1
|
Lo YW, Lin KH, Lee CY, Li CW, Lin CY, Chen YW, Wang LW, Wu YH, Huang WS. The impact of ZTE-based MR attenuation correction compared to CT-AC in 18F-FBPA PET before boron neutron capture therapy. Sci Rep 2024; 14:13950. [PMID: 38886395 PMCID: PMC11183148 DOI: 10.1038/s41598-024-63248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumor-to-normal ratio (T/N) measurement of 18F-FBPA is crucial for patient eligibility to receive boron neutron capture therapy. This study aims to compare the difference in standard uptake value ratios on brain tumors and normal brains using PET/MR ZTE and atlas-based attenuation correction with the current standard PET/CT attenuation correction. Regarding the normal brain uptake, the difference was not significant between PET/CT and PET/MR attenuation correction methods. The T/N ratio of PET/CT-AC, PET/MR ZTE-AC and PET/MR AB-AC were 2.34 ± 0.95, 2.29 ± 0.88, and 2.19 ± 0.80, respectively. The T/N ratio comparison showed no significance using PET/CT-AC and PET/MR ZTE-AC. As for the PET/MRI AB-AC, significantly lower T/N ratio was observed (- 5.18 ± 9.52%; p < 0.05). The T/N difference between ZTE-AC and AB-AC was also significant (4.71 ± 5.80%; p < 0.01). Our findings suggested PET/MRI imaging using ZTE-AC provided superior quantification on 18F-FBPA-PET compared to atlas-based AC. Using ZTE-AC on 18F-FBPA-PET /MRI might be crucial for BNCT pre-treatment planning.
Collapse
Affiliation(s)
- Yi-Wen Lo
- Integrated PET/MR Imaging Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan ROC
- Clinical Imaging Research Center (CIRC), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ko-Han Lin
- Integrated PET/MR Imaging Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan ROC.
| | - Chien-Ying Lee
- Integrated PET/MR Imaging Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan ROC
| | | | | | - Yi-Wei Chen
- Division of Radiotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan ROC
| | - Ling-Wei Wang
- Division of Radiotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan ROC
| | - Yuan-Hung Wu
- Division of Radiotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan ROC
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Taipei, Taiwan ROC.
| |
Collapse
|
2
|
Okazawa H, Nogami M, Ishida S, Makino A, Mori T, Kiyono Y, Ikawa M. PET/MRI multimodality imaging to evaluate changes in glymphatic system function and biomarkers of Alzheimer's disease. Sci Rep 2024; 14:12310. [PMID: 38811627 PMCID: PMC11137097 DOI: 10.1038/s41598-024-62806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
The glymphatic system is considered to play a pivotal role in the clearance of disease-causing proteins in neurodegenerative diseases. This study employed MR diffusion tensor imaging (DTI) to evaluate glymphatic system function and its correlation with brain amyloid accumulation levels measured using [11C]Pittsburgh compound-B (PiB) PET/MRI. Fifty-six patients with mild cognitive impairment and early Alzheimer's disease (AD: 70 ± 11 y) underwent [11C]PiB PET/MRI to assess amyloid deposition and were compared with 27 age-matched cognitively normal volunteers (CN: 69 ± 10y). All participants were evaluated for cognitive function using the Mini Mental State Examination (MMSE) before [11C]PiB PET/MRI. DTI images were acquired during the PET/MRI scan with several other MR sequences. The DTI analysis along the perivascular space index (DTI-ALPS index) was calculated to estimate the functional activity of the glymphatic system. Centiloid scale was applied to quantify amyloid deposition levels from [11C]PiB PET images. All patients in the AD group showed positive [11C]PiB accumulation, whereas all CN participants were negative. ALPS-index for all subjects linearly correlated with PiB centiloid, MMSE scores, and hippocampal volume. The correlation between the ALPS-index and PiB accumulation was more pronounced than with any other biomarkers. These findings suggest that glymphatic system dysfunction is a significant factor in the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.
