1
|
Moffat R, Cross ES. Awareness of embodiment enhances enjoyment and engages sensorimotor cortices. Hum Brain Mapp 2024; 45:e26786. [PMID: 38994692 PMCID: PMC11240146 DOI: 10.1002/hbm.26786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Whether in performing arts, sporting, or everyday contexts, when we watch others move, we tend to enjoy bodies moving in synchrony. Our enjoyment of body movements is further enhanced by our own prior experience with performing those movements, or our 'embodied experience'. The relationships between movement synchrony and enjoyment, as well as embodied experience and movement enjoyment, are well known. The interaction between enjoyment of movements, synchrony, and embodiment is less well understood, and may be central for developing new approaches for enriching social interaction. To examine the interplay between movement enjoyment, synchrony, and embodiment, we asked participants to copy another person's movements as accurately as possible, thereby gaining embodied experience of movement sequences. Participants then viewed other dyads performing the same or different sequences synchronously, and we assessed participants' recognition of having performed these sequences, as well as their enjoyment of each movement sequence. We used functional near-infrared spectroscopy to measure cortical activation over frontotemporal sensorimotor regions while participants performed and viewed movements. We found that enjoyment was greatest when participants had mirrored the sequence and recognised it, suggesting that awareness of embodiment may be central to enjoyment of synchronous movements. Exploratory analyses of relationships between cortical activation and enjoyment and recognition implicated the sensorimotor cortices, which subserve action observation and aesthetic processing. These findings hold implications for clinical research and therapies seeking to foster successful social interaction.
Collapse
Affiliation(s)
- Ryssa Moffat
- Professorship for Social Brain Sciences, ETH ZurichZurichSwitzerland
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Emily S. Cross
- Professorship for Social Brain Sciences, ETH ZurichZurichSwitzerland
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- MARCS InstituteWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Woelk SP, Garfinkel SN. Dissociative Symptoms and Interoceptive Integration. Curr Top Behav Neurosci 2024. [PMID: 38755513 DOI: 10.1007/7854_2024_480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Dissociative symptoms and disorders of dissociation are characterised by disturbances in the experience of the self and the surrounding world, manifesting as a breakdown in the normal integration of consciousness, memory, identity, emotion, and perception. This paper aims to provide insights into dissociative symptoms from the perspective of interoception, the sense of the body's internal physiological state, adopting a transdiagnostic framework.Dissociative symptoms are associated with a blunting of autonomic reactivity and a reduction in interoceptive precision. In addition to the central function of interoception in homeostasis, afferent visceral signals and their neural and mental representation have been shown to shape emotional feeling states, support memory encoding, and contribute to self-representation. Changes in interoceptive processing and disrupted integration of interoceptive signals into wider cognition may contribute to detachment from the body and the world, blunted emotional experience, and altered subjective recall, as experienced by individuals who suffer from dissociation.A better understanding of the role of altered interoceptive integration across the symptom areas of dissociation could thus provide insights into the neurophysiological mechanisms underlying dissociative disorders. As new therapeutic approaches targeting interoceptive processing emerge, recognising the significance of interoceptive mechanisms in dissociation holds potential implications for future treatment targets.
Collapse
Affiliation(s)
- Sascha P Woelk
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Sarah N Garfinkel
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
3
|
Rennig J, Langenberger C, Karnath HO. Beyond visual integration: sensitivity of the temporal-parietal junction for objects, places, and faces. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:8. [PMID: 38637870 PMCID: PMC11027340 DOI: 10.1186/s12993-024-00233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
One important role of the TPJ is the contribution to perception of the global gist in hierarchically organized stimuli where individual elements create a global visual percept. However, the link between clinical findings in simultanagnosia and neuroimaging in healthy subjects is missing for real-world global stimuli, like visual scenes. It is well-known that hierarchical, global stimuli activate TPJ regions and that simultanagnosia patients show deficits during the recognition of hierarchical stimuli and real-world visual scenes. However, the role of the TPJ in real-world scene processing is entirely unexplored. In the present study, we first localized TPJ regions significantly responding to the global gist of hierarchical stimuli and then investigated the responses to visual scenes, as well as single objects and faces as control stimuli. All three stimulus classes evoked significantly positive univariate responses in the previously localized TPJ regions. In a multivariate analysis, we were able to demonstrate that voxel patterns of the TPJ were classified significantly above chance level for all three stimulus classes. These results demonstrate a significant involvement of the TPJ in processing of complex visual stimuli that is not restricted to visual scenes and that the TPJ is sensitive to different classes of visual stimuli with a specific signature of neuronal activations.
