1
|
Wu LC, Bells S, Tseng J, Narayanan S, Arnold DL, Yeh EA, Mabbott DJ. Associations between fronto-limbic white matter connections and internalizing symptoms in pediatric demyelinating disease. Mult Scler Relat Disord 2025; 95:106335. [PMID: 39987890 DOI: 10.1016/j.msard.2025.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/13/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Children with neuroinflammatory disorders, such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein-associated disorder (MOGAD), have high rates of anxiety and depression. These symptoms may be linked to disruptions in fronto-limbic white matter (WM) tracts, including the cingulum bundle (CB), inferior fronto-occipital fasciculus (IFOF), and uncinate fasciculus (UF), which support emotional regulation. METHODS We studied 33 children with neuroinflammatory disorders and 28 healthy controls. Diffusion tensor imaging and white matter tract integrity maps were generated, focusing on WM tracts of interest (CB, IFOF, UF) and a control tract (acoustic radiation). We examined differences in WM microstructure and internalizing symptoms between high and low symptom groups. RESULTS Participants with MS (40%), MOGAD (28%), and NMOSD (25%) reported high levels of internalizing symptoms. MOGAD participants showed lower axonal water fraction compared to MS and controls. Both MS and MOGAD groups exhibited reduced intra-axonal diffusivity and increased extra-axonal diffusivity, indicating demyelination and axonal changes. No significant differences were found between high and low internalizing groups, but higher relapse rates were linked to less WM disruption in those with high internalizing symptoms. LIMITATIONS The cross-sectional design limits causal interpretations, and medical covariates may affect WM structure. CONCLUSION Neuroinflammatory disorders are linked to fronto-limbic WM changes and high internalizing symptoms. Relapse may influence WM structure and psychological resilience in this population.
Collapse
Affiliation(s)
- Liliana C Wu
- Department of Psychology, University of Toronto, Toronto, Canada; Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Sonya Bells
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada; Pediatric Neurology, Spectrum Health Helen Devos Children's Hospital, Grand Rapids, USA; Department of Pediatrics and Human Development, Michigan State University, East Lansing, USA
| | - Julie Tseng
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Sridar Narayanan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Douglas L Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - E Ann Yeh
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada; Department of Neurology, Hospital for Sick Children, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
2
|
Korbmacher M, van der Meer D, Beck D, Askeland-Gjerde DE, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Distinct Longitudinal Brain White Matter Microstructure Changes and Associated Polygenic Risk of Common Psychiatric Disorders and Alzheimer's Disease in the UK Biobank. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100323. [PMID: 39132576 PMCID: PMC11313202 DOI: 10.1016/j.bpsgos.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Daniel E. Askeland-Gjerde
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Chung S, Bacon T, Rath JF, Alivar A, Coelho S, Amorapanth P, Fieremans E, Novikov DS, Flanagan SR, Bacon JH, Lui YW. Callosal Interhemispheric Communication in Mild Traumatic Brain Injury: A Mediation Analysis on WM Microstructure Effects. AJNR Am J Neuroradiol 2024; 45:788-794. [PMID: 38637026 PMCID: PMC11288603 DOI: 10.3174/ajnr.a8213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND PURPOSE Because the corpus callosum connects the left and right hemispheres and a variety of WM bundles across the brain in complex ways, damage to the neighboring WM microstructure may specifically disrupt interhemispheric communication through the corpus callosum following mild traumatic brain injury. Here we use a mediation framework to investigate how callosal interhemispheric communication is affected by WM microstructure in mild traumatic brain injury. MATERIALS AND METHODS Multishell diffusion MR imaging was performed on 23 patients with mild traumatic brain injury within 1 month of injury and 17 healthy controls, deriving 11 diffusion metrics, including DTI, diffusional kurtosis imaging, and compartment-specific standard model parameters. Interhemispheric processing speed was assessed using the interhemispheric speed of processing task (IHSPT) by measuring the latency between word presentation to the 2 hemivisual fields and oral word articulation. Mediation analysis was performed to assess the indirect effect of neighboring WM microstructures on the relationship between the corpus callosum and IHSPT performance. In addition, we conducted a univariate correlation analysis to investigate the direct association between callosal microstructures and IHSPT performance as well as a multivariate regression analysis to jointly evaluate both callosal and neighboring WM microstructures in association with IHSPT scores for each group. RESULTS Several significant mediators in the relationships between callosal microstructure and IHSPT performance were found in healthy controls. However, patients with mild traumatic brain injury appeared to lose such normal associations when microstructural changes occurred compared with healthy controls. CONCLUSIONS This study investigates the effects of neighboring WM microstructure on callosal interhemispheric communication in healthy controls and patients with mild traumatic brain injury, highlighting that neighboring noncallosal WM microstructures are involved in callosal interhemispheric communication and information transfer. Further longitudinal studies may provide insight into the temporal dynamics of interhemispheric recovery following mild traumatic brain injury.
Collapse
Affiliation(s)
- Sohae Chung
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Tamar Bacon
- Department of Neurology (T.B., J.H.B.), NY University Grossman School of Medicine, New York, New York
| | - Joseph F Rath
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Alaleh Alivar
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Santiago Coelho
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Prin Amorapanth
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Els Fieremans
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Dmitry S Novikov
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Steven R Flanagan
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Joshua H Bacon
- Department of Neurology (T.B., J.H.B.), NY University Grossman School of Medicine, New York, New York
| | - Yvonne W Lui
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| |
Collapse
|
4
|
Shahid SS, Grecco GG, Atwood BK, Wu YC. Perturbed neurochemical and microstructural organization in a mouse model of prenatal opioid exposure: A multi-modal magnetic resonance study. PLoS One 2023; 18:e0282756. [PMID: 37471385 PMCID: PMC10358947 DOI: 10.1371/journal.pone.0282756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
Methadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8-week-old male offspring with PME (n = 7) and prenatal saline exposure (PSE) (n = 7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy (1H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VFIC) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Gregory G. Grecco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
5
|
Rasooli A, Adab HZ, Van Ruitenbeek P, Weerasekera A, Chalavi S, Cuypers K, Levin O, Dhollander T, Peeters R, Sunaert S, Mantini D, Swinnen SP. White matter and neurochemical mechanisms underlying age-related differences in motor processing speed. iScience 2023; 26:106794. [PMID: 37255665 PMCID: PMC10225899 DOI: 10.1016/j.isci.2023.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is associated with changes in the central nervous system and leads to reduced life quality. Here, we investigated the age-related differences in the CNS underlying motor performance deficits using magnetic resonance spectroscopy and diffusion MRI. MRS measured N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) concentrations in the sensorimotor and occipital cortex, whereas dMRI quantified apparent fiber density (FD) in the same voxels to evaluate white matter microstructural organization. We found that aging was associated with increased reaction time and reduced FD and NAA concentration in the sensorimotor voxel. Both FD and NAA mediated the association between age and reaction time. The NAA concentration was found to mediate the association between age and FD in the sensorimotor voxel. We propose that the age-related decrease in NAA concentration may result in reduced axonal fiber density in the sensorimotor cortex which may ultimately account for the response slowness of older participants.
