1
|
Calder AE, Hase A, Hasler G. Effects of psychoplastogens on blood levels of brain-derived neurotrophic factor (BDNF) in humans: a systematic review and meta-analysis. Mol Psychiatry 2025; 30:763-776. [PMID: 39613915 PMCID: PMC11753367 DOI: 10.1038/s41380-024-02830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Peripheral levels of brain-derived neurotrophic factor (BDNF) are often used as a biomarker for the rapid plasticity-promoting effects of ketamine, psychedelics, and other psychoplastogens in humans. However, studies analyzing peripheral BDNF after psychoplastogen exposure show mixed results. In this meta-analysis, we aimed to test whether the rapid upregulation of neuroplasticity seen in preclinical studies is detectable using peripheral BDNF in humans. METHODS This analysis was pre-registered (PROSPERO ID: CRD42022333096) and funded by the University of Fribourg. We systematically searched PubMed, Web of Science, and PsycINFO to meta-analyze the effects of all available psychoplastogens on peripheral BDNF levels in humans, including ketamine, esketamine, LSD, psilocybin, ayahuasca, DMT, MDMA, scopolamine, and rapastinel. Risk of bias was assessed using Cochrane Risk of Bias Tools. Using meta-regressions and mixed effects models, we additionally analyzed the impact of several potential moderators. RESULTS We included 29 studies and found no evidence that psychoplastogens elevate peripheral BDNF levels in humans (SMD = 0.024, p = 0.64). This result was not affected by drug, dose, blood fraction, participant age, or psychiatric diagnoses. In general, studies with better-controlled designs and fewer missing values reported smaller effect sizes. Later measurement timepoints showed minimally larger effects on BDNF. CONCLUSION These data suggest that peripheral BDNF levels do not change after psychoplastogen administration in humans. It is possible that peripheral BDNF is not an informative marker of rapid changes in neuroplasticity, or that preclinical findings on psychoplastogens and neuroplasticity may not translate to human subjects. Limitations of this analysis include the reliability and validity of BDNF measurement and low variation in some potential moderators. More precise methods of measuring rapid changes in neuroplasticity, including neuroimaging and stimulation-based methods, are recommended for future studies attempting to translate preclinical findings to humans.
Collapse
Affiliation(s)
- Abigail E Calder
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Adrian Hase
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gregor Hasler
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
- Fribourg Mental Health Network, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
- Lake Lucerne Institute, Vitznau, Switzerland.
| |
Collapse
|
2
|
Bharmauria V, Ramezanpour H, Ouelhazi A, Yahia Belkacemi Y, Flouty O, Molotchnikoff S. KETAMINE: Neural- and network-level changes. Neuroscience 2024; 559:188-198. [PMID: 39245312 DOI: 10.1016/j.neuroscience.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Ketamine is a widely used clinical drug that has several functional and clinical applications, including its use as an anaesthetic, analgesic, anti-depressive, anti-suicidal agent, among others. Among its diverse behavioral effects, it influences short-term memory and induces psychedelic effects. At the neural level across different brain areas, it modulates neural firing rates, neural tuning, brain oscillations, and modularity, while promoting hypersynchrony and random connectivity between neurons. In our recent studies we demonstrated that topical application of ketamine on the visual cortex alters neural tuning and promotes vigorous connectivity between neurons by decreasing their firing variability. Here, we begin with a brief review of the literature, followed by results from our lab, where we synthesize a dendritic model of neural tuning and network changes following ketamine application. This model has potential implications for focused modulation of cortical networks in clinical settings. Finally, we identify current gaps in research and suggest directions for future studies, particularly emphasizing the need for more animal experiments to establish a platform for effective translation and synergistic therapies combining ketamine with other protocols such as training and adaptation. In summary, investigating ketamine's broader systemic effects, not only provides deeper insight into cognitive functions and consciousness but also paves the way to advance therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vishal Bharmauria
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA; Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | - Hamidreza Ramezanpour
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Afef Ouelhazi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Yassine Yahia Belkacemi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Oliver Flouty
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA
| | - Stéphane Molotchnikoff
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
3
|
Chen Y, Pan J, Lin A, Sun L, Li Y, Lin H, Pu R, Wang Y, Qi Y, Sun B. Cerebellar white and gray matter abnormalities in temporal lobe epilepsy: a voxel-based morphometry study. Front Neurosci 2024; 18:1417342. [PMID: 39156634 PMCID: PMC11328152 DOI: 10.3389/fnins.2024.1417342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Background Previous structural neuroimaging studies linked cerebellar deficits to temporal lobe epilepsy (TLE). The functions of various cerebellar regions are increasingly being valued, and their changes in TLE patients warrant further in-depth investigation. In this study, we used the Spatially Unbiased Infratentorial (SUIT) toolbox with a new template to evaluate the cerebellar structural abnormalities in patients with TLE, and further explored the relationship between the changes of different cerebellar regions and cognition. Methods Thirty-two patients with TLE were compared with 39 healthy controls (HC) matched according to age, gender, handedness, and education level. All participants underwent a high-resolution T1-weighted MRI scan on a 3.0 Tesla scanner. We used a voxel-based morphometry (VBM) approach utilizing the SUIT toolbox to provide an optimized and fine-grained exploration of cerebellar structural alterations associated with TLE. Results Compared with HC, TLE patients showed a significant reduction in the volume of gray matter in the Left lobule VI and white matter in the Right Crus II. In the TLE patient group, we conducted partial correlation analysis between the volumes of different cerebellar regions and cognitive rating scale scores, such as MMSE and MoCA. The volume of the Left lobule VI (GM) exhibited a positive correlation with the MMSE score, but no significant correlation was found with the MoCA score. On the other hand, there was no significant correlation observed between the volume of the Right Crus II (WM) and the two cognitive scale scores mentioned above. Furthermore, it was observed that the MMSE was more effective than the MoCA in identifying epilepsy patients with cognitive impairment. Conclusion This study supported previous research indicating that temporal lobe epilepsy (TLE) is linked to structural changes in the cerebellum, specifically affecting the volume of both gray and white matter. These findings offer valuable insights into the neurobiology of TLE and hold potential to inform the development of enhanced diagnostic methods and more effective treatment approaches.
