1
|
Hedjar L, Martinovic J, Andersen SK, Shapiro AG. Separation of luminance and contrast modulation in steady-state visual evoked potentials. Vision Res 2025; 230:108567. [PMID: 40054086 DOI: 10.1016/j.visres.2025.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 04/23/2025]
Abstract
Neurons in the retina and early visual cortex respond primarily to local luminance contrast rather than overall luminance energy. The distinction between luminance and contrast processing is revealed in its most striking form by the contrast asynchrony paradigm: two discs with bright and dark surrounds modulate in luminance. When the discs modulate at 3-6 Hz, there is a percept of antiphase flicker even though the luminance modulation of the patches is in phase. To establish the neural basis of this perceptual phenomenon, we conducted a study using steady-state visual evoked potentials (SSVEPs) aiming to identify specific contrast and luminance signals. Deconstructing contrast asynchrony into its constituent elements, we displayed eight discs modulating sinusoidally from dark to bright on one of three backgrounds (bright, midgray, dark). In the first experiment, disc modulation and background luminances spanned a narrow range (30-34 cd/m2) to avoid VEP saturation (Weber contrast ≤15.5%) at two frequencies: 3 Hz, falling inside the contrast asynchrony temporal range, and 7.14 Hz, falling outside this range. In the second experiment, luminances and contrasts spanned a large range (0-64 cd/m2) at three frequencies (3, 5, 7.14 Hz) to evaluate the degree to which VEP response non-linearities would affect observed data patterns. With lower contrast modulation at 3 Hz, SSVEP amplitudes and phases correspond to the temporal signatures of contrast - not luminance - modulation. However, at higher frequencies and/or contrasts, this orderly pattern was largely replaced by more complex patterns that no longer directly corresponded to the luminance or contrast of the stimulus.
Collapse
Affiliation(s)
- Laysa Hedjar
- Justus-Liebig-Universität Gießen, Gießen, Germany.
| | | | - Søren K Andersen
- University of Southern Denmark, Denmark; University of Aberdeen, Scotland, United Kingdom
| | | |
Collapse
|
2
|
Jiang R, Chang S, Yu XP, Meng M. Contextual Binocular Imbalance Impairs Local Stereopsis. Invest Ophthalmol Vis Sci 2025; 66:6. [PMID: 40035726 PMCID: PMC11892528 DOI: 10.1167/iovs.66.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
Purpose Binocular imbalance is known to inhibit stereopsis. This study investigates whether an imbalanced context around stereo stimuli also affects local stereopsis and explores the underlying mechanisms. Methods Three experiments were conducted with normally sighted participants. Experiment 1 measured local stereo detection thresholds under three context conditions: binocular balance (0.5 vs. 0.5 contrast), left-eye dominance (0.8 vs. 0.2 contrast), and right-eye dominance (0.2 vs. 0.8 contrast). Experiment 2 assessed the modulation of the imbalance effect by context-target collinearity. Experiment 3 examined the imbalance effect with binocular fusion and rivalry context stimuli. Results In experiment 1, the average stereo threshold was 62.4 arcsec in the binocular balance condition, elevated to 111.4 arcsec in the left-eye dominance (P = 0.003), and 114.7 arcsec in the right-eye dominance (P < 0.001), with no significant difference between the two imbalance conditions (P = 0.650). Experiment 2 showed that context-target collinearity modulated the imbalance effect, resulting in a smaller threshold elevation in the non-collinear condition (P = 0.011). Experiment 3 revealed significant main effects of imbalance (P = 0.031) and rivalry (P = 0.004), with no significant interaction (P = 0.966). Conclusions Contextual binocular imbalance inhibits local stereopsis, an effect modulated by collinearity and similarly observed in both binocular integrative and suppressive contexts. These findings suggest that lateral connectivity in the primary visual cortex (V1) plays a fundamental role in stereopsis generation, offering novel approaches for clinical interventions aimed at restoring binocular balance and stereopsis.