Collapse
Affiliation(s)
- Johannes Rennig
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany.
| | - Christina Langenberger
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- Department of Psychology, University of South Carolina, Columbia, USA
| |
Collapse
|
4
|
Zhang Y, Ye W, Yin J, Wu Q, Huang Y, Hao N, Cui L, Zhang M, Cai D. Exploring the role of mutual prediction in inter-brain synchronization during competitive interactions: an fNIRS hyperscanning investigation. Cereb Cortex 2024; 34:bhad483. [PMID: 38100358 DOI: 10.1093/cercor/bhad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Mutual prediction is crucial for understanding the mediation of bodily actions in social interactions. Despite this importance, limited studies have investigated neurobehavioral patterns under the mutual prediction hypothesis in natural competitive scenarios. To address this gap, our study employed functional near-infrared spectroscopy hyperscanning to examine the dynamics of real-time rock-paper-scissors games using a computerized paradigm with 54 participants. Firstly, our results revealed activations in the right inferior frontal gyrus, bilateral dorsolateral prefrontal cortex, and bilateral frontopolar cortex, each displaying distinct temporal profiles indicative of diverse cognitive processes during the task. Subsequently, a task-related increase in inter-brain synchrony was explicitly identified in the right dorsolateral prefrontal cortex, which supported the mutual prediction hypothesis across the two brains. Moreover, our investigation uncovered a close association between the coherence value in the right dorsolateral prefrontal cortex and the dynamic predictive performances of dyads using inter-subject representational similarity analysis. Finally, heightened inter-brain synchrony values were observed in the right dorsolateral prefrontal cortex before a draw compared to a no-draw scenario in the second block, suggesting that cross-brain signal patterns could be reflected in behavioral responses during competition. In summary, these findings provided initial support for expanding the understanding of cognitive processes underpinning natural competitive engagements.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Weihao Ye
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
- School of Psychology, Zhejiang Normal University, Zhejiang 321004, China
| | - Junting Yin
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Qin Wu
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yao Huang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Na Hao
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Liying Cui
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Mingming Zhang
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Dan Cai
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
5
|
Cristiano A, Finisguerra A, Urgesi C, Avenanti A, Tidoni E. Functional role of the theory of mind network in integrating mentalistic prior information with action kinematics during action observation. Cortex 2023; 166:107-120. [PMID: 37354870 DOI: 10.1016/j.cortex.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/26/2023]
Abstract
Inferring intentions from verbal and nonverbal human behaviour is critical for everyday social life. Here, we combined Transcranial Magnetic Stimulation (TMS) with a behavioural priming paradigm to test whether key nodes of the Theory of Mind network (ToMn) contribute to understanding others' intentions by integrating prior knowledge about an agent with the observed action kinematics. We used a modified version of the Faked-Action Discrimination Task (FAD), a forced-choice paradigm in which participants watch videos of actors lifting a cube and judge whether the actors are trying to deceive them concerning the weight of the cube. Videos could be preceded or not by verbal description (prior) about the agent's truthful or deceitful intent. We applied single pulse TMS over three key nodes of the ToMn, namely dorsomedial prefrontal cortex (dmPFC), right posterior superior temporal sulcus (pSTS) and right temporo-parietal junction (rTPJ). Sham-TMS served as a control (baseline) condition. Following sham or rTPJ stimulation, we observed no consistent influence of priors on FAD performance. In contrast, following dmPFC stimulation, and to a lesser extent pSTS stimulation, truthful and deceitful actions were perceived as more deceptive only when the prior suggested a dishonest intention. These findings highlight a functional role of dmPFC and pSTS in coupling prior knowledge about deceptive intents with observed action kinematics in order to judge faked actions. Our study provides causal evidence that fronto-temporal nodes of the ToMn are functionally relevant to mental state inference during action observation.
