1
|
Forearm and Hand Muscles Exhibit High Coactivation and Overlapping of Cortical Motor Representations. Brain Topogr 2022; 35:322-336. [PMID: 35262840 PMCID: PMC9098558 DOI: 10.1007/s10548-022-00893-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Most of the motor mapping procedures using navigated transcranial magnetic stimulation (nTMS) follow the conventional somatotopic organization of the primary motor cortex (M1) by assessing the representation of a particular target muscle, disregarding the possible coactivation of synergistic muscles. In turn, multiple reports describe a functional organization of the M1 with an overlapping among motor representations acting together to execute movements. In this context, the overlap degree among cortical representations of synergistic hand and forearm muscles remains an open question. This study aimed to evaluate the muscle coactivation and representation overlapping common to the grasping movement and its dependence on the stimulation parameters. The nTMS motor maps were obtained from one carpal muscle and two intrinsic hand muscles during rest. We quantified the overlapping motor maps in size (area and volume overlap degree) and topography (similarity and centroid Euclidean distance) parameters. We demonstrated that these muscle representations are highly overlapped and similar in shape. The overlap degrees involving the forearm muscle were significantly higher than only among the intrinsic hand muscles. Moreover, the stimulation intensity had a stronger effect on the size compared to the topography parameters. Our study contributes to a more detailed cortical motor representation towards a synergistic, functional arrangement of M1. Understanding the muscle group coactivation may provide more accurate motor maps when delineating the eloquent brain tissue during pre-surgical planning.
Collapse
|
2
|
Lega C, Chelazzi L, Cattaneo L. Two Distinct Systems Represent Contralateral and Ipsilateral Sensorimotor Processes in the Human Premotor Cortex: A Dense TMS Mapping Study. Cereb Cortex 2021; 30:2250-2266. [PMID: 31828296 DOI: 10.1093/cercor/bhz237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022] Open
Abstract
Animal brains contain behaviorally committed representations of the surrounding world, which integrate sensory and motor information. In primates, sensorimotor mechanisms reside in part in the premotor cortex (PM), where sensorimotor neurons are topographically clustered according to functional specialization. Detailed functional cartography of the human PM is still under investigation. We explored the topographic distribution of spatially dependent sensorimotor functions in healthy volunteers performing left or right, hand or foot, responses to visual cues presented in the left or right hemispace, thus combining independently stimulus side, effector side, and effector type. Event-related transcranial magnetic stimulation was applied to single spots of a dense grid of 10 points on the participants' left hemiscalp, covering the whole PM. Results showed: (1) spatially segregated hand and foot representations, (2) focal representations of contralateral cues and movements in the dorsal PM, and (3) distributed representations of ipsilateral cues and movements in the ventral and dorso-medial PM. The present novel causal information indicates that (1) the human PM is somatotopically organized and (2) the left PM contains sensory-motor representations of both hemispaces and of both hemibodies, but the hemispace and hemibody contralateral to the PM are mapped on a distinct, nonoverlapping cortical region compared to the ipsilateral ones.
Collapse
Affiliation(s)
- Carlotta Lega
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| |
Collapse
|
3
|
Fricke C, Gentner R, Alizadeh J, Classen J. Linking Individual Movements to a Skilled Repertoire: Fast Modulation of Motor Synergies by Repetition of Stereotyped Movements. Cereb Cortex 2021; 30:1185-1198. [PMID: 31386110 DOI: 10.1093/cercor/bhz159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/15/2023] Open
Abstract
Motor skills emerge when practicing individual movements enables the motor system to extract building instructions that facilitate the generation of future diverse movements. Here we asked how practicing stereotyped movements for minutes affects motor synergies that encode human motor skills acquired over years of training. Participants trained a kinematically highly constrained combined index-finger and thumb movement. Before and after training, finger movements were evoked at rest by transcranial magnetic stimulation (TMS). Post-training, the angle between posture vectors describing TMS-evoked movements and the training movements temporarily decreased, suggesting the presence of a short-term memory for the trained movement. Principal component analysis was used to identify joint covariance patterns in TMS-evoked movements. The quality of reconstruction of training or grasping movements from linear combinations of a small subset of these TMS-derived synergies was used as an index of neural efficiency of movement generation. The reconstruction quality increased for the trained movement but remained constant for grasping movements. These findings suggest that the motor system rapidly reorganizes to enhance the coding efficiency of a difficult movement without compromising the coding efficiency of overlearned movements. Practice of individual movements may drive an unsupervised bottom-up process that ultimately shapes synergistic neuronal organization by constant competition of action memories.