Collapse
Affiliation(s)
- Amirhossein Rasooli
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Peter Van Ruitenbeek
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ronald Peeters
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Zakharova NE, Batalov AI, Pogosbekian EL, Chekhonin IV, Goryaynov SA, Bykanov AE, Tyurina AN, Galstyan SA, Nikitin PV, Fadeeva LM, Usachev DY, Pronin IN. Perifocal Zone of Brain Gliomas: Application of Diffusion Kurtosis and Perfusion MRI Values for Tumor Invasion Border Determination. Cancers (Basel) 2023; 15:2760. [PMID: 37345097 DOI: 10.3390/cancers15102760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
(1) Purpose: To determine the borders of malignant gliomas with diffusion kurtosis and perfusion MRI biomarkers. (2) Methods: In 50 high-grade glioma patients, diffusion kurtosis and pseudo-continuous arterial spin labeling (pCASL) cerebral blood flow (CBF) values were determined in contrast-enhancing area, in perifocal infiltrative edema zone, in the normal-appearing peritumoral white matter of the affected cerebral hemisphere, and in the unaffected contralateral hemisphere. Neuronavigation-guided biopsy was performed from all affected hemisphere regions. (3) Results: We showed significant differences between the DKI values in normal-appearing peritumoral white matter and unaffected contralateral hemisphere white matter. We also established significant (p < 0.05) correlations of DKI with Ki-67 labeling index and Bcl-2 expression activity in highly perfused enhancing tumor core and in perifocal infiltrative edema zone. CBF correlated with Ki-67 LI in highly perfused enhancing tumor core. One hundred percent of perifocal infiltrative edema tissue samples contained tumor cells. All glioblastoma samples expressed CD133. In the glioblastoma group, several normal-appearing white matter specimens were infiltrated by tumor cells and expressed CD133. (4) Conclusions: DKI parameters reveal changes in brain microstructure invisible on conventional MRI, e.g., possible infiltration of normal-appearing peritumoral white matter by glioma cells. Our results may be useful for plotting individual tumor invasion maps for brain glioma surgery or radiotherapy planning.
Collapse
Affiliation(s)
- Natalia E Zakharova
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Artem I Batalov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Eduard L Pogosbekian
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Ivan V Chekhonin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Sergey A Goryaynov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Andrey E Bykanov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Anastasia N Tyurina
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Suzanna A Galstyan
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Pavel V Nikitin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Lyudmila M Fadeeva
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Dmitry Yu Usachev
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Igor N Pronin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| |
Collapse
|
7
|
Shahid SS, Grecco GG, Atwood BK, Wu YC. Perturbed neurochemical and microstructural organization in a mouse model of prenatal opioid exposure: a multi-modal magnetic resonance study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529659. [PMID: 36865153 PMCID: PMC9980104 DOI: 10.1101/2023.02.23.529659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Methadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8- week-old male offspring with PME (n=7) and prenatal saline exposure (PSE) (n=7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy ( 1 H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VF IC ) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.
Collapse
|
8
|
N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI- 1H-MRS Pilot Study. Diagnostics (Basel) 2023; 13:diagnostics13040654. [PMID: 36832141 PMCID: PMC9955118 DOI: 10.3390/diagnostics13040654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
We implemented a multimodal approach to examine associations between structural and neurochemical changes that could signify neurodegenerative processes related to mild cognitive impairment (MCI). Fifty-nine older adults (60-85 years; 22 MCI) underwent whole-brain structural 3T MRI (T1W, T2W, DTI) and proton magnetic resonance spectroscopy (1H-MRS). The regions of interest (ROIs) for 1H-MRS measurements were the dorsal posterior cingulate cortex, left hippocampal cortex, left medial temporal cortex, left primary sensorimotor cortex, and right dorsolateral prefrontal cortex. The findings revealed that subjects in the MCI group showed moderate to strong positive associations between the total N-acetylaspartate to total creatine and the total N-acetylaspartate to myo-inositol ratios in the hippocampus and dorsal posterior cingulate cortex and fractional anisotropy (FA) of WM tracts crossing these regions-specifically, the left temporal tapetum, right corona radiata, and right posterior cingulate gyri. In addition, negative associations between the myo-inositol to total creatine ratio and FA of the left temporal tapetum and right posterior cingulate gyri were observed. These observations suggest that the biochemical integrity of the hippocampus and cingulate cortex is associated with a microstructural organization of ipsilateral WM tracts originating in the hippocampus. Specifically, elevated myo-inositol might be an underlying mechanism for decreased connectivity between the hippocampus and the prefrontal/cingulate cortex in MCI.
Collapse
|
9
|
Rodríguez-Nieto G, Levin O, Hermans L, Weerasekera A, Sava AC, Haghebaert A, Huybrechts A, Cuypers K, Mantini D, Himmelreich U, Swinnen SP. Organization of neurochemical interactions in young and older brains as revealed with a network approach: Evidence from proton magnetic resonance spectroscopy ( 1H-MRS). Neuroimage 2023; 266:119830. [PMID: 36566925 DOI: 10.1016/j.neuroimage.2022.119830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Aging is associated with alterations in the brain including structural and metabolic changes. Previous research has focused on neurometabolite level differences associated to age in a variety of brain regions, but the relationship among metabolites across the brain has been much less studied. Investigating these relationships can reveal underlying neurometabolic processes, their interdependency, and their progress throughout the lifespan. Using 1H-MRS, we investigated the relationship among metabolite concentrations of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-Inositol (mIns) and glutamate-glutamine complex (Glx) in seven voxel locations, i.e., bilateral sensorimotor cortex, bilateral striatum, pre-supplementary motor area, right inferior frontal gyrus and occipital cortex. These measurements were performed on 59 human participants divided in two age groups: young adults (YA: 23.2 ± 4.3; 18-34 years) and older adults (OA: 67.5 ± 3.9; 61-74 years). Our results showed age-related differences in NAA, Cho, and mIns across brain regions, suggesting the presence of neurodegeneration and altered gliosis. Moreover, associative patterns among NAA, Cho and Cr were observed across the selected brain regions, which differed between young and older adults. Whereas most of metabolite concentrations were inhomogeneous across different brain regions, Cho levels were shown to be strongly related across brain regions in both age groups. Finally, we found metabolic associations between homologous brain regions (SM1 and striatum) in the OA group, with NAA showing a significant correlation between bilateral sensorimotor cortices (SM1) and mIns levels being correlated between the bilateral striata. We posit that a network perspective provides important insights regarding the potential interactions among neurochemicals underlying metabolic processes at a local and global level and their relationship with aging.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium.
