1
|
Park SY, Schott N. Age differences in prefrontal cortex activity during dual-task tandem gait: An fNIRS study. Brain Res 2025; 1856:149603. [PMID: 40157413 DOI: 10.1016/j.brainres.2025.149603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Tandem Gait (TG) under dual-task (DT) conditions may facilitate the investigation of important aspects of dynamic balance and mobility, particularly concerning pathological motor and cognitive aging processes. Our study aims to identify age-related differences in behavioral and neural changes caused by interference during dual-task while TG. 20 young (YA, age 21.3 ± 1.86) and 12 middle-aged adults (MA, age 55.3 ± 3.81) had to perform TG cognitive tasks ((a) recite the alphabet backward, (b) recite numbers and letters alternately (oral TMT-B), and (c) count backward from a given 3-digit number in steps of 3), and DT (TG + cognitive tasks) for 30 s each. The cortical activation of the frontal lobe was recorded using an 8 sources × 8 detectors fNIRS system. On the behavioral data, MA displayed a notably reduced number of accurate motor responses compared to YA, though their cognitive responses remained comparable. From a neural perspective, the linear mixed model revealed significant task- and group-related interaction effects only in the left dorsal lateral PFC. Compared to YA, the MA showed lower activation over time during DT, which can be attributed to the limitation of neural resources in the frontal lobe. This downregulation may be due to overload, indicating that MA are approaching their neural resources' capacity limit, particularly when confronted with complex motor task demands.
Collapse
Affiliation(s)
- Soo-Yong Park
- Department of Sport and Exercise Science, Institute of Sport Psychology & Human Movement Science, University of Stuttgart, Germany.
| | - Nadja Schott
- Department of Sport and Exercise Science, Institute of Sport Psychology & Human Movement Science, University of Stuttgart, Germany
| |
Collapse
|
2
|
Jacobsen NSJ, Kristanto D, Welp S, Inceler YC, Debener S. Preprocessing choices for P3 analyses with mobile EEG: A systematic literature review and interactive exploration. Psychophysiology 2025; 62:e14743. [PMID: 39697161 DOI: 10.1111/psyp.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/14/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Preprocessing is necessary to extract meaningful results from electroencephalography (EEG) data. With many possible preprocessing choices, their impact on outcomes is fundamental. While previous studies have explored the effects of preprocessing on stationary EEG data, this research delves into mobile EEG, where complex processing is necessary to address motion artifacts. Specifically, we describe the preprocessing choices studies reported for analyzing the P3 event-related potential (ERP) during walking and standing. A systematic review of 258 studies of the P3 during walking, identified 27 studies meeting the inclusion criteria. Two independent coders extracted preprocessing choices reported in each study. Analysis of preprocessing choices revealed commonalities and differences, such as the widespread use of offline filters but limited application of line noise correction (3 of 27 studies). Notably, 59% of studies involved manual processing steps, and 56% omitted reporting critical parameters for at least one step. All studies employed unique preprocessing strategies. These findings align with stationary EEG preprocessing results, emphasizing the necessity for standardized reporting in mobile EEG research. We implemented an interactive visualization tool (Shiny app) to aid the exploration of the preprocessing landscape. The app allows users to structure the literature regarding different processing steps, enter planned processing methods, and compare them with the literature. The app could be utilized to examine how these choices impact P3 results and understand the robustness of various processing options. We hope to increase awareness regarding the potential influence of preprocessing decisions and advocate for comprehensive reporting standards to foster reproducibility in mobile EEG research.
Collapse
Affiliation(s)
- Nadine S J Jacobsen
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Daniel Kristanto
- Psychological Methods and Statistics Division, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Suong Welp
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Yusuf Cosku Inceler
- Psychological Methods and Statistics Division, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Centre for Neurosensory Science & Systems, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
di Bello BM, Casella A, Aydin M, Lucia S, Di Russo F, Pitzalis S. Electrophysiological indexes of the cognitive-motor trade-off associated with motor response complexity in a cognitive task. Neuroimage 2024; 303:120931. [PMID: 39542068 DOI: 10.1016/j.neuroimage.2024.120931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Complex actions require more cognitive and motor control than simple ones. Literature shows that to face complexity, the brain must make a compromise between available resources usually giving priority to motor control. However, literature has minimally explored the effect of the motor response complexity on brain processing associated with cognitive tasks. Consequently, it is unknown whether carrying out a cognitive task requiring motor responses of increasing complexity could reduce cognitive processing keeping stable motor control. Therefore, this study aims to investigate possible modulations exerted by increasing motor response complexity in a cognitive task on brain processing. To this aim, we analyzed the event-related potentials and behavioral responses during a cognitive task with increasing complexity of the required motor response (keypress, reaching and stepping). Results showed the increasing motor complexity enhances early visual and attentional processing (P1 and N1 components) but reduces the late post-perceptual cognitive control (P3 component). Additionally, we found a component following the P3 which was specific for stimuli requiring a response. This component, labeled N750, increased amplitude along with the response motor complexity. Behaviorally, response accuracy was not affected by complexity. Results indicated that in cognitive tasks stimulus processing is affected by the complexity of the motor response. Complex responses require a greater investment of early perceptual and attentional resources, but at late phases of processing, cognitive resources are less available in favor of motor resources. This confirms the idea of the motor-priority cognitive-motor trade-off of the brain.
Collapse
Affiliation(s)
- Bianca Maria di Bello
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Andrea Casella
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Merve Aydin
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Stefania Lucia
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; Scuola Internazionale Superiore di Studi Avanzati (SISSA), Neuroscience Area, Trieste, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
4
|
Grosboillot N, Gallou-Guyot M, Lamontagne A, Bonnyaud C, Perrot A, Allali G, Perrochon A. Towards a comprehensive framework for complex walking tasks: Characterization, behavioral adaptations, and clinical implications in ageing and neurological populations. Ageing Res Rev 2024; 101:102458. [PMID: 39153599 DOI: 10.1016/j.arr.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Complex walking tasks, including change of direction, patterns and rhythms, require more attentional resources than simple walking and significantly impact walking performance, especially among ageing and neurological populations. More studies have been focusing on complex walking situations, with or without the addition of cognitive tasks, creating a multitude of walking situations. Given the lack of a clear and extensive definition of complex walking, this narrative review aims to identify and more precisely characterize situations and related tests, improve understanding of behavioral adaptations in ageing and neurological populations, and report the clinical applications of complex walking. Based on the studies collected, we are proposing a framework that categorizes the different forms of complex walking, considering whether a cognitive task is added or not, as well as the number of distinct objectives within a given situation. We observed that combining complex walking tasks with a cognitive assignment places even greater strain on attentional resources, resulting in a more pronounced decline in walking and/or cognitive performance. This work highlights the relevance of complex walking as a simple tool for early detection of cognitive impairments and risk of falls, and its potential value in cognitive-motor rehabilitation. Future studies should explore various complex walking tasks in ageing and neurological populations, under varied conditions in real-life or in extended virtual environments.
Collapse
Affiliation(s)
- N Grosboillot
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France
| | - M Gallou-Guyot
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France; Department of Human Life and Environmental Sciences, Ochanomizu University, Tokyo, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - A Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Site-CISSS Laval, Laval, Canada
| | - C Bonnyaud
- Laboratoire d'analyse du mouvement, Explorations fonctionnelles, Hôpital Raymond Poincaré Garches, GHU Paris Saclay APHP, France; Université Paris-Saclay, UVSQ, Erphan Research unit, Versailles 78000, France
| | - A Perrot
- CIAMS, Université Paris Saclay, Orsay, France
| | - G Allali
- Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Perrochon
- Université de Limoges, HAVAE, UR 20217, Limoges F-87000, France.
| |
Collapse
|
5
|
De Sanctis P, Mahoney JR, Wagner J, Blumen HM, Mowrey W, Ayers E, Schneider C, Orellana N, Molholm S, Verghese J. Linking Dementia Pathology and Alteration in Brain Activation to Complex Daily Functional Decline During the Preclinical Dementia Stages: Protocol for a Prospective Observational Cohort Study. JMIR Res Protoc 2024; 13:e56726. [PMID: 38842914 PMCID: PMC11190628 DOI: 10.2196/56726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Progressive difficulty in performing everyday functional activities is a key diagnostic feature of dementia syndromes. However, not much is known about the neural signature of functional decline, particularly during the very early stages of dementia. Early intervention before overt impairment is observed offers the best hope of reducing the burdens of Alzheimer disease (AD) and other dementias. However, to justify early intervention, those at risk need to be detected earlier and more accurately. The decline in complex daily function (CdF) such as managing medications has been reported to precede impairment in basic activities of daily living (eg, eating and dressing). OBJECTIVE Our goal is to establish the neural signature of decline in CdF during the preclinical dementia period. METHODS Gait is central to many CdF and community-based activities. Hence, to elucidate the neural signature of CdF, we validated a novel electroencephalographic approach to measuring gait-related brain activation while participants perform complex gait-based functional tasks. We hypothesize that dementia-related pathology during the preclinical period activates a unique gait-related electroencephalographic (grEEG) pattern that predicts a subsequent decline in CdF. RESULTS We provide preliminary findings showing that older adults reporting CdF limitations can be characterized by a unique gait-related neural signature: weaker sensorimotor and stronger motor control activation. This subsample also had smaller brain volume and white matter hyperintensities in regions affected early by dementia and engaged in less physical exercise. We propose a prospective observational cohort study in cognitively unimpaired older adults with and without subclinical AD (plasma amyloid-β) and vascular (white matter hyperintensities) pathologies. We aim to (1) establish the unique grEEG activation as the neural signature and predictor of decline in CdF during the preclinical dementia period; (2) determine associations between dementia-related pathologies and incidence of the neural signature of CdF; and (3) establish associations between a dementia risk factor, physical inactivity, and the neural signature of CdF. CONCLUSIONS By establishing the clinical relevance and biological basis of the neural signature of CdF decline, we aim to improve prediction during the preclinical stages of ADs and other dementias. Our approach has important research and translational implications because grEEG protocols are relatively inexpensive and portable, and predicting CdF decline may have real-world benefits. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/56726.
Collapse
Affiliation(s)
- Pierfilippo De Sanctis
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jeannette R Mahoney
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Johanna Wagner
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla, CA, United States
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine (Geriatrics), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wenzhu Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Emmeline Ayers
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudia Schneider
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Natasha Orellana
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sophie Molholm
- Department of Pediatrics, Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joe Verghese
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine (Geriatrics), Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Lu J, Zhang X, Shu Z, Han J, Yu N. A dynamic brain network decomposition method discovers effective brain hemodynamic sub-networks for Parkinson's disease. J Neural Eng 2024; 21:026047. [PMID: 38621377 DOI: 10.1088/1741-2552/ad3eb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Objective.Dopaminergic treatment is effective for Parkinson's disease (PD). Nevertheless, the conventional treatment assessment mainly focuses on human-administered behavior examination while the underlying functional improvements have not been well explored. This paper aims to investigate brain functional variations of PD patients after dopaminergic therapy.Approach.This paper proposed a dynamic brain network decomposition method and discovered brain hemodynamic sub-networks that well characterized the efficacy of dopaminergic treatment in PD. Firstly, a clinical walking procedure with functional near-infrared spectroscopy was developed, and brain activations during the procedure from fifty PD patients under the OFF and ON states (without and with dopaminergic medication) were captured. Then, dynamic brain networks were constructed with sliding-window analysis of phase lag index and integrated time-varying functional networks across all patients. Afterwards, an aggregated network decomposition algorithm was formulated based on aggregated effectiveness optimization of functional networks in spanning network topology and cross-validation network variations, and utilized to unveil effective brain hemodynamic sub-networks for PD patients. Further, dynamic sub-network features were constructed to characterize the brain flexibility and dynamics according to the temporal switching and activation variations of discovered sub-networks, and their correlations with differential treatment-induced gait alterations were analyzed.Results.The results demonstrated that PD patients exhibited significantly enhanced flexibility after dopaminergic therapy within a sub-network related to the improvement of motor functions. Other sub-networks were significantly correlated with trunk-related axial symptoms and exhibited no significant treatment-induced dynamic interactions.Significance.The proposed method promises a quantified and objective approach for dopaminergic treatment evaluation. Moreover, the findings suggest that the gait of PD patients comprises distinct motor domains, and the corresponding neural controls are selectively responsive to dopaminergic treatment.