| | - Munenobu Nogami
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
- Department of Radiology, Kobe University Hospital, Kobe, Japan
| | | | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
- Department of Community Health Science, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
3
|
Sousa JM, Appel L, Engström M, Nyholm D, Ahlström H, Lubberink M. Comparison of quantitative [ 11C]PE2I brain PET studies between an integrated PET/MR and a stand-alone PET system. Phys Med 2024; 117:103185. [PMID: 38042064 DOI: 10.1016/j.ejmp.2023.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
PET/MR systems demanded great efforts for accurate attenuation correction (AC) but differences in technology, geometry and hardware attenuation may also affect quantitative results. Dedicated PET systems using transmission-based AC are regarded as the gold standard for quantitative brain PET. The study aim was to investigate the agreement between quantitative PET outcomes from a PET/MR scanner against a stand-alone PET system. Nine patients with Parkinsonism underwent two 80-min dynamic PET scans with the dopamine transporter ligand [11C]PE2I. Images were reconstructed with resolution-matched settings using 68Ge-transmission (stand-alone PET), and zero-echo-time MR (PET/MR) scans for AC. Non-displaceable binding potential (BPND) and relative delivery (R1) were evaluated using volumes of interest and voxel-wise analysis. Correlations between systems were high (r ≥ 0.85) for both quantitative outcome parameters in all brain regions. Striatal BPND was significantly lower on PET/MR than on stand-alone PET (-7%). R1 was significantly overestimated in posterior cortical regions (9%) and underestimated in striatal (-9%) and limbic areas (-6%). The voxel-wise evaluation revealed that the MR-safe headphones caused a negative bias in both parametric BPND and R1 images. Additionally, a significant positive bias of R1 was found in the auditory cortex, most likely due to the acoustic background noise during MR imaging. The relative bias of the quantitative [11C]PE2I PET data acquired from a SIGNA PET/MR system was in the same order as the expected test-retest reproducibility of [11C]PE2I BPND and R1, compared to a stand-alone ECAT PET scanner. MR headphones and background noise are potential sources of error in functional PET/MR studies.
Collapse
Affiliation(s)
- João M Sousa
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | - Lieuwe Appel
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden; Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Mark Lubberink
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
DE Luca F, Bolin M, Blomqvist L, Wassberg C, Martin H, Falk Delgado A. 11C-methionine PET/MRI in postoperative patients after craniotomy: zero echo time and head atlas versus CT-based attenuation correction. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:215-222. [PMID: 35119249 DOI: 10.23736/s1824-4785.22.03389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Attenuation correction (AC) is an important topic in PET/MRI and particularly challenging after brain tumor surgery, near metal implants, adjacent bone and burr holes. In this study, we evaluated the performance of two MR-driven AC methods, zero-echo-time AC (ZTE-AC) and atlas-AC, in comparison to reference standard CT-AC in patients with surgically treated brain tumors at 11C-methionine PET/MRI. METHODS This retrospective study investigated seven postoperative patients with neuropathologically confirmed brain tumor at 11C-methionine PET/MRI. Three AC maps - ZTE-AC, atlas-AC and reference standard CT-AC - were generated for each patient. Standardized uptake values (SUV) were obtained at the metal implant, adjacent bone and burr hole. Standard uptake ratio (SUR) SURmetal/mirror, SURbone/mirror and SURburrhole/mirror were then calculated and analyzed with Bland-Altman, Pearson correlation and intraclass correlation reliability. RESULTS Smaller mean percent bias range (Bland-Altman) was found for ZTE-AC than atlas-AC in all analyses (metal ZTE -0.46 to -0.02, metal atlas -3.57 to -3.26; bone ZTE -4.60 to -2.16, bone atlas -5.25 to -3.81; burr hole ZTE -0.95 to -0.52, burr hole atlas 7.86 to 8.87). Percent SD range (Bland-Altman) was large for both methods in all analyses, with lower absolute values for ZTE-AC (ZTE 7.02-8.49; atlas 11.47-14.83). A very strong correlation (Pearson correlation) was demonstrated for both methods compared to CT-AC (ZTE ρ 0.97-0.99, P<0.001; atlas ρ 0.88-0.91, P≤0.009) with higher absolute values for ZTE. An excellent intraclass correlation coefficient was found across all analyses for ZTE, atlas and CT maps (ICC ≥0.88). CONCLUSIONS ZTE for MR-driven PET attenuation correction presented a more comparable performance to reference standard CT-AC at the postoperative site. ZTE-AC may serve as a useful diagnostic tool for MR-driven AC in patients with surgically treated brain tumors.