Collapse
Affiliation(s)
- Yini Chen
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyu Pan
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Andong Lin
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, China
| | - Lu Sun
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufei Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongsen Lin
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Renwang Pu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiwei Qi
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Sun
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Li WC, Chen LF, Su TP, Li CT, Lin WC, Wu HJ, Tsai SJ, Bai YM, Tu PC, Chen MH. Right dorsolateral prefrontal cortex volumetric reduction is associated with antidepressant effect of low-dose ketamine infusion: A randomized, double-blind, midazolam-controlled PET-MRI clinical trial. J Affect Disord 2023; 335:105-110. [PMID: 37178823 DOI: 10.1016/j.jad.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Evidence has shown a rapid antidepressant and antisuicidal effects of low-dose ketamine infusion among patients with treatment-resistant depression (TRD) and prominent suicidal ideation (SI). The dorsolateral prefrontal cortex (DLPFC) plays a crucial role in the TRD pathomechanisms. OBJECTIVE Whether the structural and functional changes of the DLPFC, particularly Brodmann area 46, are associated with the antidepressant and antisuicidal effects of ketamine infusion among such patients is unknown. METHODS We randomized 48 patients with TRD and SI into groups receiving a single infusion of 0.5 mg/kg ketamine or 0.045 mg/kg midazolam. The Hamilton Depression Rating Scale and the Montgomery-Asberg Depression Rating Scale were used to assess symptoms. Positron emission tomography (PET)-magnetic resonance imaging was conducted prior to infusion and on Day 3 postinfusion. We performed longitudinal voxel-based morphometry (VBM) analysis to evaluate the gray matter (GM) volume changes of the DLPFC. The standardized uptake value ratio (SUVr) of 18F-fluorodeoxyglucose PET images was calculated using the SUV of the cerebellum as a reference region. RESULTS The VBM analysis revealed a small but significant volumetric reduction in the right DLPFC in the ketamine group compared with that in the midazolam group. A greater reduction in depressive symptoms was associated with a smaller decrease in right DLPFC volumes (p = 0.025). However, we found no SUVr changes of the DLPFC between baseline and post-Day 3 ketamine infusion. DISCUSSION The optimal modulation of the right DLPFC GM volumes may play an essential role in the antidepressant neuromechanisms of low-dose ketamine.
Collapse
Affiliation(s)
- Wei-Chi Li
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Fen Chen
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ju Wu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Uhlig M, Reinelt JD, Lauckner ME, Kumral D, Schaare HL, Mildner T, Babayan A, Möller HE, Engert V, Villringer A, Gaebler M. Rapid volumetric brain changes after acute psychosocial stress. Neuroimage 2023; 265:119760. [PMID: 36427754 DOI: 10.1016/j.neuroimage.2022.119760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Stress is an important trigger for brain plasticity: Acute stress can rapidly affect brain activity and functional connectivity, and chronic or pathological stress has been associated with structural brain changes. Measures of structural magnetic resonance imaging (MRI) can be modified by short-term motor learning or visual stimulation, suggesting that they also capture rapid brain changes. Here, we investigated volumetric brain changes (together with changes in T1 relaxation rate and cerebral blood flow) after acute stress in humans as well as their relation to psychophysiological stress measures. Sixty-seven healthy men (25.8±2.7 years) completed a standardized psychosocial laboratory stressor (Trier Social Stress Test) or a control version while blood, saliva, heart rate, and psychometrics were sampled. Structural MRI (T1 mapping / MP2RAGE sequence) at 3T was acquired 45 min before and 90 min after intervention onset. Grey matter volume (GMV) changes were analysed using voxel-based morphometry. Associations with endocrine, autonomic, and subjective stress measures were tested with linear models. We found significant group-by-time interactions in several brain clusters including anterior/mid-cingulate cortices and bilateral insula: GMV was increased in the stress group relative to the control group, in which several clusters showed a GMV decrease. We found a significant group-by-time interaction for cerebral blood flow, and a main effect of time for T1 values (longitudinal relaxation time). In addition, GMV changes were significantly associated with state anxiety and heart rate variability changes. Such rapid GMV changes assessed with VBM may be induced by local tissue adaptations to changes in energy demand following neural activity. Our findings suggest that endogenous brain changes are counteracted by acute psychosocial stress, which emphasizes the importance of considering homeodynamic processes and generally highlights the influence of stress on the brain.