Collapse
Affiliation(s)
- Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Xinyuan Zhang
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, People's Republic of China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Kao PC, Pierro MA, Gonzalez DM. Performance during attention-demanding walking conditions in older adults. Gait Posture 2024; 109:70-77. [PMID: 38281432 DOI: 10.1016/j.gaitpost.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Conventional balance and gait assessments for fall risk screening are often conducted under unperturbed conditions. However, older adults can allocate their attention to motor tasks (balance or walking) without revealing performance deficiencies, posing a challenge in identifying those with compromised gait and balance. RESEARCH QUESTIONS Do community-dwelling older adults exhibit greater changes in cognitive and/or walking performance under balance-challenging conditions compared to typical dual-task walking conditions? METHODS Twenty-nine healthy, community-dwelling older adults performed four cognitive tasks (visual and auditory Stroop tasks, Clock task, and Paced Auditory Serial Addition Test) while walking with and without lateral treadmill sways (Perturbed vs. Unperturbed) and during standing. We calculated dual-task costs (DTC) and walking perturbation effects (WPE) as the percentage of change in cognitive and walking performance between dual and single-task conditions and between Perturbed and Unperturbed conditions, respectively. RESULTS Older adults exhibited similar DTC and WPE on cognitive task performance. However, in walking performance, they demonstrated significantly greater WPE than DTC across all gait and stability measures (p < 0.01), including the mean and variability of stride and margins of stability (MOS) measures, the variability of trunk movement and lower-limb joint angles, and the local stability measures. Older adults took shorter but wider steps, exhibited shorter MOSAP but greater MOSML, and experienced increased movement variability and walking instability to a greater extent than during dual-task walking. Overall, changes in variability and stability measures were more pronounced than those in mean gait measures. SIGNIFICANCE Introducing destabilizing perturbations to increase the task demands of balance and gait assessments is a more effective method to challenge older adults compared to simply adding a concurrent cognitive task. Fall screening assessments for community-dwelling older adults should incorporate balance-challenging conditions, such as introducing gait perturbations.
Collapse
Affiliation(s)
- Pei-Chun Kao
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, United States.
| | - Michaela A Pierro
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, United States
| | - Daniela M Gonzalez
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
8
|
Richardson DP, Foxe JJ, Freedman EG. Reduced Proactive and Reactive Cognitive Flexibility in Older Adults Underlies Performance Costs During Dual-Task Walking: A Mobile Brain/Body Imaging (MoBI) Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577090. [PMID: 38328169 PMCID: PMC10849668 DOI: 10.1101/2024.01.27.577090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Age-related reductions in cognitive flexibility may limit modulation of control processes during systematic increases to cognitive-motor demands, exacerbating dual-task costs. In this study, behavioral and neurophysiologic changes to proactive and reactive control during progressive cognitive-motor demands were compared across older and younger adults to explore the basis for age-differences in cognitive-motor interference (CMI). 19 younger (19 - 29 years old, mean age = 22.84 +/- 2.75 years, 6 male, 13 female) and 18 older (60 - 77 years old, mean age = 67.89 +/- 4.60 years, 9 male, 9 female) healthy adults completed cued task-switching while alternating between sitting and walking on a treadmill. Gait kinematics, task performance measures, and brain activity were recorded using electroencephalography (EEG) based Mobile Brain/Body Imaging (MoBI). Response accuracy on easier trial types improved in younger, but not older adults when they walked while performing the cognitive task. As difficulty increased, walking provoked accuracy costs in older, but not younger adults. Both groups registered faster responses and reduced gait variability during dual-task walking. Older adults exhibited lower amplitude modulations of proactive and reactive neural activity as cognitive-motor demands systematically increased, which may reflect reduced flexibility for progressive preparatory and reactive adjustments over behavioral control.
Collapse
Affiliation(s)
- David P. Richardson
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| | - John J. Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| | - Edward G. Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| |
Collapse
|
9
|
Bradfield LA, Becchi S, Kendig MD. Striatal Acetylcholine and Dopamine Interactions Produce Situationappropriate Action Selection. Curr Neuropharmacol 2024; 22:1491-1496. [PMID: 37702238 PMCID: PMC11097990 DOI: 10.2174/1570159x21666230912093041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 09/14/2023] Open
Abstract
Individuals often learn how to perform new actions for particular outcomes against a complex background of existing action-outcome associations. As such, this new knowledge can interfere or even compete with existing knowledge, such that individuals must use internal and external cues to determine which action is appropriate to the current situation. The question thus remains as to how this problem is solved at a neural level. Research over the last decade or so has begun to determine how the brain achieves situation-appropriate action selection. Several converging lines of evidence suggest that it is achieved through the complex interactions of acetylcholine and dopamine within the striatum in a manner that relies on glutamatergic inputs from the cortex and thalamus. Here we briefly review this evidence, then relate it to several very recent findings to provide new, speculative insights regarding the precise nature of striatal acetylcholine/dopamine interaction dynamics and their relation to situation- appropriate action selection.
Collapse
Affiliation(s)
- Laura A. Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Serena Becchi
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Michael D. Kendig
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
10
|
Patelaki E, Foxe JJ, McFerren AL, Freedman EG. Maintaining Task Performance Levels Under Cognitive Load While Walking Requires Widespread Reallocation of Neural Resources. Neuroscience 2023; 532:113-132. [PMID: 37774910 PMCID: PMC10842245 DOI: 10.1016/j.neuroscience.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study elucidates the neural mechanisms underlying increasing cognitive load while walking by employing 2 versions of a response inhibition task, the '1-back' version and the more cognitively demanding '2-back' version. By using the Mobile Brain/Body Imaging (MoBI) modality, electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and task-related behavioral responses were collected while young adults (n = 61) performed either the 1-back or 2-back response inhibition task. Interestingly, increasing inhibitory difficulty from 1-back to 2-back during walking was not associated with any detectable costs in response accuracy, response speed, or gait consistency. However, the more difficult cognitive task was associated with distinct EEG component changes during both successful inhibitions (correct rejections) and successful executions (hits) of the motor response. During correct rejections, ERP changes were found over frontal regions, during latencies related to sensory gain control, conflict monitoring and working memory storage and processing. During hits, ERP changes were found over left-parietal regions during latencies related to orienting attention and subsequent selection and execution of the motor plan. The pattern of attenuation in walking-related EEG amplitude changes, during 2-back task performance, is thought to reflect more effortful recalibration of neural processes, a mechanism which might be a key driver of performance maintenance in the face of increased cognitive demands while walking. Overall, the present findings shed light on the extent of the neurocognitive capacity of young adults and may lead to a better understanding of how factors such as aging or neurological disorders could impinge on this capacity.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amber L McFerren
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Mehla J, Deibel SH, Karem H, Hong NS, Hossain SR, Lacoursiere SG, Sutherland RJ, Mohajerani MH, McDonald RJ. Repeated multi-domain cognitive training prevents cognitive decline, anxiety and amyloid pathology found in a mouse model of Alzheimer disease. Commun Biol 2023; 6:1145. [PMID: 37950055 PMCID: PMC10638434 DOI: 10.1038/s42003-023-05506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Education, occupation, and an active lifestyle, comprising enhanced social, physical, and mental components are associated with improved cognitive functions in aged people and may delay the progression of various neurodegenerative diseases including Alzheimer's disease. To investigate this protective effect, 3-month-old APPNL-G-F/NL-G-F mice were exposed to repeated single- or multi-domain cognitive training. Cognitive training was given at the age of 3, 6, & 9 months. Single-domain cognitive training was limited to a spatial navigation task. Multi-domain cognitive training consisted of a spatial navigation task, object recognition, and fear conditioning. At the age of 12 months, behavioral tests were completed for all groups. Then, mice were sacrificed, and their brains were assessed for pathology. APPNL-G-F/NL-G-F mice given multi-domain cognitive training compared to APPNL-G-F/NL-G-F control group showed an improvement in cognitive functions, reductions in amyloid load and microgliosis, and a preservation of cholinergic function. Additionally, multi-domain cognitive training improved anxiety in APPNL-G-F/NL-G-F mice as evidenced by measuring thigmotaxis behavior in the Morris water maze. There were mild reductions in microgliosis in the brain of APPNL-G-F/NL-G-F mice with single-domain cognitive training. These findings provide causal evidence for the potential of certain forms of cognitive training to mitigate the cognitive deficits in Alzheimer disease.
Collapse
Affiliation(s)
- Jogender Mehla
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Psychology, University of New Brunswick, POB 4400, Fredericton, NB, E3B 3A1, Canada
| | - Hadil Karem
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Nancy S Hong
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Shakhawat R Hossain
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Sean G Lacoursiere
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
12
|
Alizadehsaravi L, Moore JK. Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges. PeerJ 2023; 11:e16206. [PMID: 37868045 PMCID: PMC10588700 DOI: 10.7717/peerj.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Bicycles are more difficult to control at low speeds due to the vehicle's unstable low-speed dynamics. This issue might be exacerbated by factors such as aging, disturbances, and multi-tasking. To address this issue, we developed a prototype 'balance assist system' with Royal Dutch Gazelle and Bosch eBike Systems at Delft University of Technology, which includes an electric motor capable of providing additional steering torque. We implemented a speed-adaptive feedback controller to generate the additional steering torque to that of the rider. We conducted a study with 18 older and 14 younger cyclists to first examine the effect of aging, disturbances, and multi-tasking on cycling at lower forward speeds, and evaluate the effectiveness of the system in improving the stability of the rider-bicycle system while facing these challenges. The study consisted of two scenarios: a single-task scenario where participants rode the bicycle on a marked narrow straight-line track, and a multi-task scenario where participants performed a shoulder check task and followed visual cues while tracking the straight-line. We introduced handlebar disturbances using the steer motor in half of the trials in both scenarios. All trials were repeated with and without the balance assist system. We calculated the bicycle mean magnitude of roll and steering rate-as indicators of bicycle balance control and required steering actions, respectively-and the rider's mean magnitude of lean rate with respect to the ground to investigate the effect of the balance assist system on rider's lateral motion. Our results showed that aging, disturbances, and multi-tasking increased the roll rate, and the balance assist system was able to significantly reduce it. The effect size of the balance assist system in reducing the roll rate across all conditions was found to be larger in older cyclists, indicating a more substantial impact compared to younger cyclists. Disturbances and multi-tasking increased the steering rate, which was successfully reduced by the balance assist system. Aging did not significantly affect the steering rate. The rider's lean rate was not significantly affected by age, disturbances, or the balance assist, indicating that the upper body plays a minor role when riders have good steering control authority. Overall, our findings suggest that lateral motion and required steering action can be affected by age, multi-tasking, and handlebar disturbances which can endanger cyclists' safety, and the balance assist system has the potential to improve cycling safety and reduce the incidence of single-actor crashes. Further investigation on riders' contribution to control actions is required.
Collapse
Affiliation(s)
- Leila Alizadehsaravi
- Biomechatronic and Human-Machine Control Section, Biomechanical Engineering Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, South Holland, The Netherlands
| | - Jason K Moore
- Biomechatronic and Human-Machine Control Section, Biomechanical Engineering Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, South Holland, The Netherlands
| |
Collapse
|
13
|
Getzmann S, Reiser JE, Gajewski PD, Schneider D, Karthaus M, Wascher E. Cognitive aging at work and in daily life-a narrative review on challenges due to age-related changes in central cognitive functions. Front Psychol 2023; 14:1232344. [PMID: 37621929 PMCID: PMC10445145 DOI: 10.3389/fpsyg.2023.1232344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Demographic change is leading to an increasing proportion of older employees in the labor market. At the same time, work activities are becoming more and more complex and require a high degree of flexibility, adaptability, and cognitive performance. Cognitive control mechanism, which is subject to age-related changes and is important in numerous everyday and work activities, plays a special role. Executive functions with its core functions updating, shifting, and inhibition comprises cognitive control mechanisms that serve to plan, coordinate, and achieve higher-level goals especially in inexperienced and conflicting actions. In this review, influences of age-related changes in cognitive control are demonstrated with reference to work and real-life activities, in which the selection of an information or response in the presence of competing but task-irrelevant stimuli or responses is particularly required. These activities comprise the understanding of spoken language under difficult listening conditions, dual-task walking, car driving in critical traffic situations, and coping with work interruptions. Mechanisms for compensating age-related limitations in cognitive control and their neurophysiological correlates are discussed with a focus on EEG measures. The examples illustrate how to access influences of age and cognitive control on and in everyday and work activities, focusing on its functional role for the work ability and well-being of older people.
