1
|
Geva-Sagiv M, Dimsdale-Zucker HR, Williams AB, Ranganath C. Proximity to boundaries reveals spatial context representation in human hippocampal CA1. Neuropsychologia 2023; 189:108656. [PMID: 37541615 DOI: 10.1016/j.neuropsychologia.2023.108656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Recollection of real-world events is often accompanied by a sense of being in the place where the event transpired. Convergent evidence suggests the hippocampus plays a key role in supporting episodic memory by associating information with the time and place it was originally encountered. This representation is reinstated during memory retrieval. However, little is known about the roles of different subfields of the human hippocampus in this process. Research in humans and non-human animal models has suggested that spatial environmental boundaries have a powerful influence on spatial and episodic memory, as well as hippocampal representations of contexts and events. Here, we used high-resolution fMRI to investigate how boundaries influence hippocampal activity patterns during the recollection of objects encountered in different spatial contexts. During the encoding phase, participants viewed objects once in a naturalistic virtual reality task in which they passively explored two rooms in one of two houses. Following the encoding phase, participants were scanned while they recollected items in the absence of any spatial contextual information. Our behavioral results demonstrated that spatial context memory was enhanced for objects encountered near a boundary. Activity patterns in CA1 carried information about the spatial context associated with each of these boundary items. Exploratory analyses revealed that recollection performance was correlated with the fidelity of retrieved spatial context representations in anterior parahippocampal cortex and subiculum. Our results highlight the privileged role of boundaries in CA1 and suggest more generally a close relationship between memory for spatial contexts and representations in the hippocampus and parahippocampal region.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, University of California, Davis, CA, USA.
| | - Halle R Dimsdale-Zucker
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, Columbia University, USA
| | | | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, USA; Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Nentwich M, Leszczynski M, Russ BE, Hirsch L, Markowitz N, Sapru K, Schroeder CE, Mehta AD, Bickel S, Parra LC. Semantic novelty modulates neural responses to visual change across the human brain. Nat Commun 2023; 14:2910. [PMID: 37217478 PMCID: PMC10203305 DOI: 10.1038/s41467-023-38576-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Our continuous visual experience in daily life is dominated by change. Previous research has focused on visual change due to stimulus motion, eye movements or unfolding events, but not their combined impact across the brain, or their interactions with semantic novelty. We investigate the neural responses to these sources of novelty during film viewing. We analyzed intracranial recordings in humans across 6328 electrodes from 23 individuals. Responses associated with saccades and film cuts were dominant across the entire brain. Film cuts at semantic event boundaries were particularly effective in the temporal and medial temporal lobe. Saccades to visual targets with high visual novelty were also associated with strong neural responses. Specific locations in higher-order association areas showed selectivity to either high or low-novelty saccades. We conclude that neural activity associated with film cuts and eye movements is widespread across the brain and is modulated by semantic novelty.
Collapse
Affiliation(s)
- Maximilian Nentwich
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Marcin Leszczynski
- Departments of Psychiatry and Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
- Cognitive Science Department, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | - Brian E Russ
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University at Langone, New York, NY, USA
| | - Lukas Hirsch
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Noah Markowitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kaustubh Sapru
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Charles E Schroeder
- Departments of Psychiatry and Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Ashesh D Mehta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Stephan Bickel
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Neurosurgery and Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
3
|
Sabra Z, Alawieh A, Bonilha L, Naselaris T, AuYong N. Modulation of Spectral Representation and Connectivity Patterns in Response to Visual Narrative in the Human Brain. Front Hum Neurosci 2022; 16:886938. [PMID: 36277048 PMCID: PMC9582122 DOI: 10.3389/fnhum.2022.886938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
The regional brain networks and the underlying neurophysiological mechanisms subserving the cognition of visual narrative in humans have largely been studied with non-invasive brain recording. In this study, we specifically investigated how regional and cross-regional cortical activities support visual narrative interpretation using intracranial stereotactic electroencephalograms recordings from thirteen human subjects (6 females, and 7 males). Widely distributed recording sites across the brain were sampled while subjects were explicitly instructed to observe images from fables presented in “sequential” order, and a set of images drawn from multiple fables presented in “scrambled” order. Broadband activity mainly within the frontal and temporal lobes were found to encode if a presented image is part of a visual narrative (sequential) or random image set (scrambled). Moreover, the temporal lobe exhibits strong activation in response to visual narratives while the frontal lobe is more engaged when contextually novel stimuli are presented. We also investigated the dynamics of interregional interactions between visual narratives and contextually novel series of images. Interestingly, the interregional connectivity is also altered between sequential and scrambled sequences. Together, these results suggest that both changes in regional neuronal activity and cross-regional interactions subserve visual narrative and contextual novelty processing.