Collapse
Affiliation(s)
- Azzurra Cristiano
- Department of Psychology, Sapienza University of Rome and CLN(2)S@Sapienza, Italian Institute of Technology, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | | | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy; Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Alessio Avenanti
- Department of Psychology, Centro Studi e Ricerche in Neuroscienze Cognitive, Alma Mater Studiorum - University of Bologna, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca, Chile.
| | - Emmanuele Tidoni
- Human Technology Laboratory, School of Psychology and Social Work, University of Hull, Hull, UK; School of Psychology, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Fehlbaum LV, Borbás R, Paul K, Eickhoff SB, Raschle NM. Early and late neural correlates of mentalizing: ALE meta-analyses in adults, children and adolescents. Soc Cogn Affect Neurosci 2022; 17:351-366. [PMID: 34545389 PMCID: PMC8972312 DOI: 10.1093/scan/nsab105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/06/2021] [Accepted: 09/19/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to understand mental states of others is referred to as mentalizing and enabled by our Theory of Mind. This social skill relies on brain regions comprising the mentalizing network as robustly observed in adults but also in a growing number of developmental studies. We summarized and compared neuroimaging evidence in children/adolescents and adults during mentalizing using coordinate-based activation likelihood estimation meta-analyses to inform about brain regions consistently or differentially engaged across age categories. Adults (N = 5286) recruited medial prefrontal and middle/inferior frontal cortices, precuneus, temporoparietal junction and middle temporal gyri during mentalizing, which were functionally connected to bilateral inferior/superior parietal lobule and thalamus/striatum. Conjunction and contrast analyses revealed that children and adolescents (N = 479) recruit similar but fewer regions within core mentalizing regions. Subgroup analyses revealed an early continuous engagement of middle medial prefrontal cortex, precuneus and right temporoparietal junction in younger children (8-11 years) and adolescents (12-18 years). Adolescents additionally recruited the left temporoparietal junction and middle/inferior temporal cortex. Overall, the observed engagement of the medial prefrontal cortex, precuneus and right temporoparietal junction during mentalizing across all ages reflects an early specialization of some key regions of the social brain.
Collapse
Affiliation(s)
- Lynn V Fehlbaum
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich 8050, Switzerland
- Department of Child and Adolescent Psychiatry, University of Basel, Psychiatric University Hospital, Basel 4002, Switzerland
| | - Réka Borbás
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich 8050, Switzerland
- Department of Child and Adolescent Psychiatry, University of Basel, Psychiatric University Hospital, Basel 4002, Switzerland
| | - Katharina Paul
- Department of Child and Adolescent Psychiatry, University of Basel, Psychiatric University Hospital, Basel 4002, Switzerland
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Brain & Behaviour (INM-7), Research Centre Jülich, Institute of Neuroscience and Medicine, Jülich 52425, Germany
| | - Nora M Raschle
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich 8050, Switzerland
- Department of Child and Adolescent Psychiatry, University of Basel, Psychiatric University Hospital, Basel 4002, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
| |
Collapse
|
7
|
Jainta B, Siestrup S, El-Sourani N, Trempler I, Wurm MF, Werning M, Cheng S, Schubotz RI. Seeing What I Did (Not): Cerebral and Behavioral Effects of Agency and Perspective on Episodic Memory Re-activation. Front Behav Neurosci 2022; 15:793115. [PMID: 35069141 PMCID: PMC8777223 DOI: 10.3389/fnbeh.2021.793115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Intuitively, we assume that we remember episodes better when we actively participated in them and were not mere observers. Independently of this, we can recall episodes from either the first-person perspective (1pp) or the third-person perspective (3pp). In this functional magnetic resonance imaging (fMRI) study, we tested whether agency and perspective modulate neural activity during memory retrieval and subsequently enhance memory performance. Subjects encoded a set of different episodes by either imitating or only observing videos that showed short toy stories. A week later, we conducted fMRI and cued episodic retrieval by presenting the original videos, or slightly modified versions thereof, from 1pp or from 3pp. The hippocampal formation was sensitive to self-performed vs. only observed actions only when there was an episodic mismatch. In a post-fMRI memory test a history of self-performance did not improve behavioral memory performance. However, modified videos were often (falsely) accepted as showing truly experienced episodes when: (i) they were already presented in this modified version during fMRI or (ii) they were presented in their original form during fMRI but from 3pp. While the overall effect of modification was strong, the effects of perspective and agency were more subtle. Together, our findings demonstrate that self-performance and self-perspective modulate the strength of a memory trace in different ways. Even when memory performance remains the same for different agentive states, the brain is capable of detecting mismatching information. Re-experiencing the latter impairs memory performance as well as retrieving encoded episodes from 3pp.