Collapse
Affiliation(s)
- Stephan Getzmann
- Leibniz Research Center for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Francisco AA, Foxe JJ, Molholm S. Event-related potential (ERP) markers of 22q11.2 deletion syndrome and associated psychosis. J Neurodev Disord 2023; 15:19. [PMID: 37328766 PMCID: PMC10273715 DOI: 10.1186/s11689-023-09487-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a multisystemic disorder characterized by a wide range of clinical features, ranging from life-threatening to less severe conditions. One-third of individuals with the deletion live with mild to moderate intellectual disability; approximately 60% meet criteria for at least one psychiatric condition.22q11.2DS has become an important model for several medical, developmental, and psychiatric disorders. We have been particularly interested in understanding the risk for psychosis in this population: Approximately 30% of the individuals with the deletion go on to develop schizophrenia. The characterization of cognitive and neural differences between those individuals who develop schizophrenia and those who do not, despite being at genetic risk, holds important promise in what pertains to the clarification of paths to disease and to the development of tools for early identification and intervention.Here, we review our previous event-related potential (ERP) findings as potential markers for 22q11.2DS and the associated risk for psychosis, while discussing others' work. We focus on auditory processing (auditory-evoked potentials, auditory adaptation, and auditory sensory memory), visual processing (visual-evoked potentials and visual adaptation), and inhibition and error monitoring.The findings discussed suggest basic mechanistic and disease process effects on neural processing in 22q11.2DS that are present in both early sensory and later cognitive processing, with possible implications for phenotype. In early sensory processes, both during auditory and visual processing, two mechanisms that impact neural responses in opposite ways seem to coexist-one related to the deletion, which increases brain responses; another linked to psychosis, decreasing neural activity. Later, higher-order cognitive processes may be equally relevant as markers for psychosis. More specifically, we argue that components related to error monitoring may hold particular promise in the study of risk for schizophrenia in the general population.
Collapse
Affiliation(s)
- Ana A Francisco
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - John J Foxe
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- Department of Pediatrics, The Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Neuroscience, The Frederick J. and Marion A, Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monde Institute for Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
15
|
Vandenheever D, Lambrechts M. Dual-task changes in gait and brain activity measured in a healthy young adult population. Gait Posture 2023; 103:119-125. [PMID: 37156164 DOI: 10.1016/j.gaitpost.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Dual Task (DT) walking in everyday life is the norm rather than the exception. Complex cognitive-motor strategies are employed during DT and it is necessary to coordinate and regulate neural resources to ensure adequate performance. However, the underlying neurophysiology involved is not fully understood. Therefore, the aim of this study was to examine the neurophysiology and gait kinematics during DT gait. RESEARCH QUESTION Our main research question was whether gait kinematics changed during DT walking for healthy young adults and whether this is reflected in brain activity. METHODS Ten healthy young adults walked on a treadmill, performed a Flanker test while standing and performed the Flanker test while walking on a treadmill. Electroencephalography (EEG), spatial temporal, and kinematic data was recorded and analyzed. RESULTS Average alpha and beta activities were modulated during DT walking compared to single task (ST) walking while ERPs during the Flanker test showed larger P300 amplitudes and longer latencies for DT compared to standing. Cadence reduced and cadence variability increased during DT compared to ST whilst kinematic results showed that hip and knee flexions decreased, and the center of mass moved slightly back in the sagittal plane. SIGNIFICANCE It was found that healthy young adults employed a cognitive-motor strategy that included directing more neural resources to the cognitive task while adopting a more upright posture during DT walking.
Collapse
Affiliation(s)
- David Vandenheever
- Neural Engineering Research Division, Agricultural and Biological Engineering Department, Mississippi State University, MS, USA; Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa.
| | - Marezelle Lambrechts
- Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
16
|
Villa-Sánchez B, Gandolfi M, Emadi Andani M, Valè N, Rossettini G, Polesana F, Menaspà Z, Smania N, Tinazzi M, Fiorio M. Placebo effect on gait: a way to reduce the dual-task cost in older adults. Exp Brain Res 2023; 241:1501-1511. [PMID: 37085646 DOI: 10.1007/s00221-023-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The ability to perform two tasks simultaneously is essential for daily activities. In older adults, this ability is markedly reduced, as evidenced by the dual-task cost on gait. Preliminary evidences indicate that the dual-task cost can be influenced by different types of manipulations. Here, we explored the effectiveness of a new approach to reduce the dual-task cost, based on the placebo effect, a psychobiological phenomenon whereby a positive outcome follows the administration of an inert device thought to be effective. Thirty-five healthy older adults were asked to walk on a sensorized carpet (single-task condition) and to walk while counting backward (dual-task condition) in two sessions (pre-test and post-test). A placebo group, randomly selected, underwent sham transcranial direct current stimulation over the supraorbital areas between sessions, along with information about its positive effects on concentration and attention. A control group did not receive any intervention between sessions. The dual-task cost was significantly reduced in the placebo group at the post-test session compared to the pre-test for several gait parameters (Cohen's d > 1.43). At the post-test session, the dual-task cost was also lower in the placebo group than in the control group (d > 0.73). Cognitive (number of subtractions and number of errors) and subjective (perceived mental fatigability) variables remained stable across sessions. The reduced dual-task cost in the placebo group could indicate the ability to re-establish the allocation of attentional resources between tasks. These findings could contribute to the development of cognitive strategies that leverage positive expectations to boost motor control in older adults.
Collapse
Affiliation(s)
- Bernardo Villa-Sánchez
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini, 31, 38068, Rovereto, Italy.
| | - Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Center (CRRNC), University of Verona, Verona, Italy
| | - Mehran Emadi Andani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Nicola Valè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Center (CRRNC), University of Verona, Verona, Italy
| | - Giacomo Rossettini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Federico Polesana
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Zoe Menaspà
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Center (CRRNC), University of Verona, Verona, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Center (CRRNC), University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.
| |
Collapse
|
17
|
Patelaki E, Foxe JJ, Mantel EP, Kassis G, Freedman EG. Paradoxical improvement of cognitive control in older adults under dual-task walking conditions is associated with more flexible reallocation of neural resources: A Mobile Brain-Body Imaging (MoBI) study. Neuroimage 2023; 273:120098. [PMID: 37037381 DOI: 10.1016/j.neuroimage.2023.120098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Combining walking with a demanding cognitive task is traditionally expected to elicit decrements in gait and/or cognitive task performance. However, it was recently shown that, in a cohort of young adults, most participants improved performance when walking was added to performance of a Go/NoGo response inhibition task. The present study aims to extend these previous findings to an older adult cohort, to investigate whether this improvement when dual-tasking is observed in healthy older adults. Mobile Brain/Body Imaging (MoBI) was used to record electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and behavioral responses in the Go/NoGo task, during sitting or walking on a treadmill, in 34 young adults and 37 older adults. Increased response accuracy during walking, independent of age, was found to correlate with slower responses to stimuli (r = 0.44) and with walking-related EEG amplitude modulations over frontocentral regions (r = 0.47) during the sensory gating (N1) and conflict monitoring (N2) stages of inhibition, and over left-lateralized prefrontal regions (r = 0.47) during the stage of inhibitory control implementation. These neural activity changes are related to the cognitive component of inhibition, and they were interpreted as signatures of behavioral improvement during walking. On the other hand, aging, independent of response accuracy during walking, was found to correlate with slower treadmill walking speeds (r = -0.68) and attenuation in walking-related EEG amplitude modulations over left-dominant frontal (r = -0.44) and parietooccipital regions (r = 0.48) during the N2 stage, and over centroparietal regions (r = 0.48) during the P3 stage. These neural activity changes are related to the motor component of inhibition, and they were interpreted as signatures of aging. Older adults whose response accuracy 'paradoxically' improved during walking manifested neural signatures of both behavioral improvement and aging, suggesting that their flexibility in reallocating neural resources while walking might be maintained for the cognitive but not for the motor inhibitory component. These distinct neural signatures of aging and behavior can potentially be used to identify 'super-agers', or individuals at risk for cognitive decline due to aging or neurodegenerative disease.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall Rochester, New York, 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| | - Emma P Mantel
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - George Kassis
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| |
Collapse
|
18
|
Francisco AA, Foxe JJ, Berruti A, Horsthuis DJ, Molholm S. Response inhibition and error-monitoring in cystinosis (CTNS gene mutations): Behavioral and electrophysiological evidence of a diverse set of difficulties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535145. [PMID: 37034772 PMCID: PMC10081337 DOI: 10.1101/2023.03.31.535145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cystinosis, a rare lysosomal storage disease, is characterized by cystine crystallization and accumulation within tissues and organs, including the kidneys and brain. Its impact on neural function appears mild relative to its effects on other organs, but therapeutic advances have led to substantially increased life expectancy, necessitating deeper understanding of its impact on neurocognitive function. Behaviorally, some deficits in executive function have been noted in this population, but the underlying neural processes are not understood. Using standardized cognitive assessments and a Go/No-Go response inhibition task in conjunction with high-density electrophysiological recordings (EEG), we sought to investigate the behavioral and neural dynamics of inhibition of a prepotent response and of error monitoring (critical components of executive function) in individuals with cystinosis, when compared to age-matched controls. Thirty-seven individuals diagnosed with cystinosis (7-36 years old, 24 women) and 45 age-matched controls (27 women) participated in this study. Analyses focused on N2 and P3 No-Go responses and error-related positivity (Pe). Atypical inhibitory processing was shown behaviorally. Electrophysiological differences were additionally found between the groups, with individuals with cystinosis showing larger No-Go P3s. Error-monitoring was likewise different between the groups, with those with cystinosis showing reduced Pe amplitudes.
Collapse
Affiliation(s)
- Ana A. Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John J. Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience & Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Alaina Berruti
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Douwe J. Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, USA
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience & Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
19
|
Wireless EEG: A survey of systems and studies. Neuroimage 2023; 269:119774. [PMID: 36566924 DOI: 10.1016/j.neuroimage.2022.119774] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
The popular brain monitoring method of electroencephalography (EEG) has seen a surge in commercial attention in recent years, focusing mostly on hardware miniaturization. This has led to a varied landscape of portable EEG devices with wireless capability, allowing them to be used by relatively unconstrained users in real-life conditions outside of the laboratory. The wide availability and relative affordability of these devices provide a low entry threshold for newcomers to the field of EEG research. The large device variety and the at times opaque communication from their manufacturers, however, can make it difficult to obtain an overview of this hardware landscape. Similarly, given the breadth of existing (wireless) EEG knowledge and research, it can be challenging to get started with novel ideas. Therefore, this paper first provides a list of 48 wireless EEG devices along with a number of important-sometimes difficult-to-obtain-features and characteristics to enable their side-by-side comparison, along with a brief introduction to each of these aspects and how they may influence one's decision. Secondly, we have surveyed previous literature and focused on 110 high-impact journal publications making use of wireless EEG, which we categorized by application and analyzed for device used, number of channels, sample size, and participant mobility. Together, these provide a basis for informed decision making with respect to hardware and experimental precedents when considering new, wireless EEG devices and research. At the same time, this paper provides background material and commentary about pitfalls and caveats regarding this increasingly accessible line of research.