Collapse
Affiliation(s)
- Rong Jiang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, South China Normal University, Guangzhou, China
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China
| | - Shuai Chang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xin-Ping Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Ming Meng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, South China Normal University, Guangzhou, China
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China
| |
Collapse
|
3
|
Reynaud A. Comment on: "Effects of Monocular Flicker on Binocular Imbalance in Amblyopic and Nonamblyopic Adults". Invest Ophthalmol Vis Sci 2025; 66:29. [PMID: 39932475 DOI: 10.1167/iovs.66.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Affiliation(s)
- Alexandre Reynaud
- McGill University, Research Institute of the McGill University Health Centre, Montréal, Canada. E-mail:
| |
Collapse
|
4
|
Gurman D, Reynaud A. Measuring the Interocular Delay and its Link to Visual Acuity in Amblyopia. Invest Ophthalmol Vis Sci 2024; 65:2. [PMID: 38165706 PMCID: PMC10768699 DOI: 10.1167/iovs.65.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024] Open
Abstract
Purpose Research on interocular synchronicity in amblyopia has demonstrated a deficit in synchronization (i.e., a neural processing delay) between the two eyes. Current methods for assessing interocular delay are either costly or ineffective for assessments in severe amblyopia. In this study, we adapted a novel protocol developed by Burge and Cormack based on continuous target tracking to measure the interocular delay on a wide range of amblyopes. Our main aims were to assess the accessibility of this protocol and to investigate the relationship between interocular delay and visual acuity. Methods This protocol, which consists of tracking a target undergoing random lateral motion with the mouse cursor, is performed both binocularly and monocularly. The processing speed of a given eye is computed by comparing the changes in velocity of the target and mouse via cross-correlation. The difference in processing speed between the eyes defines the interocular delay. Results Cross-correlations revealed that the amblyopic eye tends to be delayed in time compared with the fellow eye. Interocular delays fell in the range of 0.6 to 114.0 ms. The magnitude of the delay was positively correlated with differences in interocular visual acuity (R2 = 0.484; P = 0.0002). Conclusions These results demonstrate the accessibility of this new protocol and further support the link between interocular synchronicity and amblyopia. Furthermore, we determine that the interocular delay in amblyopia is best explained by a deficit in the temporal integration of the amblyopic eye.
Collapse
Affiliation(s)
- Daniel Gurman
- McGill Vision Research Unit, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| | - Alexandre Reynaud
- McGill Vision Research Unit, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Sujanthan S, Shmuel A, Mendola JD. Visually driven functional MRI techniques for characterization of optic neuropathy. Front Hum Neurosci 2022; 16:943603. [PMID: 36158617 PMCID: PMC9500431 DOI: 10.3389/fnhum.2022.943603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Optic neuropathies are conditions that cause disease to the optic nerve, and can result in loss of visual acuity and/or visual field defects. An improved understanding of how these conditions affect the entire visual system is warranted, to better predict and/or restore the visual loss. In this article, we review visually-driven functional magnetic resonance imaging (fMRI) studies of optic neuropathies, including glaucoma and optic neuritis (ON); we also discuss traumatic optic neuropathy (TON). Optic neuropathy-related vision loss results in fMRI deficit within the visual cortex, and is often strongly correlated with clinical severity measures. Using predominantly flickering checkerboard stimuli, glaucoma studies indicated retinotopic-specific cortical alteration with more prominent deficits in advanced than in early glaucoma. Some glaucoma studies indicate a reorganized visual cortex. ON studies have indicated that the impacted cortical areas are briefly hyperactive. For ON, brain deficits are greater in the acute stages of the disease, followed by (near) normalization of responses of the LGN, visual cortex, and the dorsal visual stream, but not the ventral extrastriate cortex. Visually-driven fMRI is sensitive, at least in ON, in discriminating patients from controls, as well as the affected eye from the fellow eye within patients. The use of a greater variety of stimuli beyond checkerboards (e.g., visual motion and object recognition) in recent ON studies is encouraging, and needs to continue to disentangle the results in terms of change over time. Finally, visually-driven fMRI has not yet been applied in TON, although preliminary efforts suggest it may be feasible. Future fMRI studies of optic neuropathies should consider using more complex visual stimuli, and inter-regional analysis methods including functional connectivity. We suggest that a more systematic longitudinal comparison of optic neuropathies with advanced fMRI would provide improved diagnostic and prognostic information.
