1
|
Beard SJ, Yoon L, Venticinque JS, Shepherd NE, Guyer AE. The brain in social context: A systematic review of substance use and social processing from adolescence to young adulthood. Dev Cogn Neurosci 2022; 57:101147. [PMID: 36030675 PMCID: PMC9434028 DOI: 10.1016/j.dcn.2022.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Substance use escalates between adolescence and young adulthood, and most experimentation occurs among peers. To understand underlying mechanisms, research has focused on neural response during relevant psychological processes. Functional magnetic resonance imaging (fMRI) research provides a wealth of information about brain activity when processing monetary rewards; however, most studies have used tasks devoid of social stimuli. Given that adolescent neurodevelopment is sculpted by the push-and-pull of peers and emotions, identifying neural substrates is important for intervention. We systematically reviewed 28 fMRI studies examining substance use and neural responses to stimuli including social reward, emotional faces, social influence, and social stressors. We found substance use was positively associated with social-reward activity (e.g., in the ventral striatum), and negatively with social-stress activity (e.g., in the amygdala). For emotion, findings were mixed with more use linked to heightened response (e.g., in amygdala), but also with decreased response (e.g., in insula). For social influence, evidence supported both positive (e.g., cannabis and nucleus accumbens during conformity) and negative (e.g., polydrug and ventromedial PFC during peers' choices) relations between activity and use. Based on the literature, we offer recommendations for future research on the neural processing of social information to better identify risks for substance use.
Collapse
Affiliation(s)
- Sarah J Beard
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Pl, Davis, CA 95618, USA; Department of Human Ecology, University of California, Davis, 301 Shields Ave, Davis, CA 95616, USA.
| | - Leehyun Yoon
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Pl, Davis, CA 95618, USA.
| | - Joseph S Venticinque
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Pl, Davis, CA 95618, USA; Department of Human Ecology, University of California, Davis, 301 Shields Ave, Davis, CA 95616, USA.
| | - Nathan E Shepherd
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Pl, Davis, CA 95618, USA.
| | - Amanda E Guyer
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Pl, Davis, CA 95618, USA; Department of Human Ecology, University of California, Davis, 301 Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Yoon L, Carranza AF, Swartz JR. Resting-State Functional Connectivity Associated With Extraversion and Agreeableness in Adolescence. Front Behav Neurosci 2022; 15:644790. [PMID: 35046781 PMCID: PMC8762207 DOI: 10.3389/fnbeh.2021.644790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Although adolescence is a period in which developmental changes occur in brain connectivity, personality formation, and peer interaction, few studies have examined the neural correlates of personality dimensions related to social behavior within adolescent samples. The current study aims to investigate whether adolescents’ brain functional connectivity is associated with extraversion and agreeableness, personality dimensions linked to peer acceptance, social network size, and friendship quality. Considering sex-variant neural maturation in adolescence, we also examined sex-specific associations between personality and functional connectivity. Using resting-state functional magnetic resonance imaging (fMRI) data from a community sample of 70 adolescents aged 12–15, we examined associations between self-reported extraversion and agreeableness and seed-to-whole brain connectivity with the amygdala as a seed region of interest. Then, using 415 brain regions that correspond to 8 major brain networks and subcortex, we explored neural connectivity within brain networks and across the whole-brain. We conducted group-level multiple regression analyses with the regressors of extraversion, agreeableness, and their interactions with sex. Results demonstrated that amygdala connectivity with the postcentral gyrus, middle temporal gyrus, and the temporal pole is positively associated with extraversion in girls and negatively associated with extraversion in boys. Agreeableness was positively associated with amygdala connectivity with the middle occipital cortex and superior parietal cortex, in the same direction for boys and girls. Results of the whole-brain connectivity analysis revealed that the connectivity of the postcentral gyrus, located in the dorsal attention network, with regions in default mode network (DMN), salience/ventral attention network, and control network (CON) was associated with extraversion, with most connections showing positive associations in girls and negative associations in boys. For agreeableness, results of the within-network connectivity analysis showed that connections within the limbic network were positively associated with agreeableness in boys while negatively associated with or not associated with agreeableness in girls. Results suggest that intrinsic functional connectivity may contribute to adolescents’ individual differences in extraversion and agreeableness and highlights sex-specific neural connectivity patterns associated with the two personality dimensions. This study deepens our understanding of the neurobiological correlates of adolescent personality that may lead to different developmental trajectories of social experience.
Collapse
|
3
|
Steymans I, Pujol-Lereis LM, Brembs B, Gorostiza EA. Collective action or individual choice: Spontaneity and individuality contribute to decision-making in Drosophila. PLoS One 2021; 16:e0256560. [PMID: 34437617 PMCID: PMC8389364 DOI: 10.1371/journal.pone.0256560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022] Open
Abstract
Our own unique character traits make our behavior consistent and define our individuality. Yet, this consistency does not entail that we behave repetitively like machines. Like humans, animals also combine personality traits with spontaneity to produce adaptive behavior: consistent, but not fully predictable. Here, we study an iconically rigid behavioral trait, insect phototaxis, that nevertheless also contains both components of individuality and spontaneity. In a light/dark T-maze, approximately 70% of a group of Drosophila fruit flies choose the bright arm of the T-Maze, while the remaining 30% walk into the dark. Taking the photopositive and the photonegative subgroups and re-testing them reveals the spontaneous component: a similar 70–30 distribution emerges in each of the two subgroups. Increasing the number of choices to ten choices, reveals the individuality component: flies with an extremely negative series of first choices were more likely to show photonegative behavior in subsequent choices and vice versa. General behavioral traits, independent of light/dark preference, contributed to the development of this individuality. The interaction of individuality and spontaneity together explains why group averages, even for such seemingly stereotypical behaviors, are poor predictors of individual choices.
Collapse
Affiliation(s)
- Isabelle Steymans
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| | - Luciana M. Pujol-Lereis
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, IIBBA, CONICET, Buenos Aires, Argentina
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
- * E-mail: (EAG); (BB)
| | - E. Axel Gorostiza
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail: (EAG); (BB)
| |
Collapse
|
4
|
Lai H, Wang S, Zhao Y, Zhang L, Yang C, Gong Q. Brain gray matter correlates of extraversion: A systematic review and meta-analysis of voxel-based morphometry studies. Hum Brain Mapp 2019; 40:4038-4057. [PMID: 31169966 DOI: 10.1002/hbm.24684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Extraversion is a fundamental personality dimension closely related to an individual's life outcomes and mental health. Although an increasing number of studies have attempted to identify the neurostructural markers of extraversion, the results have been highly inconsistent. The current study aimed to achieve a comprehensive understanding of brain gray matter (GM) correlates of extraversion with a systematic review and meta-analysis approach. Our review showed relatively high interstudy heterogeneity among previous findings. Our meta-analysis of whole-brain voxel-based morphometry studies revealed that extraversion was stably associated with six core brain regions. Additionally, meta-regression analyses identified brain regions where the associations of extraversion with GM volume were modulated by gender and age. The relationships between extraversion and GM structures were discussed based on three extraversion-related functional systems. Furthermore, we explained the gender and age effects. Overall, our study is the first to reveal a comprehensive picture of brain GM correlates of extraversion, and the findings may be useful for the selection of targeted brain areas for extraversion interventions.
Collapse
Affiliation(s)
- Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, China
| | - Lei Zhang
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| |
Collapse
|