Collapse
Affiliation(s)
- Marie Uhlig
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany.
| | - Janis D Reinelt
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Mark E Lauckner
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Independent Research Group "Adaptive Memory", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Medical Faculty of Leipzig University, Leipzig, Germany
| | - Deniz Kumral
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg im Breisgau, Germany
| | - H Lina Schaare
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Otto Hahn Group "Cognitive Neurogenetics", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany
| | - Toralf Mildner
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anahit Babayan
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, German
| | - Harald E Möller
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Veronika Engert
- Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany; Independent Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, German
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, German
| |
Collapse
|
6
|
Kang BX, Ma J, Shen J, Xu H, Wang HQ, Zhao C, Xie J, Zhong S, Gao CX, Xu XR, A XY, Gu XL, Xiao L, Xu J. Altered brain activity in end-stage knee osteoarthritis revealed by resting-state functional magnetic resonance imaging. Brain Behav 2022; 12:e2479. [PMID: 34967156 PMCID: PMC8785636 DOI: 10.1002/brb3.2479] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Knee osteoarthritis (KOA) is characterized by a degenerative change of knee cartilage and secondary bone hyperplasia, resulting in pain, stiffness, and abnormal walking gait. Long-term chronic pain causes considerable cortical plasticity alternations in patients. However, the brain structural and functional alterations associated with the pathological changes in knee joints of end-stage KOA patients remain unclear. This study aimed to analyze the structural and functional connectivity alterations in end-stage KOA to comprehensively understand the main brain-associated mechanisms underlying its development and progression. METHODS In this study, 37 patients with KOA and 37 demographically matched healthy controls (HCs) were enrolled. Alternations in gray matter (GM) volume in patients with KOA were determined using voxel-based morphometry. The region with the largest GM volume alteration was selected as the region of interest to calculate the voxel-wise resting-state functional connectivity (rs-FC) in the two groups. Pearson's correlation coefficient was used to analyze the correlation between clinical measures and GM volume alternations in patients with KOA. RESULTS Compared with HCs, patients with KOAs exhibited significantly decreased GM volumes in the left middle temporal gyrus (left-MTG) and the left inferior temporal gyrus. Results of the voxel-wise rs-FC analysis revealed that compared with HCs, patients with KOA had decreased left-MTG rs-FC to the right dorsolateral superior frontal gyrus, left middle frontal gyrus, and left medial superior frontal gyrus. GM volume in the left-MTG was negatively correlated with the Western Ontario and McMaster Universities Arthritis Index in patients with KOA (r = -0.393, p = .016). CONCLUSION Structural remodeling and functional connectivity alterations may be one of the central brain mechanisms associated with end-stage KOA.
Collapse
Affiliation(s)
- Bing-Xin Kang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shen
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Xu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Hai-Qi Wang
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chi Zhao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Xie
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Zhong
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Xin Gao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Rui Xu
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Yu A
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Li Gu
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianbo Xiao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Beating Pain with Psychedelics: Matter over Mind? Neurosci Biobehav Rev 2021; 134:104482. [PMID: 34922987 DOI: 10.1016/j.neubiorev.2021.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
Abstract
Basic pain research has shed light on key cellular and molecular mechanisms underlying nociceptive and phenomenological aspects of pain. Despite these advances, [[we still yearn for] the discovery of novel therapeutic strategies to address the unmet needs of about 70% of chronic neuropathic pain patients whose pain fails to respond to opioids as well as to other conventional analgesic agents. Importantly, a substantial body of clinical observations over the past decade cumulatively suggests that the psychedelic class of drugs may possess heuristic value for understanding and treating chronic pain conditions. The present review presents a theoretical framework for hitherto insufficiently understood neuroscience-based mechanisms of psychedelics' potential analgesic effects. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain, analgesia, inflammatory, brain connectivity, ketamine, psilocybin, functional imaging, and dendrites. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) studies employing psychedelics for alleviation of physical and emotional pain; (2) potential neuro-restorative effects of psychedelics to remediate the impaired connectivity underlying the dissociation between pain-related conscious states/cognitions and the subcortical activity/function leading to the eventual chronicity through immediate and long-term effects on dentritic plasticity; (3) anti-neuroinflammatory and pro-immunomodulatory actions of psychedelics as the may pertain to the role of these factors in the pathogenesis of neuropathic pain; (4) safety, legal, and ethical consideration inherent in psychedelics' pharmacotherapy. In addition to direct beneficial effects in terms of reduction of pain and suffering, psychedelics' inclusion in the analgesic armamentarium will contribute to deeper and more sophisticated insights not only into pain syndromes but also into frequently comorbid psychiatric condition associated with emotional pain, e.g., depressive and anxiety disorders. Further inquiry is clearly warranted into the above areas that have potential to evolve into further elucidate the mechanisms of chronic pain and affective disorders, and lead to the development of innovative, safe, and more efficacious neurobiologically-based therapeutic approaches.