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Lize Hermans
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Akila Weerasekera
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Biomedical MRI Unit, Group Biomedical Sciences, KU Leuven, Belgium; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Astrid Haghebaert
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Astrid Huybrechts
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Koen Cuypers
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; REVAL Research Institute, Hasselt University, Diepenbeek, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Group Biomedical Sciences, KU Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| |
Collapse
|
10
|
Levin O, Vints WAJ, Ziv G, Katkutė G, Kušleikienė S, Valatkevičienė K, Sheoran S, Drozdova-Statkevičienė M, Gleiznienė R, Pääsuke M, Dudonienė V, Himmelreich U, Česnaitienė VJ, Masiulis N. Neurometabolic correlates of posturography in normal aging and older adults with mild cognitive impairment: Evidence from a 1H-MRS study. Neuroimage Clin 2023; 37:103304. [PMID: 36580713 PMCID: PMC9827054 DOI: 10.1016/j.nicl.2022.103304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) holds promise for revealing and understanding neurodegenerative processes associated with cognitive and functional impairments in aging. In the present study, we examined the neurometabolic correlates of balance performance in 42 cognitively intact older adults (healthy controls - HC) and 26 older individuals that were diagnosed with mild cognitive impairment (MCI). Neurometabolite ratios of total N-acetyl aspartate (tNAA), glutamate-glutamine complex (Glx), total choline (tCho) and myo-inositol (mIns) relative to total creatine (tCr) were assessed using single voxel 1H-MRS in four different brain regions. Regions of interest were the left hippocampus (HPC), dorsal posterior cingulate cortex (dPCC), left sensorimotor cortex (SM1), and right dorsolateral prefrontal cortex (dlPFC). Center-of-pressure velocity (Vcop) and dual task effect (DTE) were used as measures of balance performance. Results indicated no significant group differences in neurometabolite ratios and balance performance measures. However, our observations revealed that higher tCho/tCr and mIns/tCr in hippocampus and dPCC were generic predictors of worse balance performance, suggesting that neuroinflammatory processes in these regions might be a driving factor for impaired balance performance in aging. Further, we found that higher tNAA/tCr and mIns/tCr and lower Glx/tCr in left SM1 were predictors of better balance performance in MCI but not in HC. The latter observation hints at the possibility that individuals with MCI may upregulate balance control through recruitment of sensorimotor pathways.
Collapse
Affiliation(s)
- Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium
| | - Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, The Netherlands.
| | - Gal Ziv
- The Academic College at Wingate, Netanya 4290200, Israel
| | - Gintarė Katkutė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Kristina Valatkevičienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | | | - Rymantė Gleiznienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mati Pääsuke
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Estonia
| | - Vilma Dudonienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Vida J Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Gozdas E, Hinkley L, Fingerhut H, Dacorro L, Gu M, Sacchet MD, Hurd R, Hosseini SMH. 1H-MRS neurometabolites and associations with neurite microstructures and cognitive functions in amnestic mild cognitive impairment. Neuroimage Clin 2022; 36:103159. [PMID: 36063758 PMCID: PMC9450331 DOI: 10.1016/j.nicl.2022.103159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) pathogenesis is associated with alterations in neurometabolites and cortical microstructure. However, our understanding of alterations in neurochemicals in the prefrontal cortex and their relationship with changes in cortical microstructure in AD remains unclear. Here, we studied the levels of neurometabolites in the left dorsolateral prefrontal cortex (DLPFC) in healthy older adults and patients with amnestic Mild Cognitive Impairments (aMCI) using single-voxel proton-magnetic resonance spectroscopy (1H-MRS). N-acetyl aspartate (NAA), glutamate+glutamate (Glx), Myo-inositol (mI), and γ-aminobutyric acid (GABA) brain metabolite levels were quantified relative to total creatine (tCr = Cr + PCr). aMCI had significantly decreased NAA/tCr, Glx/tCr, NAA/mI, and increased mI/tCr levels compared with healthy controls. Further, we leveraged advanced diffusion MRI to extract neurite properties in the left DLPFC and found a significant positive correlation between NAA/tCr, related to neuronal intracellular compartment, and neurite density (ICVF, intracellular volume fraction), and a negative correlation between mI/tCr and neurite orientation (ODI) only in healthy older adults. These data suggest a potential decoupling in the relationship between neurite microstructures and NAA and mI concentrations in DLPFC in the early stage of AD. Together, our results confirm altered DLPFC neurometabolites in prodromal phase of AD and provide unique evidence regarding the imbalance in the association between neurometabolites and neurite microstructure in early stage of AD.
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Lauren Hinkley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah Fingerhut
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren Dacorro
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng Gu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Ralph Hurd
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
13
|
Chung S, Chen J, Li T, Wang Y, Lui YW. Investigating Brain White Matter in Football Players with and without Concussion Using a Biophysical Model from Multishell Diffusion MRI. AJNR Am J Neuroradiol 2022; 43:823-828. [PMID: 35589140 DOI: 10.3174/ajnr.a7522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There have been growing concerns around potential risks related to sports-related concussion and contact sport exposure to repetitive head impacts in young athletes. Here we investigate WM microstructural differences between collegiate football players with and without sports-related concussion. MATERIALS AND METHODS The study included 78 collegiate athletes (24 football players with sports-related concussion, 26 football players with repetitive head impacts, and 28 non-contact-sport control athletes), available through the Federal Interagency Traumatic Brain Injury Research registry. Diffusion metrics of diffusion tensor/kurtosis imaging and WM tract integrity were calculated. Tract-Based Spatial Statistics and post hoc ROI analyses were performed to test group differences. RESULTS Significantly increased axial kurtosis in those with sports-related concussion compared with controls was observed diffusely across the whole-brain WM, and some focal areas demonstrated significantly higher mean kurtosis and extra-axonal axial diffusivity in sports-related concussion. The extent of significantly different WM regions decreased across time points and remained present primarily in the corpus callosum. Similar differences in axial kurtosis were found between the repetitive head impact and control groups. Other significant differences were seen at unrestricted return-to-play with lower radial kurtosis and intra-axonal diffusivity in those with sports-related concussion compared with the controls, mainly restricted to the posterior callosum. CONCLUSIONS This study highlights the fact that there are differences in diffusion microstructure measures that are present not only between football players with sports-related injuries and controls, but that there are also measurable differences between football players with repetitive head impacts and controls. This work reinforces previous work showing that the corpus callosum is specifically implicated in sports-related concussion and also suggests this to be true for repetitive head impacts.