Collapse
|
20
|
Patelaki E, Foxe JJ, Mazurek KA, Freedman EG. Young adults who improve performance during dual-task walking show more flexible reallocation of cognitive resources: a mobile brain-body imaging (MoBI) study. Cereb Cortex 2023; 33:2573-2592. [PMID: 35661873 PMCID: PMC10016048 DOI: 10.1093/cercor/bhac227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION In young adults, pairing a cognitive task with walking can have different effects on gait and cognitive task performance. In some cases, performance clearly declines whereas in others compensatory mechanisms maintain performance. This study investigates the preliminary finding of behavioral improvement in Go/NoGo response inhibition task performance during walking compared with sitting, which was observed at the piloting stage. MATERIALS AND METHODS Mobile brain/body imaging (MoBI) was used to record electroencephalographic (EEG) activity, 3-dimensional (3D) gait kinematics and behavioral responses in the cognitive task, during sitting or walking on a treadmill. RESULTS In a cohort of 26 young adults, 14 participants improved in measures of cognitive task performance while walking compared with sitting. These participants exhibited walking-related EEG amplitude reductions over frontal scalp regions during key stages of inhibitory control (conflict monitoring, control implementation, and pre-motor stages), accompanied by reduced stride-to-stride variability and faster responses to stimuli compared with those who did not improve. In contrast, 12 participants who did not improve exhibited no EEG amplitude differences across physical condition. DISCUSSION The neural activity changes associated with performance improvement during dual tasking hold promise as cognitive flexibility markers that can potentially help assess cognitive decline in aging and neurodegeneration.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall Rochester, NY 14627, United States
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Kevin A Mazurek
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Joseph Building 4-184W, 200 First Street SW, Rochester, MN 55905, United States
- Well Living Lab, Well Living Lab, Inc., 221 First Avenue SW, Rochester, MN 55902, United States
| | | |
Collapse
|
21
|
De Sanctis P, Wagner J, Molholm S, Foxe JJ, Blumen HM, Horsthuis DJ. Neural signature of mobility-related everyday function in older adults at-risk of cognitive impairment. Neurobiol Aging 2023; 122:1-11. [PMID: 36463848 PMCID: PMC10281759 DOI: 10.1016/j.neurobiolaging.2022.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Assessment of everyday activities is central to the diagnosis of dementia. Yet, little is known about brain processes associated with everyday functional limitations, particularly during early stages of cognitive decline. Twenty-six older adults (mean = 74.9 y) were stratified by risk using the Montreal Cognitive Assessment battery (MoCA, range: 0- 30) to classify individuals as higher (22-26) and lower risk (27+) of cognitive impairment. We investigated everyday function using a gait task designed to destabilize posture and applied Mobile Brain/Body Imaging. We predicted that participants would increase step width to gain stability, yet the underlying neural signatures would be different for lower versus higher risk individuals. Step width and fronto-parietal activation increased during visually perturbed input. Frontomedial theta increased in higher risk individuals during perturbed and unperturbed inputs. Left sensorimotor beta decreased in lower risk individuals during visually perturbed input. Modulations in theta and beta power were associated with MoCA scores. Our findings suggest that older adults at-risk of cognitive impairment can be characterized by a unique neural signature of everyday function.
Collapse
Affiliation(s)
- Pierfilippo De Sanctis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Johanna Wagner
- Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla, CA, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Geriatrics), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
22
|
Wiśniowska J, Łojek E, Olejnik A, Chabuda A. The Characteristics of the Reduction of Interference Effect during Dual-Task Cognitive-Motor Training Compared to a Single Task Cognitive and Motor Training in Elderly: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1477. [PMID: 36674229 PMCID: PMC9864789 DOI: 10.3390/ijerph20021477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Many studies have indicated a weakening in several areas of cognitive functioning associated with the normal ageing process. One of the methods supporting cognitive functions in older adults is dual-task training which is based on performing cognitive and motor exercises at the same time. The study aimed at examining the characteristics of dual-task training compared to single-task training in participants over 65 years of age. Sixty-five subjects took part in the study. They were randomly assigned to three groups: dual-task cognitive-motor training (CM), single-task cognitive training (CT), and single-task motor training (MT). The training program in all groups encompassed 4 weeks and consisted of three, 30-min meetings a week. Specialized software was designed for the study. The main indicators, such as orientation and planning time and the number of errors, were monitored during the whole training in all groups. The obtained results have shown that the dual-task training was associated with a significantly greater number of movement errors, but not with a longer task planning time compared to the single-task condition training. There was a decrease in the time needed to plan a path in the mazes by subjects training in the CM, CT, and MT groups. The results indicate that after each type of training, the number of errors and the time needed to plan the path decrease, despite the increasing difficulty of the tasks. The length of planning time was strongly correlated with the number of errors made by individuals in the CM group (r = 0.74, p = 0.04), compared to the ST group-for which the said correlation was not significant (r = 0.7, p = 0.06). The dual-task cognitive-motor training is more cognitively demanding compared to the single-task cognitive and motor training. It manifests in a greater number of errors, but it does not extend the orientation and planning time.
Collapse
Affiliation(s)
| | - Emilia Łojek
- Faculty of Psychology, University of Warsaw, 00-183 Warsaw, Poland
| | | | - Anna Chabuda
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
23
|
Korivand S, Jalili N, Gong J. Experiment protocols for brain-body imaging of locomotion: A systematic review. Front Neurosci 2023; 17:1051500. [PMID: 36937690 PMCID: PMC10014824 DOI: 10.3389/fnins.2023.1051500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Human locomotion is affected by several factors, such as growth and aging, health conditions, and physical activity levels for maintaining overall health and well-being. Notably, impaired locomotion is a prevalent cause of disability, significantly impacting the quality of life of individuals. The uniqueness and high prevalence of human locomotion have led to a surge of research to develop experimental protocols for studying the brain substrates, muscle responses, and motion signatures associated with locomotion. However, from a technical perspective, reproducing locomotion experiments has been challenging due to the lack of standardized protocols and benchmarking tools, which impairs the evaluation of research quality and the validation of previous findings. Methods This paper addresses the challenges by conducting a systematic review of existing neuroimaging studies on human locomotion, focusing on the settings of experimental protocols, such as locomotion intensity, duration, distance, adopted brain imaging technologies, and corresponding brain activation patterns. Also, this study provides practical recommendations for future experiment protocols. Results The findings indicate that EEG is the preferred neuroimaging sensor for detecting brain activity patterns, compared to fMRI, fNIRS, and PET. Walking is the most studied human locomotion task, likely due to its fundamental nature and status as a reference task. In contrast, running has received little attention in research. Additionally, cycling on an ergometer at a speed of 60 rpm using fNIRS has provided some research basis. Dual-task walking tasks are typically used to observe changes in cognitive function. Moreover, research on locomotion has primarily focused on healthy individuals, as this is the scenario most closely resembling free-living activity in real-world environments. Discussion Finally, the paper outlines the standards and recommendations for setting up future experiment protocols based on the review findings. It discusses the impact of neurological and musculoskeletal factors, as well as the cognitive and locomotive demands, on the experiment design. It also considers the limitations imposed by the sensing techniques used, including the acceptable level of motion artifacts in brain-body imaging experiments and the effects of spatial and temporal resolutions on brain sensor performance. Additionally, various experiment protocol constraints that need to be addressed and analyzed are explained.
Collapse
Affiliation(s)
- Soroush Korivand
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, United States
- Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States
| | - Nader Jalili
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Jiaqi Gong
- Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jiaqi Gong
| |
Collapse
|
24
|
Alterations in Corticocortical Vestibular Network Functional Connectivity Are Associated with Decreased Balance Ability in Elderly Individuals with Mild Cognitive Impairment. Brain Sci 2022; 13:brainsci13010063. [PMID: 36672045 PMCID: PMC9856347 DOI: 10.3390/brainsci13010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The corticocortical vestibular network (CVN) plays an important role in maintaining balance and stability. In order to clarify the specific relationship between the CVN and the balance ability of patients with mild cognitive impairment (MCI), we recruited 30 MCI patients in the community. According to age and sex, they were 1:1 matched to 30 older adults with normal cognitive function. We evaluated balance ability and performed MRI scanning in the two groups of participants. We analyzed functional connectivity within the CVN based on the region of interest. Then, we performed a Pearson correlation analysis between the functional connection and the Berg Balance Scale scores. The research results show that compared with the control group, there were three pairs of functional connections (hMST_R−Premotor_R, PFcm_R−SMA_L, and hMST_L−VIP_R) that were significantly decreased in the CVNs of the MCI group (p < 0.05). Further correlation analysis showed that there was a significant positive correlation between hMST_R−Premotor_R functional connectivity and BBS score (r = 0.364, p = 0.004). The decline in balance ability and increase in fall risk in patients with MCI may be closely related to the change in the internal connection mode of the corticocortical vestibular network.
Collapse
|
25
|
Scurry AN, Szekely B, Murray NG, Jiang F. Older adults with a history of falling exhibit altered cortical oscillatory mechanisms during continuous postural maintenance. J Clin Transl Res 2022; 8:390-402. [PMID: 36518547 PMCID: PMC9741932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023] Open
Abstract
Background and Aim The significant risk of falling in older adults 65 years or older presents a substantial problem for these individuals, their caretakers, and the health-care system at large. As the proportion of older adults in the United States is only expected to grow over the next few decades, a better understanding of physiological and cortical changes that make an older adult more susceptible to a fall is crucial. Prior studies have displayed differences in postural dynamics and stability in older adults with a fall history (FH) and those who are non-fallers (NF), suggesting surplus alterations that occur in some older adults (i.e., FH group) in addition to the natural aging process. Methods The present study measured postural dynamics while the FH, NF, and young adult (YA) groups performed continuous postural maintenance. In addition, electroencephalography activity was recorded while participants performed upright postural stance to examine any group differences in cortical areas involved in postural control. Results As expected, older participants (FH and NF) exhibited worse postural stability, as evidenced by increased excursion, compared to the YA group. Further, while NF and YA show increased alpha activity in occipital areas during the most demanding postural task (eyes closed), the FH group did not show any differences in occipital alpha power between postural tasks. Conclusions As alpha activity reflects suppression of bottom-up processing and thus diversion of cognitive resources toward postural centers during more demanding postural maintenance, deficits in this regulatory function in the FH group are a possible impaired cortical mechanism putting these individuals at greater fall risk. Relevance for Patients Impaired inhibitory function in older adults may impact postural control and increase their risk of falling. Interventions that aim at addressing cortical processing deficits may improve postural stability and facilitate independent living in this population.
Collapse
Affiliation(s)
- Alexandra N. Scurry
- 1Department of Psychology, University of Nevada, Reno, Nevada 89557, United States
| | - Brian Szekely
- 1Department of Psychology, University of Nevada, Reno, Nevada 89557, United States
| | - Nicholas G. Murray
- 2School of Public Health, University of Nevada, Reno, Nevada 89557, United States
| | - Fang Jiang
- 1Department of Psychology, University of Nevada, Reno, Nevada 89557, United States,Corresponding author: Fang Jiang Department of Psychology, University of Nevada, Reno, Nevada 89557, United States.
| |
Collapse
|
26
|
Reiser JE, Arnau S, Rinkenauer G, Wascher E. Did you even see that? visual sensory processing of single stimuli under different locomotor loads. PLoS One 2022; 17:e0267896. [PMID: 35617315 PMCID: PMC9135297 DOI: 10.1371/journal.pone.0267896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Modern living and working environments are more and more interspersed with the concurrent execution of locomotion and sensory processing, most often in the visual domain. Many job profiles involve the presentation of visual information while walking, for example in warehouse logistics work, where a worker has to manage walking to the correct aisle to pick up a package while being presented with visual information over data-glasses concerning the next order. Similar use-cases can be found in manufacturing jobs, for example in car montage assembly lines where next steps are presented via augmented reality headsets while walking at a slow pace. Considering the overall scarcity of cognitive resources available to be deployed to either the cognitive or motor processes, task performance decrements were found when increasing load in either domain. Interestingly, the walking motion also had beneficial effects on peripheral contrast detection and the inhibition of visual stream information. Taking these findings into account, we conducted a study that comprised the detection of single visual targets (Landolt Cs) within a broad range of the visual field (-40° to +40° visual angle) while either standing, walking, or walking with concurrent perturbations. We used questionnaire (NASA-TLX), behavioral (response times and accuracy), and neurophysiological data (ERPs and ERSPs) to quantify the effects of cognitive-motor interference. The study was conducted in a Gait Real-time Analysis Interactive Laboratory (GRAIL), using a 180° projection screen and a swayable and tiltable dual-belt treadmill. Questionnaire and behavioral measures showed common patterns. We found increasing subjective physical workload and behavioral decrements with increasing stimulus eccentricity and motor complexity. Electrophysiological results also indicated decrements in stimulus processing with higher stimulus eccentricity and movement complexity (P3, Theta), but highlighted a beneficial role when walking without perturbations and processing more peripheral stimuli regarding earlier sensory components (N1pc/N2pc, N2). These findings suggest that walking without impediments can enhance the visual processing of peripheral information and therefore help with perceiving non-foveal sensory content. Also, our results could help with re-evaluating previous findings in the context of cognitive-motor interference, as increased motor complexity might not always impede cognitive processing and performance.