Collapse
Affiliation(s)
- Francesca DE Luca
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden -
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden -
| | - Martin Bolin
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lennart Blomqvist
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery Karolinska Institute, Solna, Sweden
| | - Cecilia Wassberg
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Heather Martin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Falk Delgado
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Wiesinger F, Ho ML. Zero-TE MRI: principles and applications in the head and neck. Br J Radiol 2022; 95:20220059. [PMID: 35616709 PMCID: PMC10162052 DOI: 10.1259/bjr.20220059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
Zero echo-time (ZTE) MRI is a novel imaging technique that utilizes ultrafast readouts to capture signal from short-T2 tissues. Additional sequence advantages include rapid imaging times, silent scanning, and artifact resistance. A robust application of this technology is imaging of cortical bone without the use of ionizing radiation, thus representing a viable alternative to CT for both rapid screening and "one-stop-shop" MRI. Although ZTE is increasingly used in musculoskeletal and body imaging, neuroimaging applications have historically been limited by complex anatomy and pathology. In this article, we review the imaging physics of ZTE including pulse sequence options, practical limitations, and image reconstruction. We then discuss optimization of settings for ZTE bone neuroimaging including acquisition, processing, segmentation, synthetic CT generation, and artifacts. Finally, we examine clinical utility of ZTE in the head and neck with imaging examples including malformations, trauma, tumors, and interventional procedures.
Collapse
Affiliation(s)
| | - Mai-Lan Ho
- Nationwide Children’s Hospital and The Ohio State University, Columbus, USA
| |
Collapse
|
6
|
Okazawa H, Ikawa M, Tsujikawa T, Mori T, Makino A, Kiyono Y, Nakamoto Y, Kosaka H, Yoneda M. Cerebral Oxidative Stress in Early Alzheimer's Disease Evaluated by 64Cu-ATSM PET/MRI: A Preliminary Study. Antioxidants (Basel) 2022; 11:1022. [PMID: 35624886 PMCID: PMC9138060 DOI: 10.3390/antiox11051022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress imaging using diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM) was applied to the evaluation of patients with early Alzheimer's disease (eAD). Ten eAD patients (72 ± 9 years) and 10 age-matched healthy controls (HCs) (73 ± 9 years) participated in this study. They underwent dynamic PET/MRI using 11C-PiB and 64Cu-ATSM with multiple MRI sequences. To evaluate cerebral oxidative stress, three parameters of 64Cu-ATSM PET were compared: standardized uptake value (SUV), tracer influx rate (Kin), and a rate constant k3. The input functions were estimated by the image-derived input function method. The relative differences were analyzed by statistical parametric mapping (SPM) using SUV and Kin images. All eAD patients had positive and HC subjects had negative PiB accumulation, and MMSE scores were significantly different between them. The 64Cu-ATSM accumulation tended to be higher in eAD than in HCs for both SUV and Kin. When comparing absolute values, eAD patients had a greater Kin in the posterior cingulate cortex and a greater k3 in the hippocampus compared with lobar cortical values of HCs. In SPM analysis, eAD had an increased left operculum and decreased bilateral hippocampus and anterior cingulate cortex compared to HCs. 64Cu-ATSM PET/MRI and tracer kinetic analysis elucidated cerebral oxidative stress in the eAD patients, particularly in the cingulate cortex and hippocampus.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Makoto Yoneda
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
- Faculty of Nursing and Social Welfare Science, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
7
|