Collapse
Affiliation(s)
- S Chung
- From the Department of Radiology (S.C., Y.W.L.), Center for Advanced Imaging Innovation and Research .,Department of Radiology (S.C., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, New York
| | - J Chen
- Department of Electrical and Computer Engineering (J.C., T.L., Y.W.), New York University Tandon School of Engineering, Brooklyn, New York
| | - T Li
- Department of Electrical and Computer Engineering (J.C., T.L., Y.W.), New York University Tandon School of Engineering, Brooklyn, New York
| | - Y Wang
- Department of Electrical and Computer Engineering (J.C., T.L., Y.W.), New York University Tandon School of Engineering, Brooklyn, New York
| | - Y W Lui
- From the Department of Radiology (S.C., Y.W.L.), Center for Advanced Imaging Innovation and Research.,Department of Radiology (S.C., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
14
|
Zhou Z, Tong Q, Zhang L, Ding Q, Lu H, Jonkman LE, Yao J, He H, Zhu K, Zhong J. Evaluation of the diffusion MRI white matter tract integrity model using myelin histology and Monte-Carlo simulations. Neuroimage 2020; 223:117313. [PMID: 32882384 DOI: 10.1016/j.neuroimage.2020.117313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Quantitative evaluation of brain myelination has drawn considerable attention. Conventional diffusion-based magnetic resonance imaging models, including diffusion tensor imaging and diffusion kurtosis imaging (DKI),1 have been used to infer the microstructure and its changes in neurological diseases. White matter tract integrity (WMTI) was proposed as a biophysical model to relate the DKI-derived metrics to the underlying microstructure. Although the model has been validated on ex vivo animal brains, it was not well evaluated with ex vivo human brains. In this study, histological samples (namely corpus callosum) from postmortem human brains have been investigated based on WMTI analyses on a clinical 3T scanner and comparisons with gold standard myelin staining in proteolipid protein and Luxol fast blue. In addition, Monte Carlo simulations were conducted to link changes from ex vivo to in vivo conditions based on the microscale parameters of water diffusivity and permeability. The results show that WMTI metrics, including axonal water fraction AWF, radial extra-axonal diffusivity De⊥, and intra-axonal diffusivity Dawere needed to characterize myelin content alterations. Thus, WMTI model metrics are shown to be promising candidates as sensitive biomarkers of demyelination.
Collapse
Affiliation(s)
- Zihan Zhou
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Lei Zhang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuping Ding
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Hui Lu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Junye Yao
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China.
| | - Keqing Zhu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China; Department of Imaging Sciences, University of Rochester, United States
| |
Collapse
|
15
|
Weerasekera A, Levin O, Clauwaert A, Heise KF, Hermans L, Peeters R, Mantini D, Cuypers K, Leunissen I, Himmelreich U, Swinnen SP. Neurometabolic Correlates of Reactive and Proactive Motor Inhibition in Young and Older Adults: Evidence from Multiple Regional 1H-MR Spectroscopy. Cereb Cortex Commun 2020; 1:tgaa028. [PMID: 34296102 PMCID: PMC8152832 DOI: 10.1093/texcom/tgaa028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 11/13/2022] Open
Abstract
Suboptimal inhibitory control is a major factor contributing to motor/cognitive deficits in older age and pathology. Here, we provide novel insights into the neurochemical biomarkers of inhibitory control in healthy young and older adults and highlight putative neurometabolic correlates of deficient inhibitory functions in normal aging. Age-related alterations in levels of glutamate–glutamine complex (Glx), N-acetylaspartate (NAA), choline (Cho), and myo-inositol (mIns) were assessed in the right inferior frontal gyrus (RIFG), pre-supplementary motor area (preSMA), bilateral sensorimotor cortex (SM1), bilateral striatum (STR), and occipital cortex (OCC) with proton magnetic resonance spectroscopy (1H-MRS). Data were collected from 30 young (age range 18–34 years) and 29 older (age range 60–74 years) adults. Associations between age-related changes in the levels of these metabolites and performance measures or reactive/proactive inhibition were examined for each age group. Glx levels in the right striatum and preSMA were associated with more efficient proactive inhibition in young adults but were not predictive for reactive inhibition performance. Higher NAA/mIns ratios in the preSMA and RIFG and lower mIns levels in the OCC were associated with better deployment of proactive and reactive inhibition in older adults. Overall, these findings suggest that altered regional concentrations of NAA and mIns constitute potential biomarkers of suboptimal inhibitory control in aging.
Collapse
Affiliation(s)
- Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Amanda Clauwaert
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Lize Hermans
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals KU Leuven, 3000, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Inge Leunissen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| |
Collapse
|
16
|
Zakharova NE, Potapov AA, Pronin IN, Danilov GV, Aleksandrova EV, Fadeeva LM, Pogosbekyan EL, Batalov AI, Goryaynov SA. [Diffusion kurtosis imaging in diffuse axonal injury]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2019; 83:5-16. [PMID: 31339493 DOI: 10.17116/neiro2019830315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diffuse axonal injury (DAI) is one of the most severe traumatic brain injuries. The availability of neuroimaging biomarkers for monitoring expansion of traumatic brain injury in vivo is a topical issue. PURPOSE To evaluate novel neuroimaging biomarkers for monitoring brain injury using diffusion kurtosis imaging (DKI) in patients with severe diffuse axonal injury. MATERIAL AND METHODS DKI data of 12 patients with severe DAI (11 patients with a Glasgow Coma Scale (GCS) score of ≤ 8 and 1 patient with a GCS score of 9) and 8 healthy volunteers (control group) were compared. MRI examination was performed 5 to 19 days after injury; 7 of the 12 patients underwent repeated MRI examinations. We assessed the following parameters: mean, axial, and radial kurtosis (MK, AK, RK, respectively) and kurtosis anisotropy (KA) of the white and gray matter; fractional anisotropy (FA), axonal water fraction (AWF), axial and radial extra-axonal diffusion (AxEAD and RadEAD, respectively), and tortuosity (TORT) of the extra-axonal space) of the white matter. Regions of interest (ROIs) were set bilaterally in the centrum semiovale, genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, putamen, thalamus, midbrain, and pons. RESULTS A significant reduction in KA (p<0.05) in most of ROIs set on the white matter was revealed. AK was increased (p<0.05) not only in the white matter but also in the putamen and thalamus. A significant reduction in MK with time was observed when the first and second DKI data were compared. AWF was reduced in the centrum semiovale and peduncles. The TORT parameter was decreased (p<0.05) in the majority of ROIs in the white matter, with the most pronounced changes occurring in the genu and splenium of the corpus callosum. CONCLUSION DKI provides novel data about microstructural injury in DAI and improves our knowledge of brain trauma pathophysiology. DKI parameters should be considered as potential biomarkers of brain injury and potential predictors of the outcome.
Collapse
Affiliation(s)
| | - A A Potapov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - G V Danilov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - L M Fadeeva
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
17
|
Chung S, Fieremans E, Wang X, Kucukboyaci NE, Morton CJ, Babb J, Amorapanth P, Foo FYA, Novikov DS, Flanagan SR, Rath JF, Lui YW. White Matter Tract Integrity: An Indicator of Axonal Pathology after Mild Traumatic Brain Injury. J Neurotrauma 2019; 35:1015-1020. [PMID: 29239261 DOI: 10.1089/neu.2017.5320] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We seek to elucidate the underlying pathophysiology of injury sustained after mild traumatic brain injury (mTBI) using multi-shell diffusion magnetic resonance imaging, deriving compartment-specific white matter tract integrity (WMTI) metrics. WMTI allows a more biophysical interpretation of white matter (WM) changes by describing microstructural characteristics in both intra- and extra-axonal environments. Thirty-two patients with mTBI within 30 days of injury and 21 age- and sex-matched controls were imaged on a 3 Tesla magnetic resonance scanner. Multi-shell diffusion acquisition was performed with five b-values (250-2500 sec/mm2) along 6-60 diffusion encoding directions. Tract-based spatial statistics (TBSS) was used with family-wise error (FWE) correction for multiple comparisons. TBSS results demonstrated focally lower intra-axonal diffusivity (Daxon) in mTBI patients in the splenium of the corpus callosum (sCC; p < 0.05, FWE-corrected). The area under the curve value for Daxon was 0.76 with a low sensitivity of 46.9% but 100% specificity. These results indicate that Daxon may be a useful imaging biomarker highly specific for mTBI-related WM injury. The observed decrease in Daxon suggests restriction of the diffusion along the axons occurring shortly after injury.
