data provides a data driven approach to study central aspects of motor control, which changes with age. To implement such results in real-life applications for elderly it is important to identify age-specific characteristics of movement classification. We compared task-classification based on EEG derived activity patterns related to brain network characteristics between older and younger adults performing force tracking with two task characteristics (sinusoidal; constant) with the right or left hand. We extracted brain network patterns with dynamic mode decomposition (DMD) and classified the tasks on an individual level using linear discriminant analysis (LDA). Next, we compared the models' performance between the groups. Studying brain activity patterns, we identified signatures of altered motor network function reflecting dedifferentiated and compensational brain activation in older adults. We found that the classification performance of the body side was lower in older adults. However, classification performance with respect to task characteristics was better in older adults. This may indicate a higher susceptibility of brain network mechanisms to task difficulty in elderly. Signatures of dedifferentiation and compensation refer to an age-related reorganization of functional brain networks, which suggests that classification of visuomotor tracking tasks is influenced by age-specific characteristics of brain activity patterns. In addition to insights into central aspects of fine motor control, the results presented here are relevant in application-oriented areas such as brain computer interfaces.
Collapse
|
10
|
Roc A, Pillette L, Mladenovic J, Benaroch C, N'Kaoua B, Jeunet C, Lotte F. A review of user training methods in brain computer interfaces based on mental tasks. J Neural Eng 2020; 18. [PMID: 33181488 DOI: 10.1088/1741-2552/abca17] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Mental-Tasks based Brain-Computer Interfaces (MT-BCIs) allow their users to interact with an external device solely by using brain signals produced through mental tasks. While MT-BCIs are promising for many applications, they are still barely used outside laboratories due to their lack of reliability. MT-BCIs require their users to develop the ability to self-regulate specific brain signals. However, the human learning process to control a BCI is still relatively poorly understood and how to optimally train this ability is currently under investigation. Despite their promises and achievements, traditional training programs have been shown to be sub-optimal and could be further improved. In order to optimize user training and improve BCI performance, human factors should be taken into account. An interdisciplinary approach should be adopted to provide learners with appropriate and/or adaptive training. In this article, we provide an overview of existing methods for MT-BCI user training - notably in terms of environment, instructions, feedback and exercises. We present a categorization and taxonomy of these training approaches, provide guidelines on how to choose the best methods and identify open challenges and perspectives to further improve MT-BCI user training.
Collapse
Affiliation(s)
| | | | | | - Camille Benaroch
- Inria Centre de recherche Bordeaux Sud-Ouest, Talence, 33405, FRANCE
| | - Bernard N'Kaoua
- Handicap, Activity, Cognition, Health, Inserm / University of Bordeaux, Talence, FRANCE
| | | | | |
Collapse
|
11
|
Ros T, Enriquez-Geppert S, Zotev V, Young KD, Wood G, Whitfield-Gabrieli S, Wan F, Vuilleumier P, Vialatte F, Van De Ville D, Todder D, Surmeli T, Sulzer JS, Strehl U, Sterman MB, Steiner NJ, Sorger B, Soekadar SR, Sitaram R, Sherlin LH, Schönenberg M, Scharnowski F, Schabus M, Rubia K, Rosa A, Reiner M, Pineda JA, Paret C, Ossadtchi A, Nicholson AA, Nan W, Minguez J, Micoulaud-Franchi JA, Mehler DMA, Lührs M, Lubar J, Lotte F, Linden DEJ, Lewis-Peacock JA, Lebedev MA, Lanius RA, Kübler A, Kranczioch C, Koush Y, Konicar L, Kohl SH, Kober SE, Klados MA, Jeunet C, Janssen TWP, Huster RJ, Hoedlmoser K, Hirshberg LM, Heunis S, Hendler T, Hampson M, Guggisberg AG, Guggenberger R, Gruzelier JH, Göbel RW, Gninenko N, Gharabaghi A, Frewen P, Fovet T, Fernández T, Escolano C, Ehlis AC, Drechsler R, Christopher deCharms R, Debener S, De Ridder D, Davelaar EJ, Congedo M, Cavazza M, Breteler MHM, Brandeis D, Bodurka J, Birbaumer N, Bazanova OM, Barth B, Bamidis PD, Auer T, Arns M, Thibault RT. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 2020; 143:1674-1685. [PMID: 32176800 PMCID: PMC7296848 DOI: 10.1093/brain/awaa009] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/10/2019] [Accepted: 10/28/2020] [Indexed: 02/02/2023] Open
Abstract
Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.