Collapse
Affiliation(s)
| | - Reinhard Gentner
- Department of Neurology, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Jalal Alizadeh
- Department of Neurology, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Liebigstrasse 20, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Gaze direction influences grasping actions towards unseen, haptically explored, objects. Sci Rep 2020; 10:15774. [PMID: 32978418 PMCID: PMC7519081 DOI: 10.1038/s41598-020-72554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
Haptic exploration produces mental object representations that can be memorized for subsequent object-directed behaviour. Storage of haptically-acquired object images (HOIs), engages, besides canonical somatosensory areas, the early visual cortex (EVC). Clear evidence for a causal contribution of EVC to HOI representation is still lacking. The use of visual information by the grasping system undergoes necessarily a frame of reference shift by integrating eye-position. We hypothesize that if the motor system uses HOIs stored in a retinotopic coding in the visual cortex, then its use is likely to depend at least in part on eye position. We measured the kinematics of 4 fingers in the right hand of 15 healthy participants during the task of grasping different unseen objects behind an opaque panel, that had been previously explored haptically. The participants never saw the object and operated exclusively based on haptic information. The position of the object was fixed, in front of the participant, but the subject’s gaze varied from trial to trial between 3 possible positions, towards the unseen object or away from it, on either side. Results showed that the middle and little fingers’ kinematics during reaching for the unseen object changed significantly according to gaze position. In a control experiment we showed that intransitive hand movements were not modulated by gaze direction. Manipulating eye-position produces small but significant configuration errors, (behavioural errors due to shifts in frame of reference) possibly related to an eye-centered frame of reference, despite the absence of visual information, indicating sharing of resources between the haptic and the visual/oculomotor system to delayed haptic grasping.
Collapse
|
5
|
Nakagawa K, Takemi M, Nakanishi T, Sasaki A, Nakazawa K. Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms. NEUROIMAGE-CLINICAL 2019; 25:102144. [PMID: 31958685 PMCID: PMC6970184 DOI: 10.1016/j.nicl.2019.102144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023]
Abstract
We investigated cortical reorganization in an amputated archer who used his feet. Lower-limb motor representations were examined using fMRI and TMS mapping. M1 areas innervating lower-limb muscles were larger in the amputated athlete. The toe and knee representations were expanded towards the lateral part of the M1. Paralympic athletes have a unique and dynamic M1 plasticity.
Despite their disabilities, top Paralympic athletes have better motor skills than able-bodied athletes. However, the neural underpinnings of these better motor skills remain unclear. We investigated the reorganization of the primary motor cortex (M1) in a Paralympic athlete with congenital amputation of both arms who holds the world record for the farthest accurate shot in archery (Amputee Archer: AA). We recorded brain activity during contraction of right toe, ankle, knee, and hip joint muscles in the AA and 12 able-bodied control subjects using functional magnetic resonance imaging. The results revealed that M1 activation was more widespread in the AA compared with control subjects during all tasks, and shifted towards the lateral part of the M1 during contraction of toe and knee muscles. We also conducted a motor mapping experiment using navigated transcranial magnetic stimulation. The M1 area receiving stimulation elicited motor-evoked potentials from the toe, lower-leg, and thigh muscles, which were larger in the AA compared with 12 control subjects. Furthermore, the AA's motor maps were shifted towards the lateral side of M1. These results suggest an expansion of lower-limb M1 representation towards the lateral side of M1, including the trunk and upper-limb representations, and an expansion of the area of corticomotor neurons innervating the lower limb muscles in the AA. This unique M1 reorganization could underpin the AA's excellent archery performance in the absence of upper limbs. The current results suggest that Paralympic athletes may exhibit extreme M1 plasticity, which could arise through a combination of rigorous long-term motor training and compensatory M1 reorganization for missing body parts.