Collapse
Affiliation(s)
- Sohae Chung
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Els Fieremans
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Xiuyuan Wang
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Nuri E Kucukboyaci
- 3 Department of Rehabilitation Medicine, New York University School of Medicine , New York, New York
| | - Charles J Morton
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - James Babb
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Prin Amorapanth
- 3 Department of Rehabilitation Medicine, New York University School of Medicine , New York, New York
| | - Farng-Yang A Foo
- 4 Department of Neurology, New York University Langone Health , New York, New York
| | - Dmitry S Novikov
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Steven R Flanagan
- 3 Department of Rehabilitation Medicine, New York University School of Medicine , New York, New York
| | - Joseph F Rath
- 3 Department of Rehabilitation Medicine, New York University School of Medicine , New York, New York
| | - Yvonne W Lui
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| |
Collapse
|
18
|
Levin O, Weerasekera A, King BR, Heise KF, Sima DM, Chalavi S, Maes C, Peeters R, Sunaert S, Cuypers K, Van Huffel S, Mantini D, Himmelreich U, Swinnen SP. Sensorimotor cortex neurometabolite levels as correlate of motor performance in normal aging: evidence from a 1H-MRS study. Neuroimage 2019; 202:116050. [PMID: 31349070 DOI: 10.1016/j.neuroimage.2019.116050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with gradual alterations in the neurochemical characteristics of the brain, which can be assessed in-vivo with proton-magnetic resonance spectroscopy (1H-MRS). However, the impact of these age-related neurochemical changes on functional motor behavior is still poorly understood. Here, we address this knowledge gap and specifically focus on the neurochemical integrity of the left sensorimotor cortex (SM1) and the occipital lobe (OCC), as both regions are main nodes of the visuomotor network underlying bimanual control. 1H-MRS data and performance on a set of bimanual tasks were collected from a lifespan (20-75 years) sample of 86 healthy adults. Results indicated that aging was accompanied by decreased levels of N-acetylaspartate (NAA), glutamate-glutamine (Glx), creatine + phosphocreatine (Cr) and myo-inositol (mI) in both regions, and decreased Choline (Cho) in the OCC region. Lower NAA and Glx levels in the SM1 and lower NAA levels in the OCC were related to poorer performance on a visuomotor bimanual coordination task, suggesting that NAA could serve as a potential biomarker for the integrity of the motor system supporting bimanual control. In addition, lower NAA, Glx, and mI levels in the SM1 were found to be correlates of poorer dexterous performance on a bimanual dexterity task. These findings highlight the role for 1H-MRS to study neurochemical correlates of motor performance across the adult lifespan.
Collapse
Affiliation(s)
- Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium.
| | - Akila Weerasekera
- Biomedical MRI Unit, Department of Imaging & Pathology, Group Biomedical Sciences, KU Leuven, Belgium
| | - Bradley R King
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Kirstin F Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | | | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Celine Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, UZ Gasthuisberg, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, UZ Gasthuisberg, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, B-3590, Diepenbeek, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging & Pathology, Group Biomedical Sciences, KU Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
19
|
Osier ND, Ziari M, Puccio AM, Poloyac S, Okonkwo DO, Minnigh MB, Beers SR, Conley YP. Elevated cerebrospinal fluid concentrations of N-acetylaspartate correlate with poor outcome in a pilot study of severe brain trauma. Brain Inj 2019; 33:1364-1371. [PMID: 31305157 PMCID: PMC6675639 DOI: 10.1080/02699052.2019.1641743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
Abstract
Primary objective: Examine the correlation between acute cerebrospinal fluid (CSF) levels of N-acetylaspartate (NAA) and injury severity upon admission in addition to long-term functional outcomes of severe traumatic brain injury (TBI). Design and rationale: This exploratory study assessed CSF NAA levels in the first four days after severe TBI, and correlated these findings with Glasgow Coma Scale (GCS) score and long-term outcomes at 3, 6, 12, and 24 months post-injury. Methods: CSF was collected after passive drainage via an indwelling ventriculostomy placed as standard of care in a total of 28 people with severe TBI. NAA levels were assayed using triple quadrupole mass spectrometry. Functional outcomes were assessed using the Glasgow Outcomes Scale (GOS) and Disability Rating Scale (DRS). Results: In this pilot study, better functional outcomes, assessed using the GOS and DRS, were found in individuals with lower acute CSF NAA levels after TBI. Key findings were that average NAA level was associated with GCS (p = .02), and GOS at 3 (p = .01), 6 (p = .04), 12 (p = .007), and 24 months (p = .002). Implications: The results of this study add to a growing body of neuroimaging evidence that raw NAA values are reduced and variable after TBI, potentially impacting patient outcomes, warranting additional exploration into this finding. This line of inquiry could lead to improved diagnosis and prognosis in patients with TBI.
Collapse
Affiliation(s)
- Nicole D Osier
- a School of Nursing, University of Texas at Austin , Austin , Texas , USA
- b Department of Neurology, University of Texas at Austin , Austin , Texas , USA
| | - Melody Ziari
- c College of Natural Sciences, University of Texas at Austin , Austin , Texas , USA
| | - Ava M Puccio
- d Department of Neurological Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Samuel Poloyac
- e School of Pharmacy, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - David O Okonkwo
- d Department of Neurological Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Margaret B Minnigh
- e School of Pharmacy, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Sue R Beers
- f Department of Psychiatry, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Yvette P Conley
- g School of Nursing, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
- h Department of Human Genetics, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
20
|
Novikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR IN BIOMEDICINE 2019; 32:e3998. [PMID: 30321478 PMCID: PMC6481929 DOI: 10.1002/nbm.3998] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along three major avenues. The first avenue focusses on transient, or time-dependent, effects in diffusion. These effects signify the gradual coarse-graining of tissue structure, which occurs qualitatively differently in different brain tissue compartments. We show that transient effects contain information about the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, as well as the degree of structural disorder along the neurites. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple nonexchanging anisotropic Gaussian components. Here, the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook on future directions that could open exciting possibilities for designing quantitative markers of tissue physiology and pathology, based on methods of studying mesoscopic transport in disordered systems.