Collapse
|
8
|
Gallay CC, Forsyth G, Can AT, Dutton M, Jamieson D, Jensen E, Hermens DF, Bennett MR, Lagopoulos J. Six-week oral ketamine treatment for chronic suicidality is associated with increased grey matter volume. Psychiatry Res Neuroimaging 2021; 317:111369. [PMID: 34461430 DOI: 10.1016/j.pscychresns.2021.111369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Chronic suicidality has been associated with neuronal atrophy in cortico-striato-limbic regions and is thought to be mediated via a glutamatergic imbalance. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been posited to exert anti-suicidal effects by promoting neurogenesis via modulation of glutamatergic transmission. This voxel-based morphometry study examined the effect of ketamine on whole brain grey matter in adults with chronic suicidality. Grey matter in the periaqueductal grey, nucleus accumbens, putamen, caudate, and thalamus was significantly increased following 6 weeks of low dose oral ketamine treatment. These results support the notion that ketamine rapidly enhances synaptic plasticity within striato-limbic regions.
Collapse
Affiliation(s)
- Cyrana C Gallay
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Grace Forsyth
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Daniel Jamieson
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Emma Jensen
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | | | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| |
Collapse
|
9
|
Besteher B, Gaser C, Nenadić I. Brain Structure and Subclinical Symptoms: A Dimensional Perspective of Psychopathology in the Depression and Anxiety Spectrum. Neuropsychobiology 2021; 79:270-283. [PMID: 31340207 DOI: 10.1159/000501024] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/18/2019] [Indexed: 11/19/2022]
Abstract
Human psychopathology is the result of complex and subtle neurobiological alterations. Categorial DSM or ICD diagnoses do not allow a biologically founded and differentiated description of these diverse processes across a spectrum or continuum, emphasising the need for a scientific and clinical paradigm shift towards a dimensional psychiatric nosology. The subclinical part of the spectrum is, however, of special interest for early detection of mental disorders. We review the current evidence of brain structural correlates (grey matter volume, cortical thickness, and gyrification) in non-clinical (psychiatrically healthy) subjects with minor depressive and anxiety symptoms. We identified 16 studies in the depressive spectrum and 20 studies in the anxiety spectrum. These studies show effects associated with subclinical symptoms in the hippocampus, anterior cingulate cortex, and anterior insula similar to major depression and changes in amygdala similar to anxiety disorders. Precuneus and temporal areas as parts of the default mode network were affected specifically in the subclinical studies. We derive several methodical considerations crucial to investigations of brain structural correlates of minor psycho(patho)logical symptoms in healthy participants. And we discuss neurobiological overlaps with findings in patients as well as distinct findings, e.g. in areas involved in the default mode network. These results might lead to more insight into the early pathogenesis of clinical significant depression or anxiety and need to be enhanced by multi-centre and longitudinal studies.
Collapse
Affiliation(s)
- Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany,
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Neurology, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps University Marburg/Marburg University Hospital - UKGM, Marburg, Germany
| |
Collapse
|
10
|
Höflich A, Kraus C, Pfeiffer RM, Seiger R, Rujescu D, Zarate CA, Kasper S, Winkler D, Lanzenberger R. Translating the immediate effects of S-Ketamine using hippocampal subfield analysis in healthy subjects-results of a randomized controlled trial. Transl Psychiatry 2021; 11:200. [PMID: 33795646 PMCID: PMC8016970 DOI: 10.1038/s41398-021-01318-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Antidepressant doses of ketamine rapidly facilitate synaptic plasticity and modify neuronal function within prefrontal and hippocampal circuits. However, most studies have demonstrated these effects in animal models and translational studies in humans are scarce. A recent animal study showed that ketamine restored dendritic spines in the hippocampal CA1 region within 1 h of administration. To translate these results to humans, this randomized, double-blind, placebo-controlled, crossover magnetic resonance imaging (MRI) study assessed ketamine's rapid neuroplastic effects on hippocampal subfield measurements in healthy volunteers. S-Ketamine vs. placebo data were analyzed, and data were also grouped by brain-derived neurotrophic factor (BDNF) genotype. Linear mixed models showed that overall hippocampal subfield volumes were significantly larger (p = 0.009) post ketamine than post placebo (LS means difference=0.008, standard error=0.003). Post-hoc tests did not attribute effects to specific subfields (all p > 0.05). Trend-wise volumetric increases were observed within the left hippocampal CA1 region (p = 0.076), and trend-wise volumetric reductions were obtained in the right hippocampal-amygdaloid transition region (HATA) (p = 0.067). Neither genotype nor a genotype-drug interaction significantly affected the results (all p > 0.7). The study provides evidence that ketamine has short-term effects on hippocampal subfield volumes in humans. The results translate previous findings from animal models of depression showing that ketamine has pro-neuroplastic effects on hippocampal structures and underscore the importance of the hippocampus as a key region in ketamine's mechanism of action.