Collapse
Affiliation(s)
- Julian Elias Reiser
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- * E-mail:
| | - Stefan Arnau
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Gerhard Rinkenauer
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
27
|
Hupfeld KE, Geraghty JM, McGregor HR, Hass CJ, Pasternak O, Seidler RD. Differential Relationships Between Brain Structure and Dual Task Walking in Young and Older Adults. Front Aging Neurosci 2022; 14:809281. [PMID: 35360214 PMCID: PMC8963788 DOI: 10.3389/fnagi.2022.809281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older adults are more pronounced when they perform a simultaneous cognitive task while walking (i.e., dual task walking). Although it is known that aging results in widespread brain atrophy, few studies have integrated across more than one neuroimaging modality to comprehensively examine the structural neural correlates that may underlie dual task walking in older age. We collected spatiotemporal gait data during single and dual task walking for 37 young (18-34 years) and 23 older adults (66-86 years). We also collected T 1-weighted and diffusion-weighted MRI scans to determine how brain structure differs in older age and relates to dual task walking. We addressed two aims: (1) to characterize age differences in brain structure across a range of metrics including volumetric, surface, and white matter microstructure; and (2) to test for age group differences in the relationship between brain structure and the dual task cost (DTcost) of gait speed and variability. Key findings included widespread brain atrophy for the older adults, with the most pronounced age differences in brain regions related to sensorimotor processing. We also found multiple associations between regional brain atrophy and greater DTcost of gait speed and variability for the older adults. The older adults showed a relationship of both thinner temporal cortex and shallower sulcal depth in the frontal, sensorimotor, and parietal cortices with greater DTcost of gait. Additionally, the older adults showed a relationship of ventricular volume and superior longitudinal fasciculus free-water corrected axial and radial diffusivity with greater DTcost of gait. These relationships were not present for the young adults. Stepwise multiple regression found sulcal depth in the left precentral gyrus, axial diffusivity in the superior longitudinal fasciculus, and sex to best predict DTcost of gait speed, and cortical thickness in the superior temporal gyrus to best predict DTcost of gait variability for older adults. These results contribute to scientific understanding of how individual variations in brain structure are associated with mobility function in aging. This has implications for uncovering mechanisms of brain aging and for identifying target regions for mobility interventions for aging populations.
Collapse
Affiliation(s)
- Kathleen E. Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Justin M. Geraghty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Heather R. McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - C. J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rachael D. Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| |
Collapse
|
28
|
Vila-Chã C, Vaz C, Oliveira AS. Electrocortical Activity in Older Adults Is More Influenced by Cognitive Task Complexity Than Concurrent Walking. Front Aging Neurosci 2022; 13:718648. [PMID: 35140598 PMCID: PMC8819066 DOI: 10.3389/fnagi.2021.718648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Human cognitive-motor performance largely depends on how brain resources are allocated during simultaneous tasks. Nonetheless, little is known regarding the age-related changes in electrocortical activity when dual-task during walking presents higher complexity levels. Thus, the aim of this study was to investigate whether there are distinct changes in walking performance and electrocortical activation between young and older adults performing simple and complex upper limb response time tasks. Physically active young (23 ± 3 years, n = 21) and older adults (69 ± 5 years, n = 19) were asked to respond as fast as possible to a single stimuli or a double stimuli appearing on a touch screen during standing and walking. Response time, step frequency, step frequency variability and electroencephalographic (EEG) N200 and P300 amplitudes and latencies from frontal central and parietal brain regions were recorded. The results demonstrated that older adults were 23% slower to respond to double stimuli, whereas younger adults were only 12% slower (p < 0.01). The longer response time for older adults was accompanied by greater step frequency variability following double-stimuli presentations (p < 0.01). Older adults presented reduced N200 and P300 amplitudes compared to younger participants across all conditions (p < 0.001), with no effects of posture (standing vs walking) on both groups (p > 0.05). More importantly, the P300 amplitude was significantly reduced for older adults when responding to double stimuli regardless of standing or walking tasks (p < 0.05), with no changes in younger participants. Therefore, physically active older adults can attenuate potential walking deficits experienced during dual-task walking in simple cognitive tasks. However, cognitive tasks involving decision making influence electrocortical activation due to reduced cognitive resources to cope with the task demands.
Collapse
Affiliation(s)
- Carolina Vila-Chã
- Polytechnic of Guarda, Guarda, Portugal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, Vila Real, Portugal
| | | | - Anderson Souza Oliveira
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
- *Correspondence: Anderson Souza Oliveira,
| |
Collapse
|
29
|
Ramanoël S, Durteste M, Delaux A, de Saint Aubert JB, Arleo A. Future trends in brain aging research: Visuo-cognitive functions at stake during mobility and spatial navigation. AGING BRAIN 2022; 2:100034. [PMID: 36908887 PMCID: PMC9997160 DOI: 10.1016/j.nbas.2022.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
Aging leads to a complex pattern of structural and functional changes, gradually affecting sensorimotor, perceptual, and cognitive processes. These multiscale changes can hinder older adults' interaction with their environment, progressively reducing their autonomy in performing tasks relevant to everyday life. Autonomy loss can further be aggravated by the onset and progression of neurodegenerative disorders (e.g., age-related macular degeneration at the sensory input level; and Alzheimer's disease at the cognitive level). In this context, spatial cognition offers a representative case of high-level brain function that involves multimodal sensory processing, postural control, locomotion, spatial orientation, and wayfinding capabilities. Hence, studying spatial behavior and its neural bases can help identify early markers of pathogenic age-related processes. Until now, the neural correlates of spatial cognition have mostly been studied in static conditions thereby disregarding perceptual (other than visual) and motor aspects of natural navigation. In this review, we first demonstrate how visuo-motor integration and the allocation of cognitive resources during locomotion lie at the heart of real-world spatial navigation. Second, we present how technological advances such as immersive virtual reality and mobile neuroimaging solutions can enable researchers to explore the interplay between perception and action. Finally, we argue that the future of brain aging research in spatial navigation demands a widespread shift toward the use of naturalistic, ecologically valid experimental paradigms to address the challenges of mobility and autonomy decline across the lifespan.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.,Université Côte d'Azur, LAMHESS, Nice, France
| | - Marion Durteste
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Alexandre Delaux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| |
Collapse
|
30
|
Differential effects of walking across visual cortical processing stages. Cortex 2022; 149:16-28. [DOI: 10.1016/j.cortex.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
|
31
|
Richardson DP, Foxe JJ, Mazurek KA, Abraham N, Freedman EG. Neural markers of proactive and reactive cognitive control are altered during walking: A Mobile Brain-Body Imaging (MoBI) study. Neuroimage 2021; 247:118853. [PMID: 34954331 PMCID: PMC8822329 DOI: 10.1016/j.neuroimage.2021.118853] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/20/2023] Open
Abstract
The processing of sensory information and the generation of motor commands needed to produce coordinated actions can interfere with ongoing cognitive tasks. Even simple motor behaviors like walking can alter cognitive task performance. This cognitive-motor interference (CMI) could arise from disruption of planning in anticipation of carrying out the task (proactive control) and/or from disruption of the execution of the task (reactive control). In young healthy adults, walking-induced interference with behavioral performance may not be readily observable because flexibility in neural circuits can compensate for the added demands of simultaneous loads. In this study, cognitive-motor loads were systematically increased during cued task-switching while underlying neurophysiologic changes in proactive and reactive mechanisms were measured. Brain activity was recorded from 22 healthy young adults using 64-channel electroencephalography (EEG) based Mobile Brain/Body Imaging (MoBI) as they alternately sat or walked during performance of cued task-switching. Walking altered neurophysiological indices of both proactive and reactive control. Walking amplified cue-evoked late fontal slow waves, and reduced the amplitude of target-evoked fronto-central N2 and parietal P3. The effects of walking on evoked neural responses systematically increased as the task became increasingly difficult. This may provide an objective brain marker of increasing cognitive load, and may prove to be useful in identifying seemingly healthy individuals who are currently able to disguise ongoing degenerative processes through active compensation. If, however, degeneration continues unabated these people may reach a compensatory limit at which point both cognitive performance and control of coordinated actions may decline rapidly.
Collapse
Affiliation(s)
- David P Richardson
- Department of Neuroscience, The Frederick A. and Marion J. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John J Foxe
- Department of Neuroscience, The Frederick A. and Marion J. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kevin A Mazurek
- Department of Neuroscience, The Frederick A. and Marion J. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nicholas Abraham
- Department of Neuroscience, The Frederick A. and Marion J. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward G Freedman
- Department of Neuroscience, The Frederick A. and Marion J. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
32
|
Wunderlich A, Vogel O, Šömen MM, Peskar M, Fricke M, Gramann K, Protzak J, Marusic U, Wollesen B. Dual-Task Performance in Hearing-Impaired Older Adults-Study Protocol for a Cross-Sectional Mobile Brain/Body Imaging Study. Front Aging Neurosci 2021; 13:773287. [PMID: 34867299 PMCID: PMC8633949 DOI: 10.3389/fnagi.2021.773287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Hearing impairments are associated with reduced walking performance under Dual-task (DT) conditions. Little is known about the neural representation of DT performance while walking in this target group compared to healthy controls or younger adults. Therefore, utilizing the Mobile Brain/Body Imaging approach (MoBI), we aim at gaining deeper insights into the brain dynamics underlying the interaction of cognitive and motor processes during different DT conditions (visual and auditory) controlling for age and the potential performance decrements of older adults with hearing impairments. Methods: The cross-sectional study integrates a multifactorial mixed-measure design. Between-subject factors grouping the sample will be age (younger vs. older adults) and hearing impairment (mild vs. not hearing impaired). The within-subject factors will be the task complexity (single- vs. DT) and cognitive task modality (visual vs. auditory). Stimuli of the cognitive task will vary according to the stimulus modality (visual vs. auditory), presentation side (left vs. right), and presentation-response compatibility (ipsilateral vs. contralateral). Analyses of DT costs and underlying neuronal correlates focus either on gait or cognitive performance. Based on an a priori sample size calculation 96 (48 healthy and 48 mildly hearing impaired) community-dwelling older adults (50–70 years) and 48 younger adults (20–30 years) will be recruited. Gait parameters of speed and rhythm will be captured. EEG activity will be recorded using 64 active electrodes. Discussion: The study evaluates cognitive-motor interference (CMI) in groups of young and older adults as well as older adults with hearing impairment. The underlying processes of the interaction between motor and cognitive tasks will be identified at a behavioral and neurophysiological level comparing an auditory or a visual secondary task. We assume that performance differences are linked to different cognitive-motor processes, i.e., stimulus input, resource allocation, and movement execution. Moreover, for the different DT conditions (auditory vs. visual) we assume performance decrements within the auditory condition, especially for older, hearing-impaired adults. Findings will provide evidence of general mechanisms of CMI (ST vs. DT walking) as well as task-specific effects in dual-task performance while over ground walking.
Collapse
Affiliation(s)
- Anna Wunderlich
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Oliver Vogel
- Human Movement and Training Science, Institute of Human Movement Science, Psychology and Human Movement, University Hamburg, Hamburg, Germany
| | - Maja Maša Šömen
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Manca Peskar
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany.,Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Madeleine Fricke
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Klaus Gramann
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Janna Protzak
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Uros Marusic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Bettina Wollesen
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany.,Human Movement and Training Science, Institute of Human Movement Science, Psychology and Human Movement, University Hamburg, Hamburg, Germany
| |
Collapse
|
33
|
Tortora S, Rubega M, Formaggio E, Marco RD, Masiero S, Menegatti E, Tonin L, Del Felice A. Age-related differences in visual P300 ERP during dual-task postural balance. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6511-6514. [PMID: 34892601 DOI: 10.1109/embc46164.2021.9630088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Standing and concurrently performing a cognitive task is a very common situation in everyday life. It is associated with a higher risk of falling in the elderly. Here, we aim at evaluating the differences of the P300 evoked potential elicited by a visual oddball paradigm between healthy younger (< 35 y) and older (> 64 y) adults during a simultaneous postural task. We found that P300 latency increases significantly (p < 0.001) when the elderly are engaged in more challenging postural tasks; younger adults show no effect of balance condition. Our results demonstrate that, even if the elderly have the same accuracy in odd stimuli detection as younger adults do, they require a longer processing time for stimulus discrimination. This finding suggests an increased attentional load which engages additional cerebral reserves.