Collapse
Affiliation(s)
- Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Sune N. Jespersen
- CFIN/MINDLab, Department of Clinical Medicine and Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Valerij G. Kiselev
- Medical Physics, Deptartment of Radiology, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
21
|
Lawrence TP, Steel A, Ezra M, Speirs M, Pretorius PM, Douaud G, Sotiropoulos S, Cadoux-Hudson T, Emir UE, Voets NL. MRS and DTI evidence of progressive posterior cingulate cortex and corpus callosum injury in the hyper-acute phase after Traumatic Brain Injury. Brain Inj 2019; 33:854-868. [PMID: 30848964 PMCID: PMC6619394 DOI: 10.1080/02699052.2019.1584332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The posterior cingulate cortex (PCC) and corpus callosum (CC) are susceptible to trauma, but injury often evades detection. PCC Metabolic disruption may predict CC white matter tract injury and the secondary cascade responsible for progression. While the time frame for the secondary cascade remains unclear in humans, the first 24 h (hyper-acute phase) are crucial for life-saving interventions. Objectives: To test whether Magnetic Resonance Imaging (MRI) markers are detectable in the hyper-acute phase and progress after traumatic brain injury (TBI) and whether alterations in these parameters reflect injury severity. Methods: Spectroscopic and diffusion-weighted MRI data were collected in 18 patients with TBI (within 24 h and repeated 7–15 days following injury) and 18 healthy controls (scanned once). Results: Within 24 h of TBI N-acetylaspartate was reduced (F = 11.43, p = 0.002) and choline increased (F = 10.67, p = 0.003), the latter driven by moderate-severe injury (F = 5.54, p = 0.03). Alterations in fractional anisotropy (FA) and axial diffusivity (AD) progressed between the two time-points in the splenium of the CC (p = 0.029 and p = 0.013). Gradual reductions in FA correlated with progressive increases in choline (p = 0.029). Conclusions: Metabolic disruption and structural injury can be detected within hours of trauma. Metabolic and diffusion parameters allow identification of severity and provide evidence of injury progression.
Collapse
Affiliation(s)
- Tim P Lawrence
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Adam Steel
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,c Laboratory of Brain and Cognition , National Institute of Mental Health, National Institutes of Health , Bethesda , MD , USA
| | - Martyn Ezra
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom
| | - Mhairi Speirs
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Pieter M Pretorius
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Gwenaelle Douaud
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom
| | - Stamatios Sotiropoulos
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,d Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham , Nottingham , UK.,e National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre , Nottingham , UK
| | - Tom Cadoux-Hudson
- b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| | - Uzay E Emir
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,f School of Health Sciences , Purdue University , West Lafayette , IN , USA
| | - Natalie L Voets
- a FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , United Kingdom.,b Department of Neuroscience , Oxford University Hospitals NHS Foundation Trust , Oxford , United Kingdom
| |
Collapse
|
22
|
Braeckman K, Descamps B, Pieters L, Vral A, Caeyenberghs K, Vanhove C. Dynamic changes in hippocampal diffusion and kurtosis metrics following experimental mTBI correlate with glial reactivity. NEUROIMAGE-CLINICAL 2019; 21:101669. [PMID: 30658945 PMCID: PMC6412089 DOI: 10.1016/j.nicl.2019.101669] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/05/2023]
Abstract
Diffusion magnetic resonance imaging biomarkers can provide quantifiable information of the brain tissue after a mild traumatic brain injury (mTBI). However, the commonly applied diffusion tensor imaging (DTI) model is not very specific to changes in the underlying cellular structures. To overcome these limitations, other diffusion models have recently emerged to provide a more complete view on the damage profile following TBI. In this study, we investigated longitudinal changes in advanced diffusion metrics following experimental mTBI, utilising three different diffusion models in a rat model of mTBI, including DTI, diffusion kurtosis imaging and a white matter model. Moreover, we investigated the association between the diffusion metrics with histological markers, including glial fibrillary acidic protein (GFAP), neurofilaments and synaptophysin in order to investigate specificity. Our results revealed significant decreases in mean diffusivity in the hippocampus and radial diffusivity and radial extra axonal diffusivity (RadEAD) in the cingulum one week post injury. Furthermore, correlation analysis showed that increased values of fractional anisotropy one day post injury in the hippocampus was highly correlated with GFAP reactivity three months post injury. Additionally, we observed a positive correlation between GFAP on one hand and the kurtosis parameters in the hippocampus on the other hand three months post injury. This result indicated that prolonged glial activation three months post injury is related to higher kurtosis values at later time points. In conclusion, our findings point out to the possible role of kurtosis metrics as well as metrics from the white matter model as prognostic biomarker to monitor prolonged glial reactivity and inflammatory responses after a mTBI not only at early timepoints but also several months after injury. Advanced diffusion metrics show longitudinal changes following mTBI Radial diffusivity (RD) and radial extra-axonal diffusivity ↓ in the cingulum Mean diffusivity ↓ in the hippocampus In the cingulum RD is continuously decreased until three months post injury Glial activity correlates with fractional anisotropy in hippocampus
Collapse
Affiliation(s)
- Kim Braeckman
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| | - Benedicte Descamps
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| | - Leen Pieters
- Department of Human Structure and Repair, UGent, Ghent, Belgium.
| | - Anne Vral
- Department of Human Structure and Repair, UGent, Ghent, Belgium.
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group, UGent, Ghent, Belgium.
| |
Collapse
|
23
|
Microstructural imaging of human neocortex in vivo. Neuroimage 2018; 182:184-206. [DOI: 10.1016/j.neuroimage.2018.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
|
24
|
Benitez A, Jensen JH, Falangola MF, Nietert PJ, Helpern JA. Modeling white matter tract integrity in aging with diffusional kurtosis imaging. Neurobiol Aging 2018; 70:265-275. [PMID: 30055412 PMCID: PMC6195210 DOI: 10.1016/j.neurobiolaging.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023]
Abstract
Myelin breakdown and neural fiber loss occur in aging. This study used white matter tract integrity metrics derived from biophysical modeling using Diffusional Kurtosis Imaging to assess loss of myelin (i.e., extraaxonal diffusivity, radial direction, De,⊥) and axonal density (i.e., axonal water fraction) in cognitively unimpaired older adults. Tract-based spatial statistics and region of interest analyses sought to identify ontogenic differences and age-related changes in white matter tracts using cross-sectional and longitudinal data analyzed with general linear and mixed-effects models. In addition to pure diffusion parameters (i.e., fractional anisotropy, mean diffusivity, mean kurtosis), we found that white matter tract integrity metrics significantly differentiated early- from late-myelinating tracts, correlated with age in spatially distinct regions, and identified primarily extraaxonal changes over time. Percent metric changes were |0.3-0.9|% and |0.0-1.9|% per year using cross-sectional data and longitudinal data, respectively. There was accelerated decline in some late- versus early-myelinating tracts in older age. These results demonstrate that these metrics may inform further study of the transition from age-related changes to neurodegenerative decline.