Collapse
Affiliation(s)
- Zahraa Sabra
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Ali Alawieh
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas Naselaris
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Nicholas AuYong
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
- *Correspondence: Nicholas AuYong,
| |
Collapse
|
4
|
Zheng J, Schjetnan AGP, Yebra M, Gomes BA, Mosher CP, Kalia SK, Valiante TA, Mamelak AN, Kreiman G, Rutishauser U. Neurons detect cognitive boundaries to structure episodic memories in humans. Nat Neurosci 2022; 25:358-368. [PMID: 35260859 PMCID: PMC8966433 DOI: 10.1038/s41593-022-01020-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
While experience is continuous, memories are organized as discrete events. Cognitive boundaries are thought to segment experience and structure memory, but how this process is implemented remains unclear. We recorded the activity of single neurons in the human medial temporal lobe during the formation and retrieval of memories with complex narratives. Here we show that neurons responded to abstract cognitive boundaries between different episodes. Boundary-induced neural state changes during encoding predicted subsequent recognition accuracy but impaired event order memory, mirroring a fundamental behavioral tradeoff between content and time memory. Furthermore, the neural state following boundaries was reinstated during both successful retrieval and false memories. These findings reveal a neuronal substrate for detecting cognitive boundaries that transform experience into mnemonic episodes and structure mental time travel during retrieval.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea G P Schjetnan
- Krembil Brain Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Mar Yebra
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bernard A Gomes
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suneil K Kalia
- Krembil Brain Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Taufik A Valiante
- Krembil Brain Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada.,Department of Surgery (Neurosurgery), Institute of Biomedical Engineering, and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Center for Brains, Minds and Machines, Cambridge, MA, USA.
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
Maier A, Tsuchiya N. Growing evidence for separate neural mechanisms for attention and consciousness. Atten Percept Psychophys 2021; 83:558-576. [PMID: 33034851 PMCID: PMC7886945 DOI: 10.3758/s13414-020-02146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
Our conscious experience of the world seems to go in lockstep with our attentional focus: We tend to see, hear, taste, and feel what we attend to, and vice versa. This tight coupling between attention and consciousness has given rise to the idea that these two phenomena are indivisible. In the late 1950s, the honoree of this special issue, Charles Eriksen, was among a small group of early pioneers that sought to investigate whether a transient increase in overall level of attention (alertness) in response to a noxious stimulus can be decoupled from conscious perception using experimental techniques. Recent years saw a similar debate regarding whether attention and consciousness are two dissociable processes. Initial evidence that attention and consciousness are two separate processes primarily rested on behavioral data. However, the past couple of years witnessed an explosion of studies aimed at testing this conjecture using neuroscientific techniques. Here we provide an overview of these and related empirical studies on the distinction between the neuronal correlates of attention and consciousness, and detail how advancements in theory and technology can bring about a more detailed understanding of the two. We argue that the most promising approach will combine ever-evolving neurophysiological and interventionist tools with quantitative, empirically testable theories of consciousness that are grounded in a mathematically formalized understanding of phenomenology.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, 565-0871, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| |
Collapse
|
6
|