Collapse
Affiliation(s)
- Tomas Ros
- Departments of Neuroscience and Psychiatry, University of Geneva; Campus Biotech, Geneva, Switzerland
| | - Stefanie Enriquez-Geppert
- Department of Clinical Neuropsychology, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Kymberly D Young
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Graz, Austria
| | - Susan Whitfield-Gabrieli
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Northeastern University, Boston, MA, USA
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | | | | | - Dimitri Van De Ville
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL); Campus Biotech, Geneva, Switzerland
| | - Doron Todder
- Faculty of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Beer-Sheva Mental Health Center, Israel Ministry of Health, Beer-Sheva, Israel
| | - Tanju Surmeli
- Living Health Center for Research and Education, Istanbul, Turkey
| | - James S Sulzer
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Ute Strehl
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Maurice Barry Sterman
- Neurobiology and Biobehavioral Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Naomi J Steiner
- Boston University School of Medicine, Department of Pediatrics, Boston, MA, USA
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy (CCM), Charité - University Medicine Berlin, Berlin, Germany
| | - Ranganatha Sitaram
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| | | | | | - Frank Scharnowski
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Manuel Schabus
- University of Salzburg, Centre for Cognitive Neuroscience and Department of Psychology, Salzburg, Austria
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | | - Miriam Reiner
- Technion, Israel Institute of Technology, Haifa, Israel
| | - Jaime A Pineda
- Cognitive Science Department, University of California, San Diego, CA, USA
| | - Christian Paret
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Alexei Ossadtchi
- National Research University Higher School of Economics, Moscow, Russia
| | - Andrew A Nicholson
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Wenya Nan
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | | | | | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael Lührs
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Joel Lubar
- Department of Psychology, University of Tennessee, Knoxville, USA
| | - Fabien Lotte
- Inria Bordeaux Sud-Ouest/LaBRI University of Bordeaux - CNRS-Bordeaux INP, Bordeaux, France
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Mikhail A Lebedev
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Department of Information and Internet Technologies of Digital Health Institute; I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Duke Center for Neuroengineering, Duke University, Durham, NC, USA
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Andrea Kübler
- Department of Psychology I, Psychological Intervention, Behavior Analysis and Regulation of Behavior, University of Würzburg
| | - Cornelia Kranczioch
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenberg, Germany
| | - Yury Koush
- Magnetic Resonance Research Center (MRRC), Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Lilian Konicar
- Medical University of Vienna, Department of Child and Adolescent Psychiatry, Vienna, Austria
| | - Simon H Kohl
- JARA-Institute Molecular neuroscience and neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | | | - Manousos A Klados
- Department of Psychology, The University of Sheffield International Faculty, City College, Thessaloniki, Greece
| | - Camille Jeunet
- CLLE Lab, CNRS, Université Toulouse Jean Jaurès, Toulouse, France
| | - T W P Janssen
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rene J Huster
- Multimodal imaging and Cognitive Control Lab, Department of Psychology, University of Olso, Norway
| | - Kerstin Hoedlmoser
- University of Salzburg, Centre for Cognitive Neuroscience and Department of Psychology, Salzburg, Austria
| | | | - Stephan Heunis
- Electrical Engineering Department, Eindhoven University of Technology, The Netherlands
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Adrian G Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital Geneva, Geneva, Switzerland
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, University of Tübingen, Tübingen, Germany
| | - John H Gruzelier
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Rainer W Göbel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nicolas Gninenko
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL); Campus Biotech, Geneva, Switzerland
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Paul Frewen
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Thomas Fovet
- Univ. Lille, INSERM U1172, CHU LILLE, Centre Lille Neuroscience & Cognition, Pôle de Psychiatrie, F-59000, Lille, France
| | - Thalía Fernández
- UNAM Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla, Mexico
| | | | - Ann-Christine Ehlis
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Renate Drechsler
- Department of Child and Adolescent, Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | | | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenberg, Germany
| | - Dirk De Ridder
- Department of Surgery, Section of Neurosurgery, University of Otago, Dunedin, New Zealand
| | - Eddy J Davelaar
- Department of Psychological Sciences Birkbeck, University of London, Bloomsbury, London, UK
| | - Marco Congedo