Collapse
Affiliation(s)
- Anna Höflich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ruth M Pfeiffer
- Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rene Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Bednarik P, Spurny B, Silberbauer LR, Svatkova A, Handschuh PA, Reiter B, Konadu ME, Stimpfl T, Spies M, Bogner W, Lanzenberger R. Effect of Ketamine on Human Neurochemistry in Posterior Cingulate Cortex: A Pilot Magnetic Resonance Spectroscopy Study at 3 Tesla. Front Neurosci 2021; 15:609485. [PMID: 33841073 PMCID: PMC8024494 DOI: 10.3389/fnins.2021.609485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine is a powerful glutamatergic long-lasting antidepressant, efficient in intractable major depression. Whereas ketamine's immediate psychomimetic side-effects were linked to glutamate changes, proton MRS (1H-MRS) showed an association between the ratio of glutamate and glutamine and delayed antidepressant effect emerging ∼2 h after ketamine administration. While most 1H-MRS studies focused on anterior cingulate, recent functional MRI connectivity studies revealed an association between ketamine's antidepressant effect and disturbed connectivity patterns to the posterior cingulate cortex (PCC), and related PCC dysfunction to rumination and memory impairment involved in depressive pathophysiology. The current study utilized the state-of-the-art single-voxel 3T sLASER 1H-MRS methodology optimized for reproducible measurements. Ketamine's effects on neurochemicals were assessed before and ∼3 h after intravenous ketamine challenge in PCC. Concentrations of 11 neurochemicals, including glutamate (CRLB ∼ 4%) and glutamine (CRLB ∼ 13%), were reliably quantified with the LCModel in 12 healthy young men with between-session coefficients of variation (SD/mean) <8%. Also, ratios of glutamate/glutamine and glutamate/aspartate were assessed as markers of synaptic function and activated glucose metabolism, respectively. Pairwise comparison of metabolite profiles at baseline and 193 ± 4 min after ketamine challenge yielded no differences. Minimal detectable concentration differences estimated with post hoc power analysis (power = 80%, alpha = 0.05) were below 0.5 μmol/g, namely 0.39 μmol/g (∼4%) for glutamate, 0.28 μmol/g (∼10%) for Gln, ∼14% for glutamate/glutamine and ∼8% for glutamate/aspartate. Despite the high sensitivity to detect between-session differences in glutamate and glutamine concentrations, our study did not detect delayed glutamatergic responses to subanesthetic ketamine doses in PCC.
Collapse
Affiliation(s)
- Petr Bednarik
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Benjamin Spurny
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Leo R. Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alena Svatkova
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Patricia A. Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Birgit Reiter
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Melisande E. Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Herrera-Melendez A, Stippl A, Aust S, Scheidegger M, Seifritz E, Heuser-Collier I, Otte C, Bajbouj M, Grimm S, Gärtner M. Gray matter volume of rostral anterior cingulate cortex predicts rapid antidepressant response to ketamine. Eur Neuropsychopharmacol 2021; 43:63-70. [PMID: 33309459 DOI: 10.1016/j.euroneuro.2020.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022]
Abstract
Ketamine was recently approved for treatment resistant depression. However, despite its therapeutic potential, about 50% of patients do not show improvement under this therapy. In this prospective two-site study, we investigated baseline brain structural predictors for rapid symptom improvement after a single subanesthetic ketamine infusion. Furthermore, given the preclinical evidence and findings from a pilot study in a clinical population that ketamine induces rapid neuroplasticity, we performed an exploratory investigation of macroscopic changes 24 h post-treatment. T1-weighted MRI brain images from 33 depressed patients were acquired before and 24 h after a single ketamine infusion and analyzed using voxel-based morphometry (VBM). Additionally, we performed a region of interest (ROI)-based analysis of structures that have previously been shown to play a role in the antidepressant effects of ketamine: bilateral hippocampus, nucleus accumbens, anterior cingulate cortex, and thalamus. A whole-brain regression analysis showed that greater baseline volume of the bilateral rostral anterior cingulate cortex (rACC) significantly predicts rapid symptom reduction. The right ACC showed the same association in the ROI analysis, while the other regions yielded no significant results. Exploratory follow-up analyses revealed no volumetric changes 24 h after treatment. This is the first study reporting an association between pretreatment gray matter volume of the bilateral rACC and the rapid antidepressant effects of ketamine. Results are in line with previous investigations, which highlighted the potential of the rACC as a biomarker for response prediction to different antidepressant treatments. Ketamine-induced volumetric changes may be seen at later time points.