Cai XL, Wang YM, Wang Y, Zhou HY, Huang J, Wang Y, Lui SSY, Møller A, Hung KSY, Mak HKF, Sham PC, Cheung EFC, Chan RCK. Neurological Soft Signs Are Associated With Altered Cerebellar-Cerebral Functional Connectivity in Schizophrenia. Schizophr Bull 2021; 47:1452-1462. [PMID: 33479738 PMCID: PMC8379549 DOI: 10.1093/schbul/sbaa200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebellar dysfunction is associated with neurological soft signs (NSS), which is a promising endophenotype for schizophrenia spectrum disorders. However, the relationship between cerebellar-cerebral resting-state functional connectivity (rsFC) and NSS is largely unexplored. Moreover, both NSS and cerebellar-cerebral rsFC have been found to be correlated with negative symptoms of schizophrenia. Here, we investigated the correlations between NSS and cerebellar-cerebral rsFC, explored their relationship with negative symptoms in a main dataset, and validated the significant findings in a replication dataset. Both datasets comprised schizophrenia patients and healthy controls. In schizophrenia patients, we found positive correlations between NSS and rsFC of the cerebellum with the inferior frontal gyrus and the precuneus, and negative correlations between NSS and rsFC of the cerebellum with the inferior temporal gyrus. In healthy controls, NSS scores were positively correlated with rsFC of the cerebellum with the superior frontal gyrus and negatively correlated with rsFC between the cerebellum and the middle occipital gyrus. Cerebellar-prefrontal rsFC was also positively correlated with negative symptoms in schizophrenia patients. These findings were validated in the replication dataset. Our results suggest that the uncoupling of rsFC between the cerebellum and the cerebral cortex may underlie the expression of NSS in schizophrenia. NSS-related cerebellar-prefrontal rsFC may be a potential neural pathway for possible neural modulation to alleviate negative symptoms.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Yu Zhou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arne Møller
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karen S Y Hung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for PanorOmic Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- To whom correspondence should be addressed; 16 Lincui Road, Beijing 100101, China; tel: +86(0)10-64836274, fax: 86(0)10-64836274, e-mail:
| |
Collapse
|
7
|
Kuehn E, Pleger B. Encoding schemes in somatosensation: From micro- to meta-topography. Neuroimage 2020; 223:117255. [PMID: 32800990 DOI: 10.1016/j.neuroimage.2020.117255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
Encoding schemes are systematic large-scale arrangements that convert incoming sensory information into a format required for further information processing. The increased spatial resolution of brain images obtained with ultra-high field magnetic resonance imaging at 7 T (7T-MRI) and above increases the granularity and precision of processing units that mediate the link between neuronal encoding and functional readouts. Here, these new developments are reviewed with a focus on human tactile encoding schemes derived from small-scale processing units (in the order of 0.5-5 mm) that are relevant for theoretical and practical concepts of somatosensory encoding and cortical plasticity. Precisely, we review recent approaches to characterize meso-scale maps, layer units, and cortical fields in the sensorimotor cortex of the living human brain and discuss their impact on theories of perception, motor control, topographic encoding, and cortical plasticity. Finally, we discuss concepts on the integration of small-scale processing units into functional networks that span multiple topographic maps and multiple cortical areas. Novel research areas are highlighted that may help to bridge the gap between cortical microstructure and meta-topographic models on brain anatomy and function.
Collapse
Affiliation(s)
- Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg 39120, Germany.
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum 44789, Germany
| |
Collapse
|
8
|
Ter Wal M, Platonov A, Cardellicchio P, Pelliccia V, LoRusso G, Sartori I, Avanzini P, Orban GA, Tiesinga PHE. Human stereoEEG recordings reveal network dynamics of decision-making in a rule-switching task. Nat Commun 2020; 11:3075. [PMID: 32555174 PMCID: PMC7300004 DOI: 10.1038/s41467-020-16854-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/26/2020] [Indexed: 01/17/2023] Open
Abstract
The processing steps that lead up to a decision, i.e., the transformation of sensory evidence into motor output, are not fully understood. Here, we combine stereoEEG recordings from the human cortex, with single-lead and time-resolved decoding, using a wide range of temporal frequencies, to characterize decision processing during a rule-switching task. Our data reveal the contribution of rostral inferior parietal lobule (IPL) regions, in particular PFt, and the parietal opercular regions in decision processing and demonstrate that the network representing the decision is common to both task rules. We reconstruct the sequence in which regions engage in decision processing on single trials, thereby providing a detailed picture of the network dynamics involved in decision-making. The reconstructed timeline suggests that the supramarginal gyrus in IPL links decision regions in prefrontal cortex with premotor regions, where the motor plan for the response is elaborated.