- GIPSA-lab, CNRS, University Grenoble Alpes, Grenoble-INP, Grenoble, France
| | - Marc Cavazza
- School of Computing and Mathematical Sciences, University of Greenwich, London, UK
| | - Marinus H M Breteler
- Radboud University Nijmegen, Department of Clinical Psychology, Nijmegen, The Netherlands
| | - Daniel Brandeis
- Department of Child and Adolescent, Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Niels Birbaumer
- Institute for Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Olga M Bazanova
- State Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Beatrix Barth
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | | | - Tibor Auer
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Martijn Arns
- Brainclinics Foundation, Research Institute Brainclinics, Nijmegen, The Netherlands
| | - Robert T Thibault
- School of Psychological Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Chen ML, Fu D, Boger J, Jiang N. Age-Related Changes in Vibro-Tactile EEG Response and Its Implications in BCI Applications: A Comparison Between Older and Younger Populations. IEEE Trans Neural Syst Rehabil Eng 2019; 27:603-610. [PMID: 30872232 DOI: 10.1109/tnsre.2019.2890968] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid increase in the number of older adults around the world is accelerating research in applications to support age-related conditions, such as brain-computer interface (BCI) applications for post-stroke neurorehabilitation. The signal processing algorithms for electroencephalogram (EEG) and other physiological signals that are currently used in BCI have been developed on data from much younger populations. It is unclear how age-related changes may affect the EEG signal and therefore the use of BCI by older adults. This research investigated the EEG response to vibro-tactile stimulation from 11 younger (21.7±2.76 years old) and 11 older (72.0±8.07 years old) subjects. The results showed that: 1) the spatial patterns of cortical activation in older subjects were significantly different from those of younger subjects, with markedly reduced lateralization; 2) there is a general power reduction of the EEG measured from older subjects. The average left vs. right BCI performance accuracy of older subjects was 66.4±5.70%, 15.9% lower than that of the younger subjects (82.3±12.4%) and statistically significantly different (t(10)= -3.57, p= 0.005). Future research should further investigate age-differences that may exist in electrophysiology and take these into consideration when developing applications that target the older population.
Collapse
|
13
|
Hong J, Qin X, Li J, Niu J, Wang W. Signal processing algorithms for motor imagery brain-computer interface: State of the art. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018. [DOI: 10.3233/jifs-181309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jie Hong
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Xiansheng Qin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Jing Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Junlong Niu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Wenjie Wang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
14
|
Braun N, Debener S, Spychala N, Bongartz E, Sörös P, Müller HHO, Philipsen A. The Senses of Agency and Ownership: A Review. Front Psychol 2018; 9:535. [PMID: 29713301 PMCID: PMC5911504 DOI: 10.3389/fpsyg.2018.00535] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Usually, we do not question that we possess a body and act upon the world. This pre-reflective awareness of being a bodily and agentive self can, however, be disrupted by different clinical conditions. Whereas sense of ownership (SoO) describes the feeling of mineness toward one's own body parts, feelings or thoughts, sense of agency (SoA) refers to the experience of initiating and controlling an action. Although SoA and SoO naturally coincide, both experiences can also be made in isolation. By using many different experimental paradigms, both experiences have been extensively studied over the last years. This review introduces both concepts, with a special focus also onto their interplay. First, current experimental paradigms, results and neurocognitive theories about both concepts will be presented and then their clinical and therapeutic relevance is discussed.
Collapse
Affiliation(s)
- Niclas Braun
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Medical Campus University of Oldenburg, School of Medicine and Health Sciences, Psychiatry and Psychotherapy, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Nadine Spychala
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Edith Bongartz
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Peter Sörös
- Medical Campus University of Oldenburg, School of Medicine and Health Sciences, Psychiatry and Psychotherapy, Oldenburg, Germany
| | - Helge H. O. Müller
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Shu X, Chen S, Yao L, Sheng X, Zhang D, Jiang N, Jia J, Zhu X. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients. Front Neurosci 2018; 12:93. [PMID: 29515363 PMCID: PMC5826359 DOI: 10.3389/fnins.2018.00093] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10-50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r = -0.732, p < 0.001), and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle) performance (r = 0.641, p < 0.001). Furthermore, the BCI-inefficient users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients.