Lindén J, Teuho J, Teräs M, Klén R. Evaluation of three methods for delineation and attenuation estimation of the sinus region in MR-based attenuation correction for brain PET-MR imaging. BMC Med Imaging 2022; 22:48. [PMID: 35300592 PMCID: PMC8928695 DOI: 10.1186/s12880-022-00770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background Attenuation correction is crucial in quantitative positron emission tomography-magnetic resonance (PET-MRI) imaging. We evaluated three methods to improve the segmentation and modelling of the attenuation coefficients in the nasal sinus region. Two methods (cuboid and template method) included a MRI-CT conversion model for assigning the attenuation coefficients in the nasal sinus region, whereas one used fixed attenuation coefficient assignment (bulk method). Methods The study population consisted of data of 10 subjects which had undergone PET-CT and PET-MRI. PET images were reconstructed with and without time-of-flight (TOF) using CT-based attenuation correction (CTAC) as reference. Comparison was done visually, using DICE coefficients, correlation, analyzing attenuation coefficients, and quantitative analysis of PET and bias atlas images. Results The median DICE coefficients were 0.824, 0.853, 0.849 for the bulk, cuboid and template method, respectively. The median attenuation coefficients were 0.0841 cm−1, 0.0876 cm−1, 0.0861 cm−1 and 0.0852 cm−1, for CTAC, bulk, cuboid and template method, respectively. The cuboid and template methods showed error of less than 2.5% in attenuation coefficients. An increased correlation to CTAC was shown with the cuboid and template methods. In the regional analysis, improvement in at least 49% and 80% of VOI was seen with non-TOF and TOF imaging. All methods showed errors less than 2.5% in non-TOF and less than 2% in TOF reconstructions. Conclusions We evaluated two proof-of-concept methods for improving quantitative accuracy in PET/MRI imaging and showed that bias can be further reduced by inclusion of TOF. Largest improvements were seen in the regions of olfactory bulb, Heschl's gyri, lingual gyrus and cerebellar vermis. However, the overall effect of inclusion of the sinus region as separate class in MRAC to PET quantification in the brain was considered modest. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-022-00770-0.
Collapse
Affiliation(s)
- Jani Lindén
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland. .,Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, 20014, Turku, Finland.
| | - Jarmo Teuho
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Hämeentie 11, 20521, Turku, Finland
| | - Mika Teräs
- Department of Medical Physics, Turku University Hospital, Hämeentie 11, 20521, Turku, Finland.,Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland
| |
Collapse
|
8
|
Smith M, Bambach S, Selvaraj B, Ho ML. Zero-TE MRI: Potential Applications in the Oral Cavity and Oropharynx. Top Magn Reson Imaging 2021; 30:105-115. [PMID: 33828062 DOI: 10.1097/rmr.0000000000000279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Zero-echo time (ZTE) magnetic resonance imaging (MRI) is the newest in a family of MRI pulse sequences that involve ultrafast sequence readouts, permitting visualization of short-T2 tissues such as cortical bone. Inherent sequence properties enable rapid, high-resolution, quiet, and artifact-resistant imaging. ZTE can be performed as part of a "one-stop-shop" MRI examination for comprehensive evaluation of head and neck pathology. As a potential alternative to computed tomography for bone imaging, this approach could help reduce patient exposure to ionizing radiation and improve radiology resource utilization. Because ZTE is not yet widely used clinically, it is important to understand the technical limitations and pitfalls for diagnosis. Imaging cases are presented to demonstrate potential applications of ZTE for imaging of oral cavity, oropharynx, and jaw anatomy and pathology in adult and pediatric patients. Emerging studies indicate promise for future clinical implementation based on synthetic computed tomography image generation, 3D printing, and interventional applications.