Collapse
Affiliation(s)
- Benjamin Jainta
- Department of Psychology, University of Münster, Münster, Germany
- *Correspondence: Benjamin Jainta,
| | - Sophie Siestrup
- Department of Psychology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | | | - Ima Trempler
- Department of Psychology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Moritz F. Wurm
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Markus Werning
- Department of Philosophy, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Ricarda I. Schubotz
- Department of Psychology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Mehren A, Thiel CM, Bruns S, Philipsen A, Özyurt J. Unimpaired social cognition in adult patients with ADHD: brain volumetric and behavioral results. Soc Cogn Affect Neurosci 2021; 16:1160-1169. [PMID: 33959774 PMCID: PMC8599175 DOI: 10.1093/scan/nsab060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
The present study aimed to investigate whether adult patients with attention deficit hyperactivity disorder (ADHD) show deficits in social cognition and to identify the structural neural correlates of social cognitive skills in ADHD. Twenty-six adult patients with ADHD and 26 matched healthy control participants performed the Movie for the Assessment of Social Cognition and underwent a structural magnetic resonance imaging scan. We compared theory of mind (ToM) performance between ADHD patients and healthy controls. Using voxel-based morphometry, we further compared gray matter volumes in regions that are critical for social cognition between the two groups and examined whether ToM performance was correlated with brain morphometry measures. We did not observe any between-group differences in ToM abilities or regional gray matter volumes. Across both groups, performance on affective aspects of ToM correlated positively with gray matter volumes in the medial part of the superior frontal gyri, which is typically involved in social cognition. This study is the first to relate brain structure to social cognitive abilities in adult patients with ADHD. Although our sample was small and heterogeneous, with half of the patients showing mild-to-moderate psychiatric comorbidities, our results may encourage longitudinal studies that relate social cognitive development in childhood and adolescence to brain maturation of ADHD patients.
Collapse
Affiliation(s)
- Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53127, Germany
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Christiane Margarete Thiel
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
- Cluster of Excellence ‘Hearing4all’, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Swantje Bruns
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53127, Germany
| | - Jale Özyurt
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
9
|
Molapour T, Hagan CC, Silston B, Wu H, Ramstead M, Friston K, Mobbs D. Seven computations of the social brain. Soc Cogn Affect Neurosci 2021; 16:745-760. [PMID: 33629102 PMCID: PMC8343565 DOI: 10.1093/scan/nsab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The social environment presents the human brain with the most complex information processing demands. The computations that the brain must perform occur in parallel, combine social and nonsocial cues, produce verbal and nonverbal signals and involve multiple cognitive systems, including memory, attention, emotion and learning. This occurs dynamically and at timescales ranging from milliseconds to years. Here, we propose that during social interactions, seven core operations interact to underwrite coherent social functioning; these operations accumulate evidence efficiently-from multiple modalities-when inferring what to do next. We deconstruct the social brain and outline the key components entailed for successful human-social interaction. These include (i) social perception; (ii) social inferences, such as mentalizing; (iii) social learning; (iv) social signaling through verbal and nonverbal cues; (v) social drives (e.g. how to increase one's status); (vi) determining the social identity of agents, including oneself and (vii) minimizing uncertainty within the current social context by integrating sensory signals and inferences. We argue that while it is important to examine these distinct aspects of social inference, to understand the true nature of the human social brain, we must also explain how the brain integrates information from the social world.