Collapse
Affiliation(s)
- Ana Herrera-Melendez
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Isabella Heuser-Collier
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Christian Otte
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; MSB -Medical School Berlin, Calandrellistraße 1-9, 12247 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Matti Gärtner
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; MSB -Medical School Berlin, Calandrellistraße 1-9, 12247 Berlin, Germany
| |
Collapse
|
13
|
Dai D, Lacadie CM, Holmes SE, Cool R, Anticevic A, Averill C, Abdallah C, Esterlis I. Ketamine Normalizes the Structural Alterations of Inferior Frontal Gyrus in Depression. CHRONIC STRESS 2021; 4:2470547020980681. [PMID: 33426409 PMCID: PMC7758564 DOI: 10.1177/2470547020980681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Background Ketamine is a novel fast-acting antidepressant. Acute ketamine treatment can reverse microstructure deficits and normalize functional alterations in the brain, but little is known about the impacts of ketamine on brain volumes in individuals with depression. Methods We used 3 T magnetic resonance imaging (MRI) and tensorbased morphological methods to investigate the regional volume differences for 29 healthy control (HC) subjects and 21 subjects with major depressive disorder (MDD), including 10 subjects with comorbid post-traumatic stress disorder (PTSD). All the subjects participated in MRI scanning before and 24 h post intravenous ketamine infusion. The effects of acute ketamine administration on HC, MDD, and MDD/PTSD groups were examined separately by whole-brain voxel-wise t-tests. Results Our data showed smaller volume of inferior frontal gyrus (IFG, opercular part) in MDD and MDD/PTSD subjects compared to HC, and a significant correlation between opercular IFG volume and depressive severity in MDD subjects only. Ketamine administration normalized the structural alterations of opercular IFG in both MDD and MDD/PTSD groups, and significantly improved depressive and PTSD symptoms. Twenty-four hours after a single ketamine infusion, there were two clusters of voxels with volume changes in MDD subjects, including significantly increased volumes of opercular IFG. No significant structural alterations were found in the MDD/PTSD or HC groups. Conclusion These findings provide direct evidence that acute ketamine administration can normalize structural alterations associated with depression and highlight the importance of IFG in the guidance of future therapeutic targets.
Collapse
Affiliation(s)
- Dan Dai
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Sophie E Holmes
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan Cool
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychology, Yale University School of Medicine, New Haven, Connecticut
| | - Chris Averill
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut
| | - Chadi Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut.,Michael E. DeBakey, VA Medical Center, Houston, Texas.,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, Texas
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychology, Yale University School of Medicine, New Haven, Connecticut.,Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut
| |
Collapse
|
14
|
Tsai YY, Yang HJ. Ketamine increases positive symptoms more than negative and cognitive ones: a systematic review and meta-analysis. JOURNAL OF SUBSTANCE USE 2021. [DOI: 10.1080/14659891.2020.1766127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yen-Ying Tsai
- Department of Public Health, College of Health Care and Management, Chung Shan Medical University, Taichung, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hao-Jan Yang
- Department of Public Health, College of Health Care and Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
15
|
Zhong J, Wu H, Wu F, He H, Zhang Z, Huang J, Cao P, Fan N. Cortical Thickness Changes in Chronic Ketamine Users. Front Psychiatry 2021; 12:645471. [PMID: 33841212 PMCID: PMC8026883 DOI: 10.3389/fpsyt.2021.645471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Previous studies have examined the effects of long-term ketamine use on gray matter volume. But it is unclear whether chronic ketamine use alters cortical thickness and whether cortical thickness changes in chronic ketamine users are associated with cognitive deficits observed in chronic ketamine users. Methods: Here, 28 chronic ketamine users and 30 healthy controls (HCs) were recruited. Cortical morphometry based on Computational Anatomy Toolbox (CAT12) was used to measure cortical thickness. Cognitive performance was measured by MATRICS Consensus Cognitive Battery (MCCB). Two-sample t-test was used to assess differences in cortical thickness and cognitive performance between the two groups. Partial correlation analysis was used for assessing correlations between cortical thickness changes and clinical characteristics, cognitive performance in chronic ketamine users. Results: Chronic ketamine users exhibited significantly reduced cortical thickness in frontal, parietal, temporal, and occipital lobes compared to HC [false discovery rate (FDR) corrected at p < 0.05]. In chronic ketamine users, the average quantity (g) of ketamine use/day was negatively correlated with cortical thickness in the left superior frontal gyrus (SFG), right caudal middle frontal gyrus (MFG), and right paracentral lobule. The frequency of ketamine use (days per week) was negatively correlated with cortical thickness in the left isthmus cingulate cortex. Duration of ketamine use (month) was negatively correlated with cortical thickness in the left precentral gyrus. The chronic ketamine users showed significantly poorer cognitive performance on the working memory (P = 0.009), visual learning (P = 0.009), speed of processing (P < 0.000), and Matrics composite (P = 0.01). There was no correlation between scores of domains of MCCB and reduced cortical thickness. Conclusion: The present study observed reduced cortical thickness in multiple brain areas, especially in the prefrontal cortex (PFC) in chronic ketamine users. Dose, frequency, and duration of ketamine use was negatively correlated with cortical thickness of some brain areas. Our results suggest that chronic ketamine use may lead to a decrease of cortical thickness. But the present study did not observe any correlation between reduced cortical thickness and decreased cognitive performance in chronic ketamine users.