Collapse
Affiliation(s)
- Xiaokang Shu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation, Huashan Hospital, Shanghai, China
| | - Lin Yao
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Dingguo Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Jiang
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Shanghai, China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Shu X, Yao L, Sheng X, Zhang D, Zhu X. Enhanced Motor Imagery-Based BCI Performance via Tactile Stimulation on Unilateral Hand. Front Hum Neurosci 2017; 11:585. [PMID: 29249952 PMCID: PMC5717029 DOI: 10.3389/fnhum.2017.00585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/17/2017] [Indexed: 11/16/2022] Open
Abstract
Brain-computer interface (BCI) has attracted great interests for its effectiveness in assisting disabled people. However, due to the poor BCI performance, this technique is still far from daily-life applications. One of critical issues confronting BCI research is how to enhance BCI performance. This study aimed at improving the motor imagery (MI) based BCI accuracy by integrating MI tasks with unilateral tactile stimulation (Uni-TS). The effects were tested on both healthy subjects and stroke patients in a controlled study. Twenty-two healthy subjects and four stroke patients were recruited and randomly divided into a control-group and an enhanced-group. In the control-group, subjects performed two blocks of conventional MI tasks (left hand vs. right hand), with 80 trials in each block. In the enhanced-group, subjects also performed two blocks of MI tasks, but constant tactile stimulation was applied on the non-dominant/paretic hand during MI tasks in the second block. We found the Uni-TS significantly enhanced the contralateral cortical activations during MI of the stimulated hand, whereas it had no influence on activation patterns during MI of the non-stimulated hand. The two-class BCI decoding accuracy was significantly increased from 72.5% (MI without Uni-TS) to 84.7% (MI with Uni-TS) in the enhanced-group (p < 0.001, paired t-test). Moreover, stroke patients in the enhanced-group achieved an accuracy >80% during MI with Uni-TS. This novel approach complements the conventional methods for BCI enhancement without increasing source information or complexity of signal processing. This enhancement via Uni-TS may facilitate clinical applications of MI-BCI.
Collapse
Affiliation(s)
- Xiaokang Shu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Yao
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Dingguo Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Zich C, Harty S, Kranczioch C, Mansfield KL, Sella F, Debener S, Cohen Kadosh R. Modulating hemispheric lateralization by brain stimulation yields gain in mental and physical activity. Sci Rep 2017; 7:13430. [PMID: 29044223 PMCID: PMC5647441 DOI: 10.1038/s41598-017-13795-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/02/2017] [Indexed: 01/24/2023] Open
Abstract
Imagery plays an important role in our life. Motor imagery is the mental simulation of a motor act without overt motor output. Previous studies have documented the effect of motor imagery practice. However, its translational potential for patients as well as for athletes, musicians and other groups, depends largely on the transfer from mental practice to overt physical performance. We used bilateral transcranial direct current stimulation (tDCS) over sensorimotor areas to modulate neural lateralization patterns induced by unilateral mental motor imagery and the performance of a physical motor task. Twenty-six healthy older adults participated (mean age = 67.1 years) in a double-blind cross-over sham-controlled study. We found stimulation-related changes at the neural and behavioural level, which were polarity-dependent. Specifically, for the hand contralateral to the anode, electroencephalographic activity induced by motor imagery was more lateralized and motor performance improved. In contrast, for the hand contralateral to the cathode, hemispheric lateralization was reduced. The stimulation-related increase and decrease in neural lateralization were negatively related. Further, the degree of stimulation-related change in neural lateralization correlated with the stimulation-related change on behavioural level. These convergent neurophysiological and behavioural effects underline the potential of tDCS to improve mental and physical motor performance.
Collapse
Affiliation(s)
- Catharina Zich
- Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany. .,Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK.
| | - Siobhán Harty
- Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK
| | - Cornelia Kranczioch
- Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany
| | - Karen L Mansfield
- Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK
| | - Francesco Sella
- Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK
| | - Stefan Debener
- Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, OX1 3UD, Oxford, UK.
| |
Collapse
|
18
|
Friesen CL, Bardouille T, Neyedli HF, Boe SG. Combined Action Observation and Motor Imagery Neurofeedback for Modulation of Brain Activity. Front Hum Neurosci 2017; 10:692. [PMID: 28119594 PMCID: PMC5223402 DOI: 10.3389/fnhum.2016.00692] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/26/2016] [Indexed: 12/27/2022] Open
Abstract
Motor imagery (MI) and action observation have proven to be efficacious adjuncts to traditional physiotherapy for enhancing motor recovery following stroke. Recently, researchers have used a combined approach called imagined imitation (II), where an individual watches a motor task being performed, while simultaneously imagining they are performing the movement. While neurofeedback (NFB) has been used extensively with MI to improve patients' ability to modulate sensorimotor activity and enhance motor recovery, the effectiveness of using NFB with II to modulate brain activity is unknown. This project tested the ability of participants to modulate sensorimotor activity during electroencephalography-based II-NFB of a complex, multi-part unilateral handshake, and whether this ability transferred to a subsequent bout of MI. Moreover, given the goal of translating findings from NFB research into practical applications, such as rehabilitation, the II-NFB system was designed with several user interface and user experience features, in an attempt to both drive user engagement and match the level of challenge to the abilities of the subjects. In particular, at easy difficulty levels the II-NFB system incentivized contralateral sensorimotor up-regulation (via event related desynchronization of the mu rhythm), while at higher difficulty levels the II-NFB system incentivized sensorimotor lateralization (i.e., both contralateral up-regulation and ipsilateral down-regulation). Thirty-two subjects, receiving real or sham NFB attended four sessions where they engaged in II-NFB training and subsequent MI. Results showed the NFB group demonstrated more bilateral sensorimotor activity during sessions 2–4 during II-NFB and subsequent MI, indicating mixed success for the implementation of this particular II-NFB system. Here we discuss our findings in the context of the design features included in the II-NFB system, highlighting limitations that should be considered in future designs.