Collapse
Affiliation(s)
- Kento Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Mitsuaki Takemi
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honmachi, Kawaguchi, Saitama, 332-0012, Japan
| | - Tomoya Nakanishi
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Atsushi Sasaki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan; The Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
6
|
Amoruso L, Finisguerra A. Low or High-Level Motor Coding? The Role of Stimulus Complexity. Front Hum Neurosci 2019; 13:332. [PMID: 31680900 PMCID: PMC6798151 DOI: 10.3389/fnhum.2019.00332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that observing an action induces activity in the onlooker's motor system. In light of the muscle specificity and time-locked mirroring nature of the effect, this motor resonance has been traditionally viewed as an inner automatic replica of the observed movement. Notably, studies highlighting this aspect have classically considered movement in isolation (i.e., using non-realistic stimuli such as snapshots of hands detached from background). However, a few recent studies accounting for the role of contextual cues, motivational states, and social factors, have challenged this view by showing that motor resonance is not completely impervious to top-down modulations. A debate is still present. We reasoned that motor resonance reflects the inner replica of the observed movement only when its modulation is assessed during the observation of movements in isolation. Conversely, the presence of top-down modulations of motor resonance emerges when other high-level factors (i.e., contextual cues, past experience, social, and motivational states) are taken into account. Here, we attempt to lay out current TMS studies assessing this issue and discuss the results in terms of their potential to favor the inner replica or the top-down modulation hypothesis. In doing so, we seek to shed light on this actual debate and suggest specific avenues for future research, highlighting the need for a more ecological approach when studying motor resonance phenomenon.
Collapse
Affiliation(s)
- Lucia Amoruso
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
7
|
Neurophysiological examination combined with functional intraoperative navigation using TMS in patients with brain tumor near the central region-a pilot study. Acta Neurochir (Wien) 2019; 161:1853-1864. [PMID: 31297597 DOI: 10.1007/s00701-019-04004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Feasibility and value of non-invasive transcranial magnetic brain stimulation (TMS MAGVENTURE® MagPro R30 Denmark) for preoperative diagnosis and surgical planning of brain tumor operations in everyday clinical practice. METHODS A prospective monocentric study was conducted, which included preoperative neurological and electrophysiological examination, TMS, and display of functional data in the navigation system (LOCALITE® TMS Navigator Germany). During surgery, the TMS data were correlated with the intraoperative monitoring (IOM). Twenty-four hours to 96 h and after at least 3 months, follow-ups with neurological, electrophysiological examinations and TMS stimulation were performed. RESULTS Twenty-five patients with tumors in or near by the primary motor cortex region were included in the study. Twenty-one patients completed preoperative and first postoperative TMS and the neurological examination. Eight of 21 patients showed slight worsening of primary motor cortex function, 8 patients had an unchanged state, and 4 patients showed an improvement early after surgery. The changes of the electrophysiological examination like significant delay of the latency and/or reduced amplitudes matched well with the postoperative neurological outcome: if patients showed a worsening of the SEP's and MEP's, the postoperative results revealed deterioration. CONCLUSION A preoperatively performed TMS using the MAGVENTURE® MagPro R30 and the LOCALITE® TMS Navigator could be established in our clinical daily practice and allowed a safe and reliable mapping of the primary motor cortex in order to minimize the risk of postoperative neurological deficits and improve the neurological outcome of the patients.
Collapse
|
8
|
What is the functional relevance of reorganization in primary motor cortex after spinal cord injury? Neurobiol Dis 2019; 121:286-295. [DOI: 10.1016/j.nbd.2018.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 01/15/2023] Open
|
9
|
Action observation effects reflect the modular organization of the human motor system. Cortex 2017; 95:104-118. [PMID: 28866300 DOI: 10.1016/j.cortex.2017.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/27/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
Action observation, similarly to action execution, facilitates the observer's motor system and Transcranial Magnetic Stimulation (TMS) has been instrumental in exploring the nature of these motor activities. However, contradictory findings question some of the fundamental assumptions regarding the neural computations run by the Action Observation Network (AON). To better understand this issue, we delivered TMS over the observers' motor cortex at two timings of two reaching-grasping actions (precision vs power grip) and we recorded Motor-Evoked Potentials (4 hand/arm muscles; MEPs). At the same time, we also recorded whole-hand TMS Evoked Kinematics (8 hand elevation angles; MEKs) that capture the global functional motor output, as opposed to the limited view offered by recording few muscles. By repeating the same protocol twice, and a third time after continuous theta burst stimulation (cTBS) over the motor cortex, we observe significant time-dependent grip-specific MEPs and MEKs modulations, that disappeared after cTBS. MEKs, differently from MEPs, exhibit a consistent significant modulation across pre-cTBS sessions. Beside clear methodological implications, the multidimensionality of MEKs opens a window on muscle synergies needed to overcome system redundancy. By providing better access to the AON computations, our results strengthen the idea that action observation shares key organizational similarities with action execution.
Collapse
|