Collapse
Affiliation(s)
- Jun Zhong
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Zhaohua Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Jiaxin Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Penghui Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| |
Collapse
|
16
|
Krimmel SR, Zanos P, Georgiou P, Colloca L, Gould TD. Classical conditioning of antidepressant placebo effects in mice. Psychopharmacology (Berl) 2020; 237:93-102. [PMID: 31422429 PMCID: PMC6954278 DOI: 10.1007/s00213-019-05347-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Placebo effects in human clinical trials for depression treatment are robust and often comparable to drug effects. Placebo effects are traditionally difficult to study in rodents due to the slow-onset action of classical antidepressant drugs. We hypothesized that the rapid antidepressant actions of ketamine would allow modeling antidepressant placebo effects in rodents. METHODS Male and female CD-1 mice received either ketamine or saline injections with concomitant exposure to specific environmental conditioning stimuli, for a total of three drug/conditioning sessions each 2 weeks apart. Two weeks later, during an evocation phase, mice were exposed to the drug-paired conditioning stimuli or no conditioned stimuli followed by testing for motor stimulatory actions and antidepressant-like effects using the forced swim test. Negative (no ketamine administration at any time) and positive (acute ketamine administration prior to evocation testing) control groups were included as comparators. RESULTS Both male and female mice exhibited increased locomotor activity following ketamine administration during the conditioning phase, which was not observed following exposure to the conditioning stimuli. Exposure to the conditioning stimuli previously paired with ketamine, similar to an acute ketamine administration, reduced immobility time in the forced swim test both 1 and 24 h after administration in male, but not female, mice. CONCLUSIONS These results represent the first evidence of antidepressant-like placebo-conditioned effects in an animal model. The developed approach can be used as a model to explore the neurobiological mechanisms of placebo effects, their possible sexually dimorphic effects, and relevance to mechanisms underlying antidepressant action.
Collapse
Affiliation(s)
- Samuel R. Krimmel
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luana Colloca
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pain Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA.,Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.,To whom correspondence should be addressed: Todd D. Gould, MD, Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD 21201, USA, Phone: (410) 706-5585,
| |
Collapse
|
17
|
Association between dynamic resting-state functional connectivity and ketamine plasma levels in visual processing networks. Sci Rep 2019; 9:11484. [PMID: 31391479 PMCID: PMC6685940 DOI: 10.1038/s41598-019-46702-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/26/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous studies demonstrate ketamine’s influence on resting-state functional connectivity (rsFC). Seed-based and static rsFC estimation methods may oversimplify FC. These limitations can be addressed with whole-brain, dynamic rsFC estimation methods. We assessed data from 27 healthy subjects who underwent two 3 T resting-state fMRI scans, once under subanesthetic, intravenous esketamine and once under placebo, in a randomized, cross-over manner. We aimed to isolate only highly robust effects of esketamine on dynamic rsFC by using eight complementary methodologies derived from two dynamic rsFC estimation methods, two functionally defined atlases and two statistical measures. All combinations revealed a negative influence of esketamine on dynamic rsFC within the left visual network and inter-hemispherically between visual networks (p < 0.05, corrected), hereby suggesting that esketamine’s influence on dynamic rsFC is highly stable in visual processing networks. Our findings may be reflective of ketamine’s role as a model for psychosis, a disorder associated with alterations to visual processing and impaired inter-hemispheric connectivity. Ketamine is a highly effective antidepressant and studies have shown changes to sensory processing in depression. Dynamic rsFC in sensory processing networks might be a promising target for future investigations of ketamine’s antidepressant properties. Mechanistically, sensitivity of visual networks for esketamine’s effects may result from their high expression of NMDA-receptors.