Collapse
Affiliation(s)
- Tanaz Molapour
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cindy C Hagan
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian Silston
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Haiyan Wu
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- CAS Key Laboratory of Behavioral Science, Department of Psychology, University of Chinese Academy of Sciences, Beijing, 10010, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 10010 China
| | - Maxwell Ramstead
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A2, Canada
- Culture, Mind, and Brain Program, McGill University, Montreal, Quebec H3A 1A2, Canada
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Dean Mobbs
- Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Conca F, Borsa VM, Cappa SF, Catricalà E. The multidimensionality of abstract concepts: A systematic review. Neurosci Biobehav Rev 2021; 127:474-491. [PMID: 33979574 DOI: 10.1016/j.neubiorev.2021.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The neuroscientific study of conceptual representation has largely focused on categories of concrete entities (biological entities, tools…), while abstract knowledge has been less extensively investigated. The possible presence of a categorical organization of abstract knowledge is a debated issue. An embodied cognition framework predicts an organization of the abstract domain into different dimensions, grounded in the brain regions engaged by the corresponding experience. Here we review the types of experience that have been proposed to characterize different categories of abstract concepts, and the evidence supporting a corresponding organization derived from behavioural, neuroimaging (i.e., fMRI, MRI, PET, SPECT), EEG, and neurostimulation (i.e., TMS) studies in healthy and clinical populations. The available data provide substantial converging evidence in favour of the presence of distinct neural representations of social and emotional knowledge, mental states and magnitude concepts, engaging brain systems involved in the corresponding experiences. This evidence is supporting an extension of embodied models of semantic memory organization to several types of abstract knowledge.
Collapse
Affiliation(s)
- F Conca
- Institute for Advanced Studies, IUSS, Pavia, Italy; IRCCS Fondazione Istituto Neurologico Casimiro Mondino, Pavia, Italy
| | - V M Borsa
- Università degli Studi di Bergamo, Bergamo, Italy
| | - S F Cappa
- Institute for Advanced Studies, IUSS, Pavia, Italy; IRCCS Fondazione Istituto Neurologico Casimiro Mondino, Pavia, Italy.
| | - E Catricalà
- Institute for Advanced Studies, IUSS, Pavia, Italy
| |
Collapse
|
11
|
Gunia A, Moraresku S, Vlček K. Brain mechanisms of visuospatial perspective-taking in relation to object mental rotation and the theory of mind. Behav Brain Res 2021; 407:113247. [PMID: 33745982 DOI: 10.1016/j.bbr.2021.113247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022]
Abstract
Visuospatial perspective-taking (VPT) is a process of imagining what can be seen and how a scene looks from a location and orientation in space that differs from one's own. It comprises two levels that are underpinned by distinct neurocognitive processes. Level-2 VPT is often studied in relation to two other cognitive phenomena, object mental rotation (oMR) and theory of mind (ToM). With the aim to describe the broad picture of neurocognitive processes underlying level-2 VPT, here we give an overview of the recent behavioral and neuroscientific findings of level-2 VPT. We discuss its relation to level-1 VPT, which is also referred to as perspective-tracking, and the neighboring topics, oMR and ToM. Neuroscientific research shows that level-2 VPT is a diverse cognitive process, encompassing functionally distinct neural circuits. It shares brain substrates with oMR, especially those parietal brain areas that are specialized in spatial reasoning. However, compared to oMR, level-2 VPT involves additional activations in brain structures that are typically involved in ToM tasks and deal with self/other distinctions. In addition, level-2 VPT has been suggested to engage brain areas coding for internal representations of the body. Thus, the neurocognitive model underpinning level-2 VPT can be understood as a combination of visuospatial processing with social cognition and body schema representations.