Collapse
Affiliation(s)
- Sujeevini Sujanthan
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada
- *Correspondence: Sujeevini Sujanthan
| | - Amir Shmuel
- Departments of Neurology, Neurosurgery, Physiology and Biomedical Engineering, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Janine Dale Mendola
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Mitchell BA, Dougherty K, Westerberg JA, Carlson BM, Daumail L, Maier A, Cox MA. Stimulating both eyes with matching stimuli enhances V1 responses. iScience 2022; 25:104182. [PMID: 35494250 PMCID: PMC9038564 DOI: 10.1016/j.isci.2022.104182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Neurons in the primary visual cortex (V1) of primates play a key role in combining monocular inputs to form a binocular response. Although much has been gleaned from studying how V1 responds to discrepant (dichoptic) images, equally important is to understand how V1 responds to concordant (dioptic) images in the two eyes. Here, we investigated the extent to which concordant, balanced, zero-disparity binocular stimulation modifies V1 responses to varying stimulus contrast using intracranial multielectrode arrays. On average, binocular stimuli evoked stronger V1 activity than their monocular counterparts. This binocular facilitation scaled most proportionately with contrast during the initial transient. As V1 responses evolved, additional contrast-mediated dynamics emerged. Specifically, responses exhibited longer maintenance of facilitation for lower contrast and binocular suppression at high contrast. These results suggest that V1 processes concordant stimulation of both eyes in at least two sequential steps: initial response enhancement followed by contrast-dependent control of excitation.
Collapse
Affiliation(s)
- Blake A. Mitchell
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Kacie Dougherty
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jacob A. Westerberg
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Brock M. Carlson
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Loïc Daumail
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Alexander Maier
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Michele A. Cox
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
7
|
Wang X, Liao M, Song Y, Liu L, Reynaud A. Delayed Correction for Extrapolation in Amblyopia. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34932060 PMCID: PMC8711015 DOI: 10.1167/iovs.62.15.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose It has been suggested that amblyopes present impaired motion extrapolation mechanisms. In this study, we used the flash grab effect (FGE), the illusory mislocalization of a briefly flashed stimulus in the direction of a reversing moving background, to investigate whether the amblyopic visual system can correct overextrapolation. Methods Thirteen amblyopes and 13 control subjects participated in the experiment. We measured the monocular FGE magnitude for each subject. Two spatial frequency (2 and 8 cycles), two texture configurations (square wave or sine wave), and two speed conditions (270 degrees/s and 67.5 degrees/s) were tested. In addition, control subjects were further tested in reduced luminance conditions. Results Compared with controls, amblyopes exhibited a larger FGE magnitude both in their fellow eye (FE) and amblyopic eye (AE). The FGE magnitude of their AE was significantly larger than that of the FE. In a control experiment, we observed that the FGE magnitude increases with the decreasing of the luminance. The FGE magnitude of amblyopes fall into the same range as that of controls under reduced luminance conditions. Conclusions We observed a lager FGE in patients with amblyopia, which indicates that the amblyopic visual system does not accurately correct the overextrapolation when a moving object abruptly reverses its direction. This spatiotemporal processing deficit could be ascribed to delayed visual processing in the amblyopic visual system.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Liao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Song
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Alexandre Reynaud
- McGill Vision Research Unit, Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Baker DH, Vilidaite G, Wade AR. Steady-state measures of visual suppression. PLoS Comput Biol 2021; 17:e1009507. [PMID: 34644292 PMCID: PMC8544832 DOI: 10.1371/journal.pcbi.1009507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
In the early visual system, suppression occurs between neurons representing different stimulus properties. This includes features such as orientation (cross-orientation suppression), eye-of-origin (interocular suppression) and spatial location (surround suppression), which are thought to involve distinct anatomical pathways. We asked if these separate routes to suppression can be differentiated by their pattern of gain control on the contrast response function measured in human participants using steady-state electroencephalography. Changes in contrast gain shift the contrast response function laterally, whereas changes in response gain scale the function vertically. We used a Bayesian hierarchical model to summarise the evidence for each type of gain control. A computational meta-analysis of 16 previous studies found the most evidence for contrast gain effects with overlaid masks, but no clear evidence favouring either response gain or contrast gain for other mask types. We then conducted two new experiments, comparing suppression from four mask types (monocular and dichoptic overlay masks, and aligned and orthogonal surround masks) on responses to sine wave grating patches flickering at 5Hz. At the occipital pole, there was strong evidence for contrast gain effects in all four mask types at the first harmonic frequency (5Hz). Suppression generally became stronger at more lateral electrode sites, but there was little evidence of response gain effects. At the second harmonic frequency (10Hz) suppression was stronger overall, and involved both contrast and response gain effects. Although suppression from different mask types involves distinct anatomical pathways, gain control processes appear to serve a common purpose, which we suggest might be to suppress less reliable inputs.