Collapse
Affiliation(s)
- Christopher L Friesen
- Laboratory for Brain Recovery and Function, Dalhousie UniversityHalifax, NS, Canada; Department of Psychology and Neuroscience, Dalhousie UniversityHalifax, NS, Canada
| | - Timothy Bardouille
- Department of Psychology and Neuroscience, Dalhousie UniversityHalifax, NS, Canada; Biomedical Translational Imaging Centre, IWK Health CentreHalifax, NS, Canada; School of Physiotherapy, Dalhousie UniversityHalifax, NS, Canada
| | - Heather F Neyedli
- Department of Psychology and Neuroscience, Dalhousie UniversityHalifax, NS, Canada; School of Health and Human Performance, Dalhousie UniversityHalifax, NS, Canada
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, Dalhousie UniversityHalifax, NS, Canada; Department of Psychology and Neuroscience, Dalhousie UniversityHalifax, NS, Canada; School of Physiotherapy, Dalhousie UniversityHalifax, NS, Canada; School of Health and Human Performance, Dalhousie UniversityHalifax, NS, Canada
| |
Collapse
|
19
|
Embodied neurofeedback with an anthropomorphic robotic hand. Sci Rep 2016; 6:37696. [PMID: 27869190 PMCID: PMC5116625 DOI: 10.1038/srep37696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one’s own body scheme, we used an anthropomorphic robotic hand to visually guide the participants’ motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant’s neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal’s validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT.
Collapse
|
20
|
Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Neurobiol Aging 2016; 49:183-197. [PMID: 27818001 DOI: 10.1016/j.neurobiolaging.2016.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/18/2022]
Abstract
Stroke frequently results in motor impairment. Motor imagery (MI), the mental practice of movements, has been suggested as a promising complement to other therapeutic approaches facilitating motor rehabilitation. Of particular potential is the combination of MI with neurofeedback (NF). However, MI NF protocols have been largely optimized only in younger healthy adults, although strokes occur more frequently in older adults. The present study examined the influence of age on the neural correlates of MI supported by electroencephalogram (EEG)-based NF and on the neural correlates of motor execution. We adopted a multimodal neuroimaging framework focusing on EEG-derived event-related desynchronization (ERD%) and oxygenated (HbO) and deoxygenated hemoglobin (HbR) concentrations simultaneously acquired using functional near-infrared spectroscopy (fNIRS). ERD%, HbO concentration and HbR concentration were compared between younger (mean age: 24.4 years) and older healthy adults (mean age: 62.6 years). During MI, ERD% and HbR concentration were less lateralized in older adults than in younger adults. The lateralization-by-age interaction was not significant for movement execution. Moreover, EEG-based NF was related to an increase in task-specific activity when compared to the absence of feedback in both older and younger adults. Finally, significant modulation correlations were found between ERD% and hemodynamic measures despite the absence of significant amplitude correlations. Overall, the findings suggest a complex relationship between age and movement-related activity in electrophysiological and hemodynamic measures. Our results emphasize that the age of the actual end-user should be taken into account when designing neurorehabilitation protocols.
Collapse
|
21
|
Cebolla AM, Petieau M, Cevallos C, Leroy A, Dan B, Cheron G. Long-Lasting Cortical Reorganization as the Result of Motor Imagery of Throwing a Ball in a Virtual Tennis Court. Front Psychol 2015; 6:1869. [PMID: 26648903 PMCID: PMC4664627 DOI: 10.3389/fpsyg.2015.01869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here.
Collapse
Affiliation(s)
- Ana M Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium
| | - Carlos Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium
| | - Bernard Dan
- Department of Neurology, Hopital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles , Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium ; Haute École Condorcet , Charleroi, Belgium ; Laboratory of Electrophysiology, Université de Mons-Hainaut , Mons, Belgium
| |
Collapse
|