Collapse
Affiliation(s)
- Anna Gunia
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic.
| | - Sofiia Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic.
| | - Kamil Vlček
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
12
|
Watanabe R, Katsuyama N, Usui N, Taira M. Effects of pseudoexperience on the understanding of hemiplegic movements in physical therapists: An fMRI study. NEUROIMAGE-CLINICAL 2019; 23:101845. [PMID: 31075556 PMCID: PMC6510960 DOI: 10.1016/j.nicl.2019.101845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022]
Abstract
Physical therapists (PTs) are required to obtain an accurate understanding of the physical and mental states of their patients through observational assessment. To perform comprehensive observational assessments of patients' movements, PTs likely need to engage their own neural systems involved in action understanding and theory of mind, such as the action observation network (AON) and the right temporoparietal junction (rTPJ). Both systems are modulated by the observer's actual experience with the observed movements. Although, most PTs do not have physical experience with neurological disabilities, they routinely examine hemiplegic movements in stroke patients, and are thus considered to have acquired pseudoexperience with hemiplegia. We hypothesized that the PTs' pseudoexperience with hemiplegia would modulate the neural system associated with the understanding of others to elaborately comprehend the physical and mental states associated with hemiplegia. To investigate our hypothesis, we recruited 19 PTs and 19 naïve participants (NPs) to undergo functional MRI (fMRI) for cortical activity measurement while viewing videos of hemiplegic (HHM) and non-hemiplegic (non-HHM) hand movements. The participants subsequently viewed the same videos again outside the MRI scanner, and evaluated the observed hand movements via a questionnaire. Compared to the NPs, the PTs showed greater activation in the AON and rTPJ while observing HHMs. Psychophysiological interaction analyses revealed increased connectivity between the rTPJ and AON when the PTs viewed the HHMs. Behavioral analyses further indicated that the PTs more accurately assessed feeling states associated with HHMs than did NPs. These findings suggest that the PTs' pseudoexperience modulates the AON and rTPJ, enabling them to better understand hemiplegia-associated feeling states.
Collapse
Affiliation(s)
- Rui Watanabe
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 MD Tower 7F Yusima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Narumi Katsuyama
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 MD Tower 7F Yusima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Nobuo Usui
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 MD Tower 7F Yusima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Masato Taira
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 MD Tower 7F Yusima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
13
|
Meta-analysis of the moral brain: patterns of neural engagement assessed using multilevel kernel density analysis. Brain Imaging Behav 2019; 14:534-547. [PMID: 30706370 DOI: 10.1007/s11682-019-00035-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neuroimaging literature in moral cognition has rapidly developed in the last decade with more than 200 publications on the topic. Neuroimaging based models generally agree that limbic regions work with medial prefrontal and temporal regions during moral processing to integrate emotional, social, and cognitive elements into decision-making. However, no quantitative work has been done examining neural response across types of moral cognition tasks. This paper uses Multilevel Kernel Density Analysis (MKDA) to conduct neuroimaging meta-analyses of the moral cognitive literature. MKDA replicated previous findings of the neural correlates of moral cognition: the left amygdala, medial prefrontal cortex, bilateral temporoparietal junction, and posterior cingulate. Random forest algorithms classified neural features as belonging to simple/utilitarian moral dilemmas, explicit/implicit moral tasks, and word/picture moral stimuli tasks; in combination with univariate contrast analyses, these results indicated a distinct pattern of processing for each of the members of these paradigm pairs. Overall, the results emphasize that the task selected for use in a moral cognition neuroimaging study is vital for the elicitation and interpretation of results. It also replicates and re-establishes the neural basis for moral processing, especially important in light of implementation errors in previous meta-analysis.
Collapse
|