Collapse
Affiliation(s)
- Daniel H. Baker
- Department of Psychology and York Biomedical Research Institute, University of York, York, United Kingdom
| | - Greta Vilidaite
- School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Alex R. Wade
- Department of Psychology and York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
9
|
Novozhilova S, Reynaud A, Hess RF. Short-term monocular deprivation induces an interocular delay. Vision Res 2021; 187:6-13. [PMID: 34102566 DOI: 10.1016/j.visres.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Short term monocular deprivation modulates ocular dominance, such that the previously deprived eye's contribution to the binocular percept increases, supposedly as a result of changes in contrast-gain. Therefore, the processing time of the previously patched eye would be expected to speed up as a result of an increase in contrast gain. In order to test this hypothesis, this study examines the effects of short-term monocular deprivation on interocular synchronicity. The present study uses a paradigm based on the Pulfrich phenomenon. The stimulus used for testing consists of elements defining a cylinder rotating in depth, that allows measurement of any interocular delay. The interocular delay was measured at baseline before patching and at outcome, after one hour of monocular deprivation with an opaque or translucent patch. Contrary to expectations, short-term monocular deprivation induces an interocular delay, albeit not always significant, in the previously patched eye. The amplitude of this effect is larger with opaque patching compared to translucent patching. These results are the first report of a non-beneficial effect - i.e. a slowing down in the processing time of the previously patched-eye. They indicate that the plasticity effects of monocular deprivation are not exclusively mediated by contrast gain mechanisms and that light adaptation mechanisms might also be involved in the plasticity resulting from short-term monocular deprivation.
Collapse
Affiliation(s)
- Sasha Novozhilova
- McGill Vision Research, Dept. of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Alexandre Reynaud
- McGill Vision Research, Dept. of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
| | - Robert F Hess
- McGill Vision Research, Dept. of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Qiu S, Caldwell C, You J, Mendola J. Binocular rivalry from luminance and contrast. Vision Res 2020; 175:41-50. [DOI: 10.1016/j.visres.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
|
11
|
Gong L, Min SH, Chen S, Wei J, Kong D, Tao C, Zhang P, Huang PC, Zhou J. Reduced Monocular Luminance Increases Monocular Temporal Synchrony Threshold in Human Adults. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32609295 PMCID: PMC7425744 DOI: 10.1167/iovs.61.8.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to present our investigation of the influence of reduced monocular luminance on monocular and dichoptic temporal synchrony processing in healthy adults. Methods Ten adults with normal or corrected to normal visual acuity participated in our psychophysical study. The temporal synchrony threshold in dichoptic (experiment 1), monocular (experiment 2), and binocular (experiment 3) viewing configurations was obtained from each observer. Four flickering Gaussian dots (one synchronous and one asynchronous pair of two dots) were displayed, from which the observers were asked to identify the asynchronous pair. The temporal phase lag in the signal pair (asynchronous) but not in the reference pair (synchronous) was varied. In addition, a neutral density (ND) filter of various intensities (1.3 and 2.0 log units) was placed before the dominant eye throughout the behavioral measurement. In the end, dichoptic, monocular, and binocular thresholds were measured for each observer. Results With decreasing monocular luminance, the dichoptic threshold (2 ND vs. 0 ND, P < 0.001; 2 ND vs. 1.3 ND P = 0.001) and monocular threshold (2 ND vs. 0 ND, P < 0.001; 2 ND vs. 1.3 ND, P = 0.003) increased; however, the bincoular threshold remained unaffected (P = 0.576). Conclusions Reduced luminance induces delay and disturbs the discrimination of temporal synchrony. Our findings have clinical implications in visual disorders.