Collapse
Affiliation(s)
- Andreana Benitez
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Fatima Falangola
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
25
|
Chung S, Fieremans E, Kucukboyaci NE, Wang X, Morton CJ, Novikov DS, Rath JF, Lui YW. Working Memory And Brain Tissue Microstructure: White Matter Tract Integrity Based On Multi-Shell Diffusion MRI. Sci Rep 2018; 8:3175. [PMID: 29453439 PMCID: PMC5816650 DOI: 10.1038/s41598-018-21428-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 02/05/2018] [Indexed: 11/30/2022] Open
Abstract
Working memory is a complex cognitive process at the intersection of sensory processing, learning, and short-term memory and also has a general executive attention component. Impaired working memory is associated with a range of neurological and psychiatric disorders, but very little is known about how working memory relates to underlying white matter (WM) microstructure. In this study, we investigate the association between WM microstructure and performance on working memory tasks in healthy adults (right-handed, native English speakers). We combine compartment specific WM tract integrity (WMTI) metrics derived from multi-shell diffusion MRI as well as diffusion tensor/kurtosis imaging (DTI/DKI) metrics with Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) subtests tapping auditory working memory. WMTI is a novel tool that helps us describe the microstructural characteristics in both the intra- and extra-axonal environments of WM such as axonal water fraction (AWF), intra-axonal diffusivity, extra-axonal axial and radial diffusivities, allowing a more biophysical interpretation of WM changes. We demonstrate significant positive correlations between AWF and letter-number sequencing (LNS), suggesting that higher AWF with better performance on complex, more demanding auditory working memory tasks goes along with greater axonal volume and greater myelination in specific regions, causing efficient and faster information process.
Collapse
Affiliation(s)
- Sohae Chung
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | - Els Fieremans
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Xiuyuan Wang
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | - Charles J Morton
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | - Dmitry S Novikov
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | - Joseph F Rath
- Department of Rehabilitation Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Yvonne W Lui
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
26
|
|
27
|
|
28
|
Distinguishing neuronal from astrocytic subcellular microstructures using in vivo Double Diffusion Encoded 1H MRS at 21.1 T. PLoS One 2017; 12:e0185232. [PMID: 28968410 PMCID: PMC5624579 DOI: 10.1371/journal.pone.0185232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/09/2017] [Indexed: 12/27/2022] Open
Abstract
Measuring cellular microstructures non-invasively and achieving specificity towards a cell-type population within an interrogated in vivo tissue, remains an outstanding challenge in brain research. Magnetic Resonance Spectroscopy (MRS) provides an opportunity to achieve cellular specificity via the spectral resolution of metabolites such as N-Acetylaspartate (NAA) and myo-Inositol (mI), which are considered neuronal and astrocytic markers, respectively. Yet the information typically obtained with MRS describes metabolic concentrations, diffusion coefficients or relaxation rates rather than microstructures. Understanding how these metabolites are compartmentalized is a challenging but important goal, which so far has been mainly addressed using diffusion models. Here, we present direct in vivo evidence for the confinement of NAA and mI within sub-cellular components, namely, the randomly oriented process of neurons and astrocytes, respectively. Our approach applied Relaxation Enhanced MRS at ultrahigh (21.1 T) field, and used its high 1H sensitivity to measure restricted diffusion correlations for NAA and mI using a Double Diffusion Encoding (DDE) filter. While very low macroscopic anisotropy was revealed by spatially localized Diffusion Tensor Spectroscopy, DDE displayed characteristic amplitude modulations reporting on confinements in otherwise randomly oriented anisotropic microstructures for both metabolites. This implies that for the chosen set of parameters, the DDE measurements had a biased sensitivity towards NAA and mI sited in the more confined environments of neurites and astrocytic branches, than in the cell somata. These measurements thus provide intrinsic diffusivities and compartment diameters, and revealed subcellular neuronal and astrocytic morphologies in normal in vivo rat brains. The relevance of these measurements towards human applications—which could in turn help understand CNS plasticity as well as diagnose brain diseases—is discussed.
Collapse
|
29
|
Tao C, Hu X, Li H, You C. White Matter Injury after Intracerebral Hemorrhage: Pathophysiology and Therapeutic Strategies. Front Hum Neurosci 2017; 11:422. [PMID: 28890692 PMCID: PMC5575148 DOI: 10.3389/fnhum.2017.00422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/04/2017] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for 10%–30% of all types of stroke. Bleeding within the brain parenchyma causes gray matter (GM) destruction as well as proximal or distal white matter (WM) injury (WMI) due to complex pathophysiological mechanisms. Because WM has a distinct cellular architecture, blood supply pattern and corresponding function, and its response to stroke may vary from that of GM, a better understanding of the characteristics of WMI following ICH is essential and may shed new light on treatment options. Current evidence using histological, radiological and chemical biomarkers clearly confirms the spatio-temporal distribution of WMI post- ICH. Although certain types of pathological damage such as inflammatory, oxidative and neuro-excitotoxic injury to WM have been identified, the exact molecular mechanisms remain unclear. In this review article, we briefly describe the constitution and physiological function of brain WM, summarize evidence regarding WMI, and focus on the underlying pathophysiological mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Chuanyuan Tao
- Stroke Clinical Research Unit, Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Xin Hu
- Stroke Clinical Research Unit, Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Hao Li
- Stroke Clinical Research Unit, Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Chao You
- Stroke Clinical Research Unit, Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu, China
| |
Collapse
|
30
|
Narayana PA. White matter changes in patients with mild traumatic brain injury: MRI perspective. Concussion 2017; 2:CNC35. [PMID: 30202576 PMCID: PMC6093760 DOI: 10.2217/cnc-2016-0028] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
This review focuses on white matter (WM) changes in mild traumatic brain injury (mTBI) as assessed by multimodal MRI. All the peer reviewed publications on WM changes in mTBI from January 2011 through September 2016 are included in this review. This review is organized as follows: introduction to mTBI, the basics of multimodal MRI techniques that are potentially useful for probing the WM integrity, summary and critical evaluation of the published literature on the application of multimodal MRI techniques to assess the changes of WM in mTBI, and correlation of MRI measures with behavioral deficits. The MRI-pathology correlation studies based on preclinical models of mTBI are also reviewed. Finally, the author's perspective of future research directions is described.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic & Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
31
|
A voxel-based meta-analysis of diffusion tensor imaging in mild traumatic brain injury. Neurosci Biobehav Rev 2016; 66:119-26. [PMID: 27133211 DOI: 10.1016/j.neubiorev.2016.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022]
Abstract
Microstructural damage to white matter and resultant abnormal structural connectivity are a potential underlying pathophysiological mechanism of mild traumatic brain injury (mTBI). Many Tract-Based Spatial Statics studies have investigated the pathophysiology of mTBI, but they yielded inconsistent results potentially due to insufficient statistical power in spite of methodological homogeneity. We used anisotropic effect size signed differential mapping (AES-SDM) to integrate previous studies that recruited patients without a psychiatric history. AES-SDM revealed that fractional anisotropy values were significantly lower in mTBI patients than in control in three clusters. The peak of the largest cluster was in the left thalamus and the cluster extended to the splenium of the corpus callosum and to the anterior thalamic radiation. The second largest cluster was situated in the left forceps minor, and the third largest cluster was in the right superior longitudinal fasciculus III. These results suggest that the pathophysiology of mTBI includes abnormal structural connectivity between the thalamus and the prefrontal cortex, and abnormal intra- and inter-hemispheric structural connectivity involving the prefrontal cortex.