Collapse
Affiliation(s)
- Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH
| | - Sven Bambach
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Bhavani Selvaraj
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
9
|
Sousa JM, Appel L, Merida I, Heckemann RA, Costes N, Engström M, Papadimitriou S, Nyholm D, Ahlström H, Hammers A, Lubberink M. Accuracy and precision of zero-echo-time, single- and multi-atlas attenuation correction for dynamic [ 11C]PE2I PET-MR brain imaging. EJNMMI Phys 2020; 7:77. [PMID: 33369700 PMCID: PMC7769756 DOI: 10.1186/s40658-020-00347-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A valid photon attenuation correction (AC) method is instrumental for obtaining quantitatively correct PET images. Integrated PET/MR systems provide no direct information on attenuation, and novel methods for MR-based AC (MRAC) are still under investigation. Evaluations of various AC methods have mainly focused on static brain PET acquisitions. In this study, we determined the validity of three MRAC methods in a dynamic PET/MR study of the brain. METHODS Nine participants underwent dynamic brain PET/MR scanning using the dopamine transporter radioligand [11C]PE2I. Three MRAC methods were evaluated: single-atlas (Atlas), multi-atlas (MaxProb) and zero-echo-time (ZTE). The 68Ge-transmission data from a previous stand-alone PET scan was used as reference method. Parametric relative delivery (R1) images and binding potential (BPND) maps were generated using cerebellar grey matter as reference region. Evaluation was based on bias in MRAC maps, accuracy and precision of [11C]PE2I BPND and R1 estimates, and [11C]PE2I time-activity curves. BPND was examined for striatal regions and R1 in clusters of regions across the brain. RESULTS For BPND, ZTE-MRAC showed the highest accuracy (bias < 2%) in striatal regions. Atlas-MRAC exhibited a significant bias in caudate nucleus (- 12%) while MaxProb-MRAC revealed a substantial, non-significant bias in the putamen (9%). R1 estimates had a marginal bias for all MRAC methods (- 1.0-3.2%). MaxProb-MRAC showed the largest intersubject variability for both R1 and BPND. Standardized uptake values (SUV) of striatal regions displayed the strongest average bias for ZTE-MRAC (~ 10%), although constant over time and with the smallest intersubject variability. Atlas-MRAC had highest variation in bias over time (+10 to - 10%), followed by MaxProb-MRAC (+5 to - 5%), but MaxProb showed the lowest mean bias. For the cerebellum, MaxProb-MRAC showed the highest variability while bias was constant over time for Atlas- and ZTE-MRAC. CONCLUSIONS Both Maxprob- and ZTE-MRAC performed better than Atlas-MRAC when using a 68Ge transmission scan as reference method. Overall, ZTE-MRAC showed the highest precision and accuracy in outcome parameters of dynamic [11C]PE2I PET analysis with use of kinetic modelling.
Collapse
Affiliation(s)
- João M Sousa
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Lieuwe Appel
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rolf A Heckemann
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, King's College, London, UK
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
10
|
Ando T, Kemp B, Warnock G, Sekine T, Kaushik S, Wiesinger F, Delso G. Zero Echo Time MRAC on FDG-PET/MR Maintains Diagnostic Accuracy for Alzheimer's Disease; A Simulation Study Combining ADNI-Data. Front Neurosci 2020; 14:569706. [PMID: 33324141 PMCID: PMC7725704 DOI: 10.3389/fnins.2020.569706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Aim Attenuation correction using zero-echo time (ZTE) - magnetic resonance imaging (MRI) (ZTE-MRAC) has become one of the standard methods for brain-positron emission tomography (PET) on commercial PET/MR scanners. Although the accuracy of the net tracer-uptake quantification based on ZTE-MRAC has been validated, that of the diagnosis for dementia has not yet been clarified, especially in terms of automated statistical analysis. The aim of this study was to clarify the impact of ZTE-MRAC on the diagnosis of Alzheimer's disease (AD) by performing simulation study. Methods We recruited 27 subjects, who underwent both PET/computed tomography (CT) and PET/MR (GE SIGNA) examinations. Additionally, we extracted 107 subjects from the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset. From the PET raw data acquired on PET/MR, three FDG-PET series were generated, using two vendor-provided MRAC methods (ZTE and Atlas) and CT-based AC. Following spatial normalization to Montreal Neurological Institute (MNI) space, we calculated each patient's specific error maps, which correspond to the difference between the PET image corrected using the CTAC method and the PET images corrected using the MRAC methods. To simulate PET maps as if ADNI data had been corrected using MRAC methods, we multiplied each of these 27 error maps with each of the 107 ADNI cases in MNI space. To evaluate the probability of AD in each resulting image, we calculated a cumulative t-value using a fully automated method which had been validated not only in the original ADNI dataset but several multi-center studies. In the method, PET score = 1 is the 95% prediction limit of AD. PET score and diagnostic accuracy for the discrimination of AD were evaluated in simulated images using the original ADNI