Collapse
|
34
|
Brauner FO, Balbinot G, Figueiredo AI, Hausen DO, Schiavo A, Mestriner RG. The Performance Index Identifies Changes Across the Dual Task Timed Up and Go Test Phases and Impacts Task-Cost Estimation in the Oldest-Old. Front Hum Neurosci 2021; 15:720719. [PMID: 34658817 PMCID: PMC8514992 DOI: 10.3389/fnhum.2021.720719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction: Dual tasking is common in activities of daily living (ADLs) and the ability to perform them usually declines with age. While cognitive aspects influence dual task (DT) performance, most DT-cost (DT-C) related metrics include only time- or speed- delta without weighting the accuracy of cognitive replies involved in the task. Objectives: The primary study goal was to weight the accuracy of cognitive replies as a contributing factor when estimating DT-C using a new index of DT-C that considers the accuracy of cognitive replies (P-index) in the instrumented timed up and go test (iTUG). Secondarily, to correlate the novel P-index with domains of the Mini-Mental State Examination (MMSE). Methods: Sixty-three participants (≥85 years old) took part in this study. The single task (ST) and DT iTUG tests were performed in a semi-random order. Both the time taken to complete the task measured utilizing an inertial measurement unit (IMU), and the accuracy of the cognitive replies were used to create the novel P-index. Clinical and sociodemographic data were collected. Results: The accuracy of the cognitive replies changed across the iTUG phases, particularly between the walk 1 and walk 2 phases. Moreover, weighting 0.6 for delta-time (W1) and 0.4 for cognitive replies (W2) into the P-index enhanced the prediction of the MMSE score. The novel P-index was able to explain 37% of the scores obtained by the fallers in the “spatial orientation” and “attention” domains of the MMSE. The ability of the P-index to predict MMSE scores was not significantly influenced by age, schooling, and number of medicines in use. The Bland-Altman analysis indicated a substantial difference between the time-delta-based DT-C and P-index methods, which was within the limits of agreement. Conclusions: The P-index incorporates the accuracy of cognitive replies when calculating the DT-C and better reflects the variance of the MMSE in comparison with the traditional time- or speed-delta approaches, thus providing an improved method to estimate the DT-C.
Collapse
Affiliation(s)
- Fabiane Oliveira Brauner
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Neuroplasticity and Neural Repair Research Group, Health and Life Sciences School, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Gustavo Balbinot
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Anelise Ineu Figueiredo
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Neuroplasticity and Neural Repair Research Group, Health and Life Sciences School, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Daiane Oliveira Hausen
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Neuroplasticity and Neural Repair Research Group, Health and Life Sciences School, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Neuroplasticity and Neural Repair Research Group, Health and Life Sciences School, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Neuroplasticity and Neural Repair Research Group, Health and Life Sciences School, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
35
|
Sosnik R, Danziger-Schragenheim S, Possti D, Fahoum F, Giladi N, Hausdorff JM, Mirelman A, Maidan I. Impaired Inhibitory Control During Walking in Parkinson's Disease Patients: An EEG Study. JOURNAL OF PARKINSONS DISEASE 2021; 12:243-256. [PMID: 34569972 DOI: 10.3233/jpd-212776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The performance on a visual Go/NoGo (VGNG) task during walking has been used to evaluate the effect of gait on response inhibition in young and older adults; however, no work has yet included Parkinson's disease (PD) patients for whom such changes may be even more enhanced. OBJECTIVE In this study, we aimed to explore the effect of gait on automatic and cognitive inhibitory control phases in PD patients and the associated changes in neural activity and compared them with young and older adults. METHODS 30 PD patients, 30 older adults, and 11 young adults performed a visual Go/NoGo task in a sitting position and during walking on a treadmill while their EEG activity and gait were recorded. Brain electrical activity was evaluated by the amplitude, latency, and scalp distribution of N2 and P300 event related potentials. Mix model analysis was used to examine group and condition effects on task performance and brain activity. RESULTS The VGNG accuracy rates in PD patients during walking were lower than in young and older adults (F = 5.619, p = 0.006). For all groups, N2 latency during walking was significantly longer than during sitting (p = 0.013). In addition, P300 latency was significantly longer in PD patients (p < 0.001) and older adults (p = 0.032) during walking compared to sitting and during 'NoGo' trials compared with 'Go' trials. Moreover, the young adults showed the smallest number of electrodes for which a significant differential activation between sit to walk was observed, while PD patients showed the largest with N2 being more strongly manifested in bilateral parietal electrodes during walking and in frontocentral electrodes while seated. CONCLUSION The results show that response inhibition during walking is impaired in older subjects and PD patients and that increased cognitive load during dual-task walking relates to significant change in scalp electrical activity, mainly in parietal and frontocentral channels.
Collapse
Affiliation(s)
- Ronen Sosnik
- Faculty of Electrical Engineering, Holon Institute of Technology (H.I.T.), Holon, Israel
| | - Shani Danziger-Schragenheim
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Possti
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Firas Fahoum
- Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel
| | - Jeffrey M Hausdorff
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel.,Alzheimer's Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
36
|
Wang Y, Ji Q, Fu R, Zhang G, Lu Y, Zhou C. Hand-related action words impair action anticipation in expert table tennis players: Behavioral and neural evidence. Psychophysiology 2021; 59:e13942. [PMID: 34535903 DOI: 10.1111/psyp.13942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 11/26/2022]
Abstract
Athletes extract kinematic information to anticipate action outcomes. Here, we examined the influence of linguistic information (experiment 1, 2) and its underlying neural correlates (experiment 2) on anticipatory judgment. Table tennis experts and novices remembered a hand- or leg-related verb or a spatial location while predicting the trajectory of a ball in a video occluded at the moment of the serve. Experiment 1 showed that predictions by experts were more accurate than novices, but experts' accuracy significantly decreased when hand-related words versus spatial locations were memorized. For nonoccluded videos with ball trajectories congruent or incongruent with server actions in experiment 2, remembering hand-related verbs shared cognitive resources with action anticipation only in experts, with heightened processing load (increased P3 amplitude) and more efficient conflict monitoring (decreased N2 amplitude) versus leg-related verbs. Thus, action anticipation required updating of motor representations facilitated by motor expertize but was also affected by effector-specific semantic representations of actions, suggesting a link from language to motor systems.
Collapse
Affiliation(s)
- Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Qingchun Ji
- Physical Education Department, Shanghai University of Engineering Science, Shanghai, China
| | - Rao Fu
- Faculty of Electronic Information and Electrical Engineering, School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Guanghui Zhang
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Yingzhi Lu
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
37
|
Rubega M, Di Marco R, Zampini M, Formaggio E, Menegatti E, Bonato P, Masiero S, Del Felice A. Muscular and cortical activation during dynamic and static balance in the elderly: A scoping review. AGING BRAIN 2021; 1:100013. [PMID: 36911521 PMCID: PMC9997172 DOI: 10.1016/j.nbas.2021.100013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
Falls due to balance impairment are a major cause of injury and disability in the elderly. The study of neurophysiological correlates during static and dynamic balance tasks is an emerging area of research that could lead to novel rehabilitation strategies and reduce fall risk. This review aims to highlight key concepts and identify gaps in the current knowledge of balance control in the elderly that could be addressed by relying on surface electromyographic (EMG) and electroencephalographic (EEG) recordings. The neurophysiological hypotheses underlying balance studies in the elderly as well as the methodologies, findings, and limitations of prior work are herein addressed. The literature shows: 1) a wide heterogeneity in the experimental procedures, protocols, and analyses; 2) a paucity of studies involving the investigation of cortical activity; 3) aging-related alterations of cortical activation during balance tasks characterized by lower cortico-muscular coherence and increased allocation of attentional control to postural tasks in the elderly; and 4) EMG patterns characterized by delayed onset after perturbations, increased levels of activity, and greater levels of muscle co-activation in the elderly compared to younger adults. EMG and EEG recordings are valuable tools to monitor muscular and cortical activity during the performance of balance tasks. However, standardized protocols and analysis techniques should be agreed upon and shared by the scientific community to provide reliable and reproducible results. This will allow researchers to gain a comprehensive knowledge on the neurophysiological changes affecting static and dynamic balance in the elderly and will inform the design of rehabilitative and preventive interventions.
Collapse
Affiliation(s)
- Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Roberto Di Marco
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Marianna Zampini
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Emanuele Menegatti
- Department of Information Engineering, University of Padova, Padova, IT, Italy
| | - Paolo Bonato
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, USA
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
- Padova Neuroscience Center, University of Padova, Padova, IT, Italy
| | - Alessandra Del Felice
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
- Padova Neuroscience Center, University of Padova, Padova, IT, Italy
| |
Collapse
|
38
|
Integrated 3D motion analysis with functional magnetic resonance neuroimaging to identify neural correlates of lower extremity movement. J Neurosci Methods 2021; 355:109108. [PMID: 33705853 DOI: 10.1016/j.jneumeth.2021.109108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND To better understand the neural drivers of aberrant motor control, methods are needed to identify whole brain neural correlates of isolated joints during multi-joint lower-extremity coordinated movements. This investigation aimed to identify the neural correlates of knee kinematics during a unilateral leg press task. NEW METHOD The current study utilized an MRI-compatible motion capture system in conjunction with a lower extremity unilateral leg press task during fMRI. Knee joint kinematics and brain activity were collected concurrently and averaged range of motion were modeled as covariates to determine the neural substrates of knee out-of-plane (frontal) and in-plane (sagittal) range of motion. RESULTS Increased out-of-plane (frontal) range of motion was associated with altered brain activity in regions important for attention, sensorimotor control, and sensorimotor integration (z >3.1, p < .05), but no such correlates were found with in-plane (sagittal) range of motion (z >3.1, p > .05). Comparison with Existing Method(s): Previous studies have either presented overall brain activation only, or utilized biomechanical data collected outside MRI in a standard biomechanics lab for identifying single-joint neural correlates. CONCLUSIONS The study shows promise for the MRI-compatible system to capture lower-extremity biomechanical data collected concurrently during fMRI, and the present data identified potentially unique neural drivers of aberrant biomechanics. Future research can adopt these methods for patient populations with CNS-related movement disorders to identify single-joint kinematic neural correlates that may adjunctively supplement brain-body therapeutic approaches.
Collapse
|
39
|
Kirshner D, Kizony R, Gil E, Asraf K, Krasovsky T, Haimov I, Shochat T, Agmon M. Why Do They Fall? The Impact of Insomnia on Gait of Older Adults: A Case-Control Study. Nat Sci Sleep 2021; 13:329-338. [PMID: 33727875 PMCID: PMC7955755 DOI: 10.2147/nss.s299833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Abstract
STUDY OBJECTIVES To compare gait and cognitive performance conducted separately as a single- (ST) and simultaneously as a dual-task (DT), ie, when a cognitive task was added, among community-dwelling older adults with and without insomnia. METHODS Participants included: 39 (28 females) community-dwelling older adults with insomnia, 34 (21 females) controls without insomnia. Subject groups were matched for age, gender, and education. Sleep quality was evaluated based on two-week actigraphy. Gait speed and cognition were assessed as ST and DT performance. DT costs (DTCs) were calculated for both tasks. Outcomes were compared via independent samples t-tests or Mann-Whitney U-tests. RESULTS Older adults with insomnia demonstrated significantly slower gait speed during ST (1 ± 0.29 vs 1.27 ± 0.17 m/s, p<0.001) and DT (0.77 ± 0.26 vs 1.14 ± 0.20 m/s, p<0.001) and fewer correct responses in the cognitive task during ST (21 ± 7 vs 27 ± 11, p=0.009) and DT (19 ± 7 vs 23 ± 9, p=0.015) compared to control group. DTC for the gait task was higher among older adults with insomnia (18.32%, IQR: 9.48-30.93 vs 7.81% IQR: 4.43-14.82, p<0.001). However, no significant difference was observed in DTC for the cognitive task (14.71%, IQR: -0.89-38.84 vs 15%, IQR: -0.89-38.84%, p=0.599). CONCLUSION Older adults with insomnia have lower gait speed and poorer cognitive performance during ST and DT and an inefficient pattern of task prioritization during walking, compared to counterparts without insomnia. These findings may explain the higher risk of falls among older adults with insomnia. Geriatric professionals should be aware of potential interrelationships between sleep and gait.