Collapse
|
18
|
Gryglewski G, Klöbl M, Berroterán-Infante N, Rischka L, Balber T, Vanicek T, Pichler V, Kautzky A, Klebermass EM, Reed MB, Vraka C, Hienert M, James GM, Silberbauer L, Godbersen GM, Unterholzner J, Michenthaler P, Hartenbach M, Winkler-Pjrek E, Wadsak W, Mitterhauser M, Hahn A, Hacker M, Kasper S, Lanzenberger R. Modeling the acute pharmacological response to selective serotonin reuptake inhibitors in human brain using simultaneous PET/MR imaging. Eur Neuropsychopharmacol 2019; 29:711-719. [PMID: 31076187 DOI: 10.1016/j.euroneuro.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023]
Abstract
Pharmacological imaging of the effects of selective serotonin reuptake inhibitors (SSRI) may aid the clarification of their mechanism of action and influence treatment of highly prevalent neuropsychiatric conditions if the detected effects could be related to patient outcomes. In a randomized double-blind design, 38 healthy participants received a constant infusion of 8 mg citalopram or saline during either their first or second of two PET/MR scans. Resting-state functional MRI (fMRI) was acquired simultaneously with PET data on the binding of serotonin transporters (5-HTT) using [11C]DASB. Three different approaches for modeling of pharmacological fMRI response were tested separately. These relied on the use of regressors corresponding to (1) the drug infusion paradigm, (2) time courses of citalopram plasma concentrations and (3) changes in 5-HTT binding measured in each individual, respectively. Furthermore, the replication of results of a widely used model-free analysis method was attempted which assesses the deviation of signal in discrete time bins of fMRI data acquired after start of drug infusion. Following drug challenge, average 5-HTT occupancy was 69±7% and peak citalopram plasma levels were 111.8 ± 21.1 ng/ml. None of the applied methods could detect significant differences in the pharmacological response between SSRI and placebo scans. The failed replication of SSRI effects reported in the literature despite a threefold larger sample size highlights the importance of appropriate correction for family-wise error in order to avoid spurious results in pharmacological imaging. This calls for the development of analysis methods which take regional specialization and the dynamics of brain activity into account.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Neydher Berroterán-Infante
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Eva-Maria Klebermass
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Marius Hienert
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gregory Miles James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Leo Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Godber Mathis Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Markus Hartenbach
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Besteher B, Gaser C, Nenadić I. Brain structure and trait impulsivity: A comparative VBM study contrasting neural correlates of traditional and alternative concepts in healthy subjects. Neuropsychologia 2019; 131:139-147. [PMID: 31071323 DOI: 10.1016/j.neuropsychologia.2019.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Impulsivity as a trait modulates a range of cognitive functions, e.g. planning, decision-making, or response inhibition. Recent behavioural and psychometric findings challenge both the neurobiological models as well as the conceptualisation of psychometric measures of impulsivity. In the present study, we aimed to test the association of brain structure with the Barratt Impulsiveness Scale (BIS-11), a commonly applied self-rating instrument for impulsivity, using both the classical three-factor-model for impulsive behaviour (motor (IM), attentional (IA) and non-planning impulsivity (INP)), as well as the recently proposed alternative model contrasting inability to wait for reward (IWR) as an index of impulsive choice and rapid response style (RRS) as an index of impulsive action. We analysed brain structural data in a community sample of 85 healthy individuals, who completed the BIS-11, using voxel-based morphometry (CAT12: Computational Anatomy Toolbox 12). Regional volumes were correlated with the three traditional BIS-11 subscales, as well as IWR and RRS. BIS-11 total score was positively correlated with right inferior parietal, postcentral, and supramarginal grey matter (p < 0.05, FWE cluster-level corrected). Attentional impulsivity (IA) was also positively correlated with right inferior and superior parietal and supramarginal gyri. Comparison of the other scales did show some divergence, but most correlations did not survive correction for multiple comparisons. Our findings suggest that difference facets of trait impulsivity might be related to different brain areas, and might thus dissociate along distinct but overlapping neural networks. In contrast to lesion or patient studies, these analyses delineate physiological variance, and can thus help to conceptualise network models in the absence of pathology.
Collapse
Affiliation(s)
- Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg / Marburg University Hospital - UKGM, Marburg, Germany
| |
Collapse
|
20
|
Hawkins PCT, Wood TC, Vernon AC, Bertolino A, Sambataro F, Dukart J, Merlo-Pich E, Risterucci C, Silber-Baumann H, Walsh E, Mazibuko N, Zelaya FO, Mehta MA. An investigation of regional cerebral blood flow and tissue structure changes after acute administration of antipsychotics in healthy male volunteers. Hum Brain Mapp 2017; 39:319-331. [PMID: 29058358 DOI: 10.1002/hbm.23844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic administration of antipsychotic drugs has been linked to structural brain changes observed in patients with schizophrenia. Recent MRI studies have shown rapid changes in regional brain volume following just a single dose of these drugs. However, it is not clear if these changes represent real volume changes or are artefacts ("apparent" volume changes) due to drug-induced physiological changes, such as increased cerebral blood flow (CBF). To address this, we examined the effects of a single, clinical dose of three commonly prescribed antipsychotics on quantitative measures of T1 and regional blood flow of the healthy human brain. Males (n = 42) were randomly assigned to one of two parallel groups in a double-blind, placebo-controlled, randomized, three-period cross-over study design. One group received a single oral dose of either 0.5 or 2 mg of risperidone or placebo during each visit. The other received olanzapine (7.5 mg), haloperidol (3 mg), or placebo. MR measures of quantitative T1, CBF, and T1-weighted images were acquired at the estimated peak plasma concentration of the drug. All three drugs caused localized increases in striatal blood flow, although drug and region specific effects were also apparent. In contrast, all assessments of T1 and brain volume remained stable across sessions, even in those areas experiencing large changes in CBF. This illustrates that a single clinically relevant oral dose of an antipsychotic has no detectable acute effect on T1 in healthy volunteers. We further provide a methodology for applying quantitative imaging methods to assess the acute effects of other compounds on structural MRI metrics. Hum Brain Mapp 39:319-331, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter C T Hawkins
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari BA, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Juergen Dukart
- Translational Medicine Neuroscience and Biomarkers, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Emilio Merlo-Pich
- CNS Therapeutic Area Unit, Takeda Development Centre Europe, London, United Kingdom
| | - Celine Risterucci
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hanna Silber-Baumann
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eamonn Walsh
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|