Collapse
|
12
|
Contrast Normalization Accounts for Binocular Interactions in Human Striate and Extra-striate Visual Cortex. J Neurosci 2020; 40:2753-2763. [PMID: 32060172 DOI: 10.1523/jneurosci.2043-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 01/23/2023] Open
Abstract
During binocular viewing, visual inputs from the two eyes interact at the level of visual cortex. Here we studied binocular interactions in human visual cortex, including both sexes, using source-imaged steady-state visual evoked potentials over a wide range of relative contrast between two eyes. The ROIs included areas V1, V3a, hV4, hMT+, and lateral occipital cortex. Dichoptic parallel grating stimuli in each eye modulated at distinct temporal frequencies allowed us to quantify spectral components associated with the individual stimuli from monocular inputs (self-terms) and responses due to interaction between the inputs from the two eyes (intermodulation [IM] terms). Data with self-terms revealed an interocular suppression effect, in which the responses to the stimulus in one eye were reduced when a stimulus was presented simultaneously to the other eye. The suppression magnitude varied depending on visual area, and the relative contrast between the two eyes. Suppression was strongest in V1 and V3a (50% reduction) and was least in lateral occipital cortex (20% reduction). Data with IM terms revealed another form of binocular interaction, compared with self-terms. IM response was strongest at V1 and was least in hV4. Fits of a family of divisive gain control models to both self- and IM-term responses within each cortical area indicated that both forms of binocular interaction shared a common gain control nonlinearity. However, our model fits revealed different patterns of binocular interaction along the cortical hierarchy, particularly in terms of excitatory and suppressive contributions.SIGNIFICANCE STATEMENT Using source-imaged steady-state visual evoked potentials and frequency-domain analysis of dichoptic stimuli, we measured two forms of binocular interactions: one is associated with the individual stimuli that represent interocular suppression from each eye, and the other is a direct measure of interocular interaction between inputs from the two eyes. We demonstrated that both forms of binocular interactions share a common gain control mechanism in striate and extra-striate cortex. Furthermore, our model fits revealed different patterns of binocular interaction along the visual cortical hierarchy, particularly in terms of excitatory and suppressive contributions.
Collapse
|
13
|
Min SH, Baldwin AS, Hess RF. Ocular dominance plasticity: A binocular combination task finds no cumulative effect with repeated patching. Vision Res 2019; 161:36-42. [DOI: 10.1016/j.visres.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 01/29/2023]
|
14
|
Richard B, Chadnova E, Baker DH. Binocular vision adaptively suppresses delayed monocular signals. Neuroimage 2018; 172:753-765. [PMID: 29454106 DOI: 10.1016/j.neuroimage.2018.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
A neutral density filter placed before one eye will produce a dichoptic imbalance in luminance, which attenuates responses to visual stimuli and lags neural signals from retina to cortex in the filtered eye. When stimuli are presented to both the filtered and unfiltered eye (i.e., binocularly), neural responses show little attenuation and no lag compared with their baseline counterpart. This suggests that binocular visual mechanisms must suppress the attenuated and delayed input from the filtered eye; however, the mechanisms involved remain unclear. Here, we used a Steady-State Visual Evoked Potential (SSVEP) technique to measure neural responses to monocularly and binocularly presented stimuli while observers wore an ND filter in front of their dominant eye. These data were well-described by a binocular summation model, which received the sinusoidal contrast modulation of the stimulus as input. We incorporated the influence of the ND filter with an impulse response function, which adjusted the input magnitude and phase in a biophysically plausible manner. The model captured the increase in attenuation and lag of neural signals for stimuli presented to the filtered eye as a function of filter strength, while also generating the filter phase-invariant responses from binocular presentation for EEG and psychophysical data. These results clarify how binocular visual mechanisms-specifically interocular suppression-can suppress the delayed and attenuated signals from the filtered eye and maintain normal neural signals under imbalanced luminance conditions.
Collapse
Affiliation(s)
- Bruno Richard
- Department of Psychology, The University of York, Heslington, York, United Kingdom; Department of Mathematics and Computer Science, Rutgers University Newark, Newark, NJ, USA.
| | - Eva Chadnova
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Daniel H Baker
- Department of Psychology, The University of York, Heslington, York, United Kingdom
| |
Collapse
|