Collapse
Affiliation(s)
- Dani Kirshner
- Clalit Health Services; Faculty of Medicine, Technion, Haifa, Israel
| | - Rachel Kizony
- Occupational Therapy Department, University of Haifa, Haifa, Israel.,Occupational Therapy Department, Sheba Medical Center, Tel- Hashomer, Tel-Aviv, Israel
| | - Efrat Gil
- Clalit Health Services; Faculty of Medicine, Technion, Haifa, Israel
| | - Kfir Asraf
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Tal Krasovsky
- Physical Therapy Department, University of Haifa, Haifa, Israel.,Pediatric Rehabilitation Department, Sheba Medical Center, Tel- Hashomer, Tel-Aviv, Israel
| | - Iris Haimov
- The Center for Psychobiological Research, Department of Psychology, The Max Stern Yezreel Valley College, Yezreel Valley, Israel
| | - Tamar Shochat
- School of Nursing, Faculty of Health and Social Welfare, University of Haifa, Haifa, Israel
| | - Maayan Agmon
- School of Nursing, Faculty of Health and Social Welfare, University of Haifa, Haifa, Israel
| |
Collapse
|
40
|
Bayot M, Dujardin K, Dissaux L, Tard C, Defebvre L, Bonnet CT, Allart E, Allali G, Delval A. Can dual-task paradigms predict Falls better than single task? - A systematic literature review. Neurophysiol Clin 2020; 50:401-440. [PMID: 33176988 DOI: 10.1016/j.neucli.2020.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 11/18/2022] Open
Abstract
With about one third of adults aged 65 years and older being reported worldwide to fall each year, and an even higher prevalence with advancing age, aged-related falls and the associated disabilities and mortality are a major public health concern. In this context, identification of fall risk in healthy older adults is a key component of fall prevention. Since dual-task outcomes rely on the interaction between cognition and motor control, some studies have demonstrated the role of dual-task walking performance or costs in predicting future fallers. However, based on previous reviews on the topic, (1) discriminative and (2) predictive powers of dual tasks involving gait and a concurrent task are still a matter of debate, as is (3) their superiority over single tasks in terms of fall-risk prediction. Moreover, less attention has been paid to dual tasks involving postural control and transfers (such as gait initiation and turns) as motor tasks. In the present paper, we therefore systematically reviewed recent literature over the last 7 years in order to answer the three above mentioned questions regarding the future of lab-based dual tasks (involving posture, gait initiation, gait and turning) as easily applicable tests for identifying healthy older adult fallers. Despite great heterogeneity among included studies, we emphasized, among other things, the promising added value of dual tasks including turns and other transfers, such as in the Timed Up and Go test, for prediction of falls. Further investigation of these is thus warranted.
Collapse
Affiliation(s)
- Madli Bayot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Lucile Dissaux
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Céline Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Cédrick T Bonnet
- Univ. Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS UMR 9193, F-59000 Lille, France
| | - Etienne Allart
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Neurorehabilitation Unit, F-59000 Lille, France
| | - Gilles Allali
- Department of Neurology, Geneva University Hospitals and University of Geneva, Geneva 1211, Switzerland, Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, US
| | - Arnaud Delval
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| |
Collapse
|
41
|
Villafaina S, Fuentes-García JP, Cano-Plasencia R, Gusi N. Neurophysiological Differences Between Women With Fibromyalgia and Healthy Controls During Dual Task: A Pilot Study. Front Psychol 2020; 11:558849. [PMID: 33250807 PMCID: PMC7672184 DOI: 10.3389/fpsyg.2020.558849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background Women with FM have a reduced ability to perform two simultaneous tasks. However, the impact of dual task (DT) on the neurophysiological response of women with FM has not been studied. Objective To explore both the neurophysiological response and physical performance of women with FM and healthy controls while performing a DT (motor–cognitive). Design Cross-sectional study. Methods A total of 17 women with FM and 19 age- and sex-matched healthy controls (1:1 ratio) were recruited. The electroencephalographic (EEG) activity was recorded while participants performed two simultaneous tasks: a motor (30 seconds arm-curl test) and a cognitive (remembering three unrelated words). Theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30) frequency bands were analyzed by using EEGLAB. Results Significant differences were obtained in the healthy control group between single task (ST) and DT in the theta, alpha, and beta frequency bands (p-value < 0.05). Neurophysiological differences between ST and DT were not found in women with FM. In addition, between-group differences were found in the alpha and beta frequency bands between healthy and FM groups, with lower values of beta and alpha in the FM group. Therefore, significant group∗condition interactions were detected in the alpha and beta frequency bands. Regarding physical condition performance, between groups, analyses showed that women with FM obtained significantly worse results in the arm curl test than healthy controls, in both ST and DT. Conclusion Women with FM showed the same electrical brain activity pattern during ST and DT conditions, whereas healthy controls seem to adapt their brain activity to task commitment. This is the first study that investigates the neurophysiological response of women with FM while simultaneously performing a motor and a cognitive task.
Collapse
Affiliation(s)
- Santos Villafaina
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | | | - Ricardo Cano-Plasencia
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain.,Clinical Neurophysiology, San Pedro de Alcántara Hospital, Cáceres, Spain
| | - Narcis Gusi
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| |
Collapse
|
42
|
Fearon C, Butler JS, Waechter SM, Killane I, Kelly SP, Reilly RB, Lynch T. Neurophysiological correlates of dual tasking in people with Parkinson's disease and freezing of gait. Exp Brain Res 2020; 239:175-187. [PMID: 33135132 DOI: 10.1007/s00221-020-05968-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Abstract
Freezing of gait in people with Parkinson's disease (PwP) is associated with executive dysfunction and motor preparation deficits. We have recently shown that electrophysiological markers of motor preparation, rather than decision-making, differentiate PwP with freezing of gait (FOG +) and without (FOG -) while sitting. To examine the effect of locomotion on these results, we measured behavioural and electrophysiological responses in PwP with and without FOG during a target response time task while sitting (single-task) and stepping-in-place (dual-task). Behavioural and electroencephalographic data were acquired from 18 PwP (eight FOG +) and seven young controls performing the task while sitting and stepping-in-place. FOG + had slower response times while stepping compared with sitting. However, response times were significantly faster while stepping compared with sitting for controls. Electrophysiological responses showed no difference in decision-making potentials (centroparietal positivity) between groups or conditions but there were differences in neurophysiological markers of response inhibition (N2) and motor preparation (lateralized readiness potential, LRP) in FOG + while performing a dual-task. This suggests that the addition of a second complex motor task (stepping-in-place) impacts automatic allocation of resources in FOG +, resulting in delayed response times. The impact of locomotion on the generation of the N2 and LRP potentials, particularly in freezers, indirectly implies that these functions compete with locomotion for resources. In the setting of multiple complex tasks or cognitive impairment, severe motor dysfunction may result, leading to freezing of gait.
Collapse
Affiliation(s)
- Conor Fearon
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland.
- School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland.
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, 57 Eccles Street, Dublin 7, Ireland.
| | - John S Butler
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland.
- School of Mathematical Sciences, Technological University Dublin, Kevin Street, Dublin, Ireland.
- School of Medicine, Trinity College, The University of Dublin, Dublin 2, Ireland.
| | - Saskia M Waechter
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Isabelle Killane
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Mechanical and Design Engineering, Technological University Dublin, Bolton Street, Dublin, Ireland
| | - Simon P Kelly
- School of Electrical and Electronic Engineering, University College Dublin, Dublin 4, Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, The School of Medicine and the School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin 2, Ireland
- School of Medicine, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Timothy Lynch
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, 57 Eccles Street, Dublin 7, Ireland
| |
Collapse
|
43
|
Mazurek KA, Patelaki E, Foxe JJ, Freedman EG. Using the MoBI motion capture system to rapidly and accurately localize EEG electrodes in anatomic space. Eur J Neurosci 2020; 54:8396-8405. [PMID: 33103279 PMCID: PMC8573528 DOI: 10.1111/ejn.15019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
During mobile brain/body imaging (MoBI) experiments, electroencephalography and motion capture systems are used in concert to record high temporal resolution neural activity and movement kinematics while participants perform demanding perceptual and cognitive tasks in a naturalistic environment. A typical MoBI setup involves positioning multi‐channel electrode caps based on anatomical fiducials as well as experimenter and participant intuition regarding the scalp midpoint location (i.e., Cz). Researchers often use the “template” electrode locations provided by the manufacturer, however, the “actual” electrode locations can vary based on each participant's head morphology. Accounting for differences in head morphologies could provide more accurate clinical diagnostic information when using MoBI to identify neurological deficits in patients with motor, sensory, or cognitive impairments. Here, we asked whether the existing motion capture system used in a MoBI setup could be easily adapted to improve spatial localization of electrodes across participants without requiring additional or specialized equipment that might impede clinical adoption. Using standard electrode configurations, infrared markers were placed on a subset of electrodes and anatomical fiducials, and the remaining electrode locations were estimated using spherical or ellipsoid models. We identified differences in event‐related potentials between “template” and “actual” electrode locations during a Go/No‐Go task (p < 9.8e–5) and an object‐manipulation task (p < 9.8e–5). Thus, the motion capture system already used in MoBI experiments can be effectively deployed to accurately register and quantify the neural activity. Improving the spatial localization without needing specialized hardware or additional setup time to the workflow has important real‐world implications for translating MoBI to clinical environments.
Collapse
Affiliation(s)
- Kevin A Mazurek
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eleni Patelaki
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward G Freedman
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
44
|
Protzak J, Wiczorek R, Gramann K. Peripheral visual perception during natural overground dual-task walking in older and younger adults. Neurobiol Aging 2020; 98:146-159. [PMID: 33290992 DOI: 10.1016/j.neurobiolaging.2020.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/14/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Little is known about the neurophysiological processes underlying visual processing during active behavior and how these change over the life span. This study investigated early (P1) and later (P3) event-related potentials of the electroencephalogram associated with visual perception in older and younger adults while sitting, standing, and walking. While sitting and standing, accurate performance in both groups was not associated with event-related potential characteristics. During walking, in contrast, prolonged latencies and reduced amplitudes of the P1 were related to slower responses and increased misses, respectively. No covariations of behavior and P3 characteristics were observed. However, prolonged P3 latencies with increasing motor task complexity were present for both age groups, and reduced amplitudes while walking were replicated in younger participants. Older participants were more affected by walking in general as reflected in slower walking speeds as well as reduced accuracy and relative P1 amplitudes. These results provide further insights into cognitive-motor interference during natural walking in younger and older adults on early attentional-perceptual processing stages, even for simple additional visual tasks.
Collapse
Affiliation(s)
- Janna Protzak
- Junior Research Group FANS (Pedestrian Assistance System for Older Road User), Technische Universität Berlin, Berlin, Germany.
| | - Rebecca Wiczorek
- Junior Research Group FANS (Pedestrian Assistance System for Older Road User), Technische Universität Berlin, Berlin, Germany
| | - Klaus Gramann
- Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany; School of Computer Science, University of Technology, Sydney, Australia; Center for Advanced Neurological Engineering, University of California San Diego, La Jolla, USA
| |
Collapse
|
45
|
Nenna F, Do CT, Protzak J, Gramann K. Alteration of brain dynamics during dual-task overground walking. Eur J Neurosci 2020; 54:8158-8174. [PMID: 32881128 DOI: 10.1111/ejn.14956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
When walking in our natural environment, we often solve additional cognitive tasks. This increases the demand of resources needed for both the cognitive and motor systems, resulting in Cognitive-Motor Interference (CMI). A large portion of neurophysiological investigations on CMI took place in static settings, emphasizing the experimental rigor but overshadowing the ecological validity. As a more ecologically valid alternative to treadmill and desktop-based setups to investigate CMI, we developed a dual-task walking scenario in virtual reality (VR) combined with Mobile Brain/Body Imaging (MoBI). We aimed at investigating how brain dynamics are modulated by dual-task overground walking with an additional task in the visual domain. Participants performed a visual discrimination task in VR while standing (single-task) and walking overground (dual-task). Even though walking had no impact on the performance in the visual discrimination task, a P3 amplitude reduction along with changes in power spectral densities (PSDs) were observed for discriminating visual stimuli during dual-task walking. These results reflect an impact of walking on the parallel processing of visual stimuli even when the cognitive task is particularly easy. This standardized and easy to modify VR paradigm helps to systematically study CMI, allowing researchers to control for the impact of additional task complexity of tasks in different sensory modalities. Future investigations implementing an improved virtual design with more challenging cognitive and motor tasks will have to investigate the roles of both cognition and motion, allowing for a better understanding of the functional architecture of attention reallocation between cognitive and motor systems during active behavior.