Collapse
Affiliation(s)
- Marije Ter Wal
- Department of Neuroinformatics, Donders Institute, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- School of Psychology, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Artem Platonov
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Pasquale Cardellicchio
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Veronica Pelliccia
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Giorgio LoRusso
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Ivana Sartori
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, CNR, via Volturno 39E, 43125, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Paul H E Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Delgado Saa J, Christen A, Martin S, Pasley BN, Knight RT, Giraud AL. Using Coherence-based spectro-spatial filters for stimulus features prediction from electro-corticographic recordings. Sci Rep 2020; 10:7637. [PMID: 32376909 PMCID: PMC7203138 DOI: 10.1038/s41598-020-63303-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/19/2020] [Indexed: 11/08/2022] Open
Abstract
The traditional approach in neuroscience relies on encoding models where brain responses are related to different stimuli in order to establish dependencies. In decoding tasks, on the contrary, brain responses are used to predict the stimuli, and traditionally, the signals are assumed stationary within trials, which is rarely the case for natural stimuli. We hypothesize that a decoding model assuming each experimental trial as a realization of a random process more likely reflects the statistical properties of the undergoing process compared to the assumption of stationarity. Here, we propose a Coherence-based spectro-spatial filter that allows for reconstructing stimulus features from brain signal's features. The proposed method extracts common patterns between features of the brain signals and the stimuli that produced them. These patterns, originating from different recording electrodes are combined, forming a spatial filter that produces a unified prediction of the presented stimulus. This approach takes into account frequency, phase, and spatial distribution of brain features, hence avoiding the need to predefine specific frequency bands of interest or phase relationships between stimulus and brain responses manually. Furthermore, the model does not require the tuning of hyper-parameters, reducing significantly the computational load attached to it. Using three different cognitive tasks (motor movements, speech perception, and speech production), we show that the proposed method consistently improves stimulus feature predictions in terms of correlation (group averages of 0.74 for motor movements, 0.84 for speech perception, and 0.74 for speech production) in comparison with other methods based on regularized multivariate regression, probabilistic graphical models and artificial neural networks. Furthermore, the model parameters revealed those anatomical regions and spectral components that were discriminant in the different cognitive tasks. This novel method does not only provide a useful tool to address fundamental neuroscience questions, but could also be applied to neuroprosthetics.
Collapse
Affiliation(s)
- Jaime Delgado Saa
- Auditory Language Group, University of Geneva, Geneva, Switzerland.
- BSPAI Lab, Universidad del Norte, Barranquilla, Colombia.
| | - Andy Christen
- Auditory Language Group, University of Geneva, Geneva, Switzerland
| | - Stephanie Martin
- Auditory Language Group, University of Geneva, Geneva, Switzerland
| | - Brian N Pasley
- Knight Lab, University of California at Berkeley, Berkeley, USA
| | - Robert T Knight
- Knight Lab, University of California at Berkeley, Berkeley, USA
| | - Anne-Lise Giraud
- Auditory Language Group, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Yang Z, Wu J, Xu L, Deng Z, Tang Y, Gao J, Hu Y, Zhang Y, Qin S, Li C, Wang J. Individualized psychiatric imaging based on inter-subject neural synchronization in movie watching. Neuroimage 2019; 216:116227. [PMID: 31568871 DOI: 10.1016/j.neuroimage.2019.116227] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 01/16/2023] Open
Abstract
The individual heterogeneity is a challenge to the prosperous promises of cutting-edge neuroimaging techniques for better diagnosis and early detection of psychiatric disorders. Individuals with similar clinical manifestations may result from very different pathophysiology. Conventional approaches based on comparing group-averages provide insufficient information to support the individualized diagnosis. Here we present an individualized imaging methodology that combines naturalistic imaging and the normative model. This paradigm adopts video clips with rich cognitive, social, and emotional contents to evoke synchronized brain dynamics of healthy participants and builds a spatiotemporal response norm. By comparing individual brain responses with the response norm, we could recognize patients using machine learning techniques. We applied this methodology to recognize first-episode drug-naïve schizophrenia patients in a dataset containing 72 patients and 54 healthy controls. Some segments of the video evoked more synchronized brain activity in the healthy controls than in the schizophrenia patients. We built a spatiotemporal response norm by averaging the brain responses of the healthy controls in a training set, and trained a classifier to recognize patients based on the differences between individual brain responses and the norm. The performance of the classifier was then evaluated using an independent test set. The mean accuracies from a 5-fold cross-validation were 0.71-0.78 depending on the parameters such as the number of features and the width of the sliding windows. These findings reflected the potential of this methodology towards a clinical tool for individualized diagnosis.
Collapse
Affiliation(s)
- Zhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China; Laboratory of Psychological Heath and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Jinfeng Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengzheng Deng
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Gao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Laboratory of Psychological Heath and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Laboratory of Psychological Heath and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
What do neurons really want? The role of semantics in cortical representations. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
|