Collapse
|
32
|
Quantification of normal-appearing white matter tract integrity in multiple sclerosis: a diffusion kurtosis imaging study. J Neurol 2016; 263:1146-55. [PMID: 27094571 DOI: 10.1007/s00415-016-8118-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
Abstract
Our aim was to characterize the nature and extent of pathological changes in the normal-appearing white matter (NAWM) of patients with multiple sclerosis (MS) using novel diffusion kurtosis imaging-derived white matter tract integrity (WMTI) metrics and to investigate the association between these WMTI metrics and clinical parameters. Thirty-two patients with relapsing-remitting MS and 19 age- and gender-matched healthy controls underwent MRI and neurological examination. Maps of mean diffusivity, fractional anisotropy and WMTI metrics (intra-axonal diffusivity, axonal water fraction, tortuosity and axial and radial extra-axonal diffusivity) were created. Tract-based spatial statistics analysis was performed to assess for differences in the NAWM between patients and controls. A region of interest analysis of the corpus callosum was also performed to assess for group differences and to evaluate correlations between WMTI metrics and measures of disease severity. Mean diffusivity and radial extra-axonal diffusivity were significantly increased while fractional anisotropy, axonal water fraction, intra-axonal diffusivity and tortuosity were decreased in MS patients compared with controls (p values ranging from <0.001 to <0.05). Axonal water fraction in the corpus callosum was significantly associated with the expanded disability status scale score (ρ = -0.39, p = 0.035). With the exception of the axial extra-axonal diffusivity, all metrics were correlated with the symbol digits modality test score (p values ranging from 0.001 to <0.05). WMTI metrics are thus sensitive to changes in the NAWM of MS patients and might provide a more pathologically specific, clinically meaningful and practical complement to standard diffusion tensor imaging-derived metrics.
Collapse
|
33
|
Jelescu IO, Zurek M, Winters KV, Veraart J, Rajaratnam A, Kim NS, Babb JS, Shepherd TM, Novikov DS, Kim SG, Fieremans E. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy. Neuroimage 2016; 132:104-114. [PMID: 26876473 DOI: 10.1016/j.neuroimage.2016.02.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 12/01/2022] Open
Abstract
There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (ρ=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (ρ=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Magdalena Zurek
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Kerryanne V Winters
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Anjali Rajaratnam
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Nathanael S Kim
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - James S Babb
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Timothy M Shepherd
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Sungheon G Kim
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Jelescu IO, Veraart J, Fieremans E, Novikov DS. Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR IN BIOMEDICINE 2016; 29:33-47. [PMID: 26615981 PMCID: PMC4920129 DOI: 10.1002/nbm.3450] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 05/05/2023]
Abstract
The ultimate promise of diffusion MRI (dMRI) models is specificity to neuronal microstructure, which may lead to distinct clinical biomarkers using noninvasive imaging. While multi-compartment models are a common approach to interpret water diffusion in the brain in vivo, the estimation of their parameters from the dMRI signal remains an unresolved problem. Practically, even when q space is highly oversampled, nonlinear fit outputs suffer from heavy bias and poor precision. So far, this has been alleviated by fixing some of the model parameters to a priori values, for improved precision at the expense of accuracy. Here we use a representative two-compartment model to show that fitting fails to determine the five model parameters from over 60 measurement points. For the first time, we identify the reasons for this poor performance. The first reason is the existence of two local minima in the parameter space for the objective function of the fitting procedure. These minima correspond to qualitatively different sets of parameters, yet they both lie within biophysically plausible ranges. We show that, at realistic signal-to-noise ratio values, choosing between the two minima based on the associated objective function values is essentially impossible. Second, there is an ensemble of very low objective function values around each of these minima in the form of a pipe. The existence of such a direction in parameter space, along which the objective function profile is very flat, explains the bias and large uncertainty in parameter estimation, and the spurious parameter correlations: in the presence of noise, the minimum can be randomly displaced by a very large amount along each pipe. Our results suggest that the biophysical interpretation of dMRI model parameters crucially depends on establishing which of the minima is closer to the biophysical reality and the size of the uncertainty associated with each parameter.
Collapse
Affiliation(s)
- Ileana O. Jelescu
- Correspondence to: I.O. Jelescu, Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | | | | | | |
Collapse
|
35
|
Guglielmetti C, Veraart J, Roelant E, Mai Z, Daans J, Van Audekerke J, Naeyaert M, Vanhoutte G, Delgado Y Palacios R, Praet J, Fieremans E, Ponsaerts P, Sijbers J, Van der Linden A, Verhoye M. Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination. Neuroimage 2015; 125:363-377. [PMID: 26525654 DOI: 10.1016/j.neuroimage.2015.10.052] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Although MRI is the gold standard for the diagnosis and monitoring of multiple sclerosis (MS), current conventional MRI techniques often fail to detect cortical alterations and provide little information about gliosis, axonal damage and myelin status of lesioned areas. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) provide sensitive and complementary measures of the neural tissue microstructure. Additionally, specific white matter tract integrity (WMTI) metrics modelling the diffusion in white matter were recently derived. In the current study we used the well-characterized cuprizone mouse model of central nervous system demyelination to assess the temporal evolution of diffusion tensor (DT), diffusion kurtosis tensor (DK) and WMTI-derived metrics following acute inflammatory demyelination and spontaneous remyelination. While DT-derived metrics were unable to detect cuprizone induced cortical alterations, the mean kurtosis (MK) and radial kurtosis (RK) were found decreased under cuprizone administration, as compared to age-matched controls, in both the motor and somatosensory cortices. The MK remained decreased in the motor cortices at the end of the recovery period, reflecting long lasting impairment of myelination. In white matter, DT, DK and WMTI-derived metrics enabled the detection of cuprizone induced changes differentially according to the stage and the severity of the lesion. More specifically, the MK, the RK and the axonal water fraction (AWF) were the most sensitive for the detection of cuprizone induced changes in the genu of the corpus callosum, a region less affected by cuprizone administration. Additionally, microgliosis was associated with an increase of MK and RK during the acute inflammatory demyelination phase. In regions undergoing severe demyelination, namely the body and splenium of the corpus callosum, DT-derived metrics, notably the mean diffusion (MD) and radial diffusion (RD), were among the best discriminators between cuprizone and control groups, hence highlighting their ability to detect both acute and long lasting changes. Interestingly, WMTI-derived metrics showed the aptitude to distinguish between the different stages of the disease. Both the intra-axonal diffusivity (Da) and the AWF were found to be decreased in the cuprizone treated group, Da specifically decreased during the acute inflammatory demyelinating phase whereas the AWF decrease was associated to the spontaneous remyelination and the recovery period. Altogether our results demonstrate that DKI is sensitive to alterations of cortical areas and provides, along with WMTI metrics, information that is complementary to DT-derived metrics for the characterization of demyelination in both white and grey matter and subsequent inflammatory processes associated with a demyelinating event.
Collapse
Affiliation(s)
- C Guglielmetti
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - J Veraart
- iMinds - Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - E Roelant
- StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium
| | - Z Mai
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - J Daans
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | | | - M Naeyaert
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - G Vanhoutte
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - J Praet
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - E Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - P Ponsaerts
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - J Sijbers
- iMinds - Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | | | - M Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| |
Collapse
|