Collapse
Affiliation(s)
- Federica Nenna
- Department of General Psychology, University of Padova, Padova, Italy
| | - Cao Tri Do
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Janna Protzak
- Junior research group FANS (Pedestrian Assistance System for Older Road User), Berlin Institute of Technology, Berlin, Germany
| | - Klaus Gramann
- Biological Psychology and Neuroergonomics, Berlin Institute of Technology, Berlin, Germany.,School of Computer Science, University of Technology Sydney, Sydney, NSW, Australia.,Center for Advanced Neurological Engineering, University of California, San Diego, CA, USA
| |
Collapse
|
46
|
Possti D, Fahoum F, Sosnik R, Giladi N, Hausdorff JM, Mirelman A, Maidan I. Changes in the EEG spectral power during dual-task walking with aging and Parkinson's disease: initial findings using Event-Related Spectral Perturbation analysis. J Neurol 2020; 268:161-168. [PMID: 32754831 DOI: 10.1007/s00415-020-10104-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The ability to maintain adequate motor-cognitive performance under increasing task demands depends on the regulation and coordination of neural resources. Studies have shown that such resources diminish with aging and disease. EEG spectral analysis is a method that has the potential to provide insight into neural alterations affecting motor-cognitive performance. The aim of this study was to assess changes in spectral analysis during dual-task walking in aging and disease METHODS: 10 young adults, ten older adults, and ten patients with Parkinson's disease (PD) completed an auditory oddball task while standing and while walking on a treadmill. Spectral power within four frequency bandwidths, delta (< 4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz), was calculated using Event-Related Spectral Perturbation (ERSP) analyses and compared between single task and dual task and between groups. RESULTS Differences in ERSP were found in all groups between the single and dual-task conditions. In response to dual-task walking, beta increased in all groups (p < 0.026), delta decreased in young adults (p = 0.03) and patients with PD (0.015) while theta increased in young adults (p = 0.028) but decreased in older adults (p = 0.02) and patients with PD (p = 0.015). Differences were seen between the young, the older adults, and the patients with PD. CONCLUSIONS These findings are the first to show changes in the power of different frequency bands during dual-task walking with aging and disease. These specific brain modulations may reflect deficits in readiness and allocation of attention that may be responsible for the deficits in dual-task performance.
Collapse
Affiliation(s)
- Daniel Possti
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Sosnik
- Faculty of Electrical Engineering, Holon Institute of Technology (H.I.T.), Holon, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Orthopedic Surgery, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
47
|
Francisco AA, Horsthuis DJ, Popiel M, Foxe JJ, Molholm S. Atypical response inhibition and error processing in 22q11.2 Deletion Syndrome and schizophrenia: Towards neuromarkers of disease progression and risk. NEUROIMAGE-CLINICAL 2020; 27:102351. [PMID: 32731196 PMCID: PMC7390764 DOI: 10.1016/j.nicl.2020.102351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
22q11.2 deletion syndrome (also known as DiGeorge syndrome or velo-cardio-facial syndrome) is characterized by increased vulnerability to neuropsychiatric symptoms, with approximately 30% of individuals with the deletion going on to develop schizophrenia. Clinically, deficits in executive function have been noted in this population, but the underlying neural processes are not well understood. Using a Go/No-Go response inhibition task in conjunction with high-density electrophysiological recordings (EEG), we sought to investigate the behavioral and neural dynamics of inhibition of a prepotent response (a critical component of executive function) in individuals with 22q11.2DS with and without psychotic symptoms, when compared to individuals with idiopathic schizophrenia and age-matched neurotypical controls. Twenty-eight participants diagnosed with 22q11.2DS (14-35 years old; 14 with at least one psychotic symptom), 15 individuals diagnosed with schizophrenia (18-63 years old) and two neurotypical control groups (one age-matched to the 22q11.2DS sample, the other age-matched to the schizophrenia sample) participated in this study. Analyses focused on the N2 and P3 no-go responses and error-related negativity (Ne) and positivity (Pe). Atypical inhibitory processing was shown behaviorally and by significantly reduced P3, Ne, and Pe responses in 22q11.2DS and schizophrenia. Interestingly, whereas P3 was only reduced in the presence of psychotic symptoms, Ne and Pe were equally reduced in schizophrenia and 22q11.2DS, regardless of the presence of symptoms. We argue that while P3 may be a marker of disease severity, Ne and Pe might be candidate markers of risk.
Collapse
Affiliation(s)
- Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Douwe J Horsthuis
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryann Popiel
- Department of Psychiatry, Jacobi Medical Center, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA; The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, USA; The Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Ernest J. Del Monde Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
48
|
Abdallat R, Sharouf F, Button K, Al-Amri M. Dual-Task Effects on Performance of Gait and Balance in People with Knee Pain: A Systematic Scoping Review. J Clin Med 2020; 9:E1554. [PMID: 32455597 PMCID: PMC7291062 DOI: 10.3390/jcm9051554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Dual-task paradigms have been increasingly used to assess the interaction between cognitive demands and the control of balance and gait. The interaction between functional and cognitive demands can alter movement patterns and increase knee instability in individuals with knee conditions, such as knee anterior cruciate ligament (ACL) injury or osteoarthritis (OA). However, there is no consensus on the effects of dual-task on gait mechanics and balance in those individuals. This systematic scoping review aims to examine the impact of dual-task gait and standing balance on motor and cognitive performance in individuals with knee OA or ACL injury. A comprehensive search of MEDLINE, PubMed, Web of Science, and EMBASE electronic databases up until December 2019 was carried out. Inclusion criteria was limited to include dual-task studies that combined cognitive tasks performed simultaneously with gait or standing balance in individuals with knee OA or ACL injuries. In total, fifteen studies met the inclusion criteria, nine articles examined dual-task effects on balance, and six articles reported the effects of dual-task on gait. The total number of individuals included was 230 individuals with ACL injuries, and 168 individuals with knee OA. A decline in gait and balance performance during dual-task testing is present among individuals with ACL injury and/or ACL reconstruction and knee OA. Further research is required, but dual taking assessment could potentially be used to identify individuals at risk of falling or further injury and could be used to develop targeted rehabilitation protocols. A variety of outcome measures have been used across the studies included, making comparisons difficult. The authors, therefore, recommend developing a standardized set of biomechanical balance variables.
Collapse
Affiliation(s)
- Rula Abdallat
- Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, P.O. Box 330127, Zarqa 13115, Jordan;
| | - Feras Sharouf
- Brain Repair & Intracranial Neurotherapeutics (BRAIN) Unit, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK;
| | - Kate Button
- School of Healthcare Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF24 0AB, Wales, UK;
- Biomechanics and Bioengineering Centre Versus Arthritis, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Mohammad Al-Amri
- School of Healthcare Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF24 0AB, Wales, UK;
- Biomechanics and Bioengineering Centre Versus Arthritis, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
49
|
De Sanctis P, Malcolm BR, Mabie PC, Francisco AA, Mowrey WB, Joshi S, Molholm S, Foxe JJ. Mobile Brain/Body Imaging of cognitive-motor impairment in multiple sclerosis: Deriving EEG-based neuro-markers during a dual-task walking study. Clin Neurophysiol 2020; 131:1119-1128. [PMID: 32200093 DOI: 10.1016/j.clinph.2020.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Individuals with a diagnosis of multiple sclerosis (MS) often present with cognitive and motor deficits, and thus the ability to perform tasks that rely on both domains may be particularly impaired. Yet, dual-task walking studies yield mixed results. Individual variance in the ability to cope with brain insult and mobilize additional brain resources may contribute to mixed findings. METHODS To test this hypothesis, we acquired event-related potentials (ERP) in individuals with MS and healthy controls (HCs) performing a Go/NoGo task while sitting (i.e., single task) or walking (i.e., dual-task) and looked at the relationship between task related modulation of the brain response and performance. RESULTS On the Go/NoGo task the MS group showed dual-task costs when walking, whereas HCs showed a dual-task benefit. Further, whereas the HC group showed modulation of the brain response as a function of task load, this was not the case in the MS group. Analysis for the pooled sample revealed a positive correlation between load-related ERP effects and dual-task performance. CONCLUSIONS These data suggest a neurophysiological marker of cognitive-motor dysfunction in MS. SIGNIFICANCE Understanding neural processes underlying dual-task walking will help identify objective brain measurements of real-world issues and may improve assessment of MS.
Collapse
Affiliation(s)
- Pierfilippo De Sanctis
- The Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1225 Morris Park Avenue, Bronx, NY 10461, USA; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Brenda R Malcolm
- The Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1225 Morris Park Avenue, Bronx, NY 10461, USA
| | - Peter C Mabie
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana A Francisco
- The Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1225 Morris Park Avenue, Bronx, NY 10461, USA
| | - Wenzhu B Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sonja Joshi
- The Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1225 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1225 Morris Park Avenue, Bronx, NY 10461, USA; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1225 Morris Park Avenue, Bronx, NY 10461, USA; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; The Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
50
|
Gennaro F, Maino P, Kaelin-Lang A, De Bock K, de Bruin ED. Corticospinal Control of Human Locomotion as a New Determinant of Age-Related Sarcopenia: An Exploratory Study. J Clin Med 2020; 9:E720. [PMID: 32155951 PMCID: PMC7141202 DOI: 10.3390/jcm9030720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a muscle disease listed within the ICD-10 classification. Several operational definitions have been created for sarcopenia screening; however, an international consensus is lacking. The Centers for Disease Control and Prevention have recently recognized that sarcopenia detection requires improved diagnosis and screening measures. Mounting evidence hints towards changes in the corticospinal communication system where corticomuscular coherence (CMC) reflects an effective mechanism of corticospinal interaction. CMC can be assessed during locomotion by means of simultaneously measuring Electroencephalography (EEG) and Electromyography (EMG). The aim of this study was to perform sarcopenia screening in community-dwelling older adults and explore the possibility of using CMC assessed during gait to discriminate between sarcopenic and non-sarcopenic older adults. Receiver Operating Characteristic (ROC) curves showed high sensitivity, precision and accuracy of CMC assessed from EEG Cz sensor and EMG sensors located over Musculus Vastus Medialis [Cz-VM; AUC (95.0%CI): 0.98 (0.92-1.04), sensitivity: 1.00, 1-specificity: 0.89, p < 0.001] and with Musculus Biceps Femoris [Cz-BF; AUC (95.0%CI): 0.86 (0.68-1.03), sensitivity: 1.00, 1-specificity: 0.70, p < 0.001]. These muscles showed significant differences with large magnitude of effect between sarcopenic and non-sarcopenic older adults [Hedge's g (95.0%CI): 2.2 (1.3-3.1), p = 0.005 and Hedge's g (95.0%CI): 1.5 (0.7-2.2), p = 0.010; respectively]. The novelty of this exploratory investigation is the hint toward a novel possible determinant of age-related sarcopenia, derived from corticospinal control of locomotion and shown by the observed large differences in CMC when sarcopenic and non-sarcopenic older adults are compared. This, in turn, might represent in future a potential treatment target to counteract sarcopenia as well as a parameter to monitor the progression of the disease and/or the potential recovery following other treatment interventions.
Collapse
Affiliation(s)
- Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, 8093 Zurich, Switzerland; (K.D.B.); (E.D.d.B.)
| | - Paolo Maino
- Pain Management Center, Neurocenter of Southern Switzerland, Regional Hospital of Lugano, 6962 Lugano, Switzerland;
| | - Alain Kaelin-Lang
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Medical faculty, University of Bern, 3008 Bern, Switzerland
| | - Katrien De Bock
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, 8093 Zurich, Switzerland; (K.D.B.); (E.D.d.B.)
| | - Eling D. de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, 8093 Zurich, Switzerland; (K.D.B.); (E.D.d.B.)
- Department of Neurobiology, Division of Physiotherapy, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|