dataset as reference. Results Positron emission tomography score was slightly underestimated both in ZTE and Atlas group compared with reference CTAC (-0.0796 ± 0.0938 vs. -0.0784 ± 0.1724). The absolute error of PET score was lower in ZTE than Atlas group (0.098 ± 0.075 vs. 0.145 ± 0.122, p < 0.001). A higher correlation to the original PET score was observed in ZTE vs. Atlas group (R 2: 0.982 vs. 0.961). The accuracy for the discrimination of AD patients from normal control was maintained in ZTE and Atlas compared to CTAC (ZTE vs. Atlas. vs. original; 82.5% vs. 82.1% vs. 83.2% (CI 81.8-84.5%), respectively). Conclusion For FDG-PET images on PET/MR, attenuation correction using ZTE-MRI had superior accuracy to an atlas-based method in classification for dementia. ZTE maintains the diagnostic accuracy for AD.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | - Bradley Kemp
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Geoffrey Warnock
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,PMOD Technologies Ltd., Zurich, Switzerland
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School, Tokyo, Japan.,Department of Radiology, Nippon Medical School Musashi-Kosugi Hospital, Kawasaki, Japan.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
11
|
Zhang YD, Dong Z, Wang SH, Yu X, Yao X, Zhou Q, Hu H, Li M, Jiménez-Mesa C, Ramirez J, Martinez FJ, Gorriz JM. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2020; 64:149-187. [PMID: 32834795 PMCID: PMC7366126 DOI: 10.1016/j.inffus.2020.07.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 05/13/2023]
Abstract
Multimodal fusion in neuroimaging combines data from multiple imaging modalities to overcome the fundamental limitations of individual modalities. Neuroimaging fusion can achieve higher temporal and spatial resolution, enhance contrast, correct imaging distortions, and bridge physiological and cognitive information. In this study, we analyzed over 450 references from PubMed, Google Scholar, IEEE, ScienceDirect, Web of Science, and various sources published from 1978 to 2020. We provide a review that encompasses (1) an overview of current challenges in multimodal fusion (2) the current medical applications of fusion for specific neurological diseases, (3) strengths and limitations of available imaging modalities, (4) fundamental fusion rules, (5) fusion quality assessment methods, and (6) the applications of fusion for atlas-based segmentation and quantification. Overall, multimodal fusion shows significant benefits in clinical diagnosis and neuroscience research. Widespread education and further research amongst engineers, researchers and clinicians will benefit the field of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhengchao Dong
- Department of Psychiatry, Columbia University, USA
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Shui-Hua Wang
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- School of Architecture Building and Civil engineering, Loughborough University, Loughborough, LE11 3TU, UK
- School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, UK
| | - Xiang Yu
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Xujing Yao
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Qinghua Zhou
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Hua Hu
- Department of Psychiatry, Columbia University, USA
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China
| | - Min Li
- Department of Psychiatry, Columbia University, USA
- School of Internet of Things, Hohai University, Changzhou, China
| | - Carmen Jiménez-Mesa
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Javier Ramirez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Francisco J Martinez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
- Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK
| |
Collapse
|
12
|
De Luca F, Bolin M, Blomqvist L, Wassberg C, Martin H, Falk Delgado A. Validation of PET/MRI attenuation correction methodology in the study of brain tumours. BMC Med Imaging 2020; 20:126. [PMID: 33238917 PMCID: PMC7690209 DOI: 10.1186/s12880-020-00526-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to compare proton density weighted magnetic resonance imaging (MRI) zero echo time (ZTE) and head atlas attenuation correction (AC) to the reference standard computed tomography (CT) based AC for 11C-methionine positron emission tomography (PET)/MRI. METHODS A retrospective cohort of 14 patients with suspected or confirmed brain tumour and 11C-Methionine PET/MRI was included in the study. For each scan, three AC maps were generated: ZTE-AC, atlas-AC and reference standard CT-AC. Maximum and mean standardised uptake values (SUV) were measured in the hotspot, mirror region and frontal cortex. In postoperative patients (n = 8), SUV values were additionally obtained adjacent to the metal implant and mirror region. Standardised uptake ratios (SUR) hotspot/mirror, hotspot/cortex and metal/mirror were then calculated and analysed with Bland-Altman, Pearson correlation and intraclass correlation reliability in the overall group and subgroups. RESULTS ZTE-AC demonstrated narrower SD and 95% CI (Bland-Altman) than atlas-AC in the hotspot analysis for all groups (ZTE overall ≤ 2.84, - 1.41 to 1.70; metal ≤ 1.67, - 3.00 to 2.20; non-metal ≤ 3.04, - 0.96 to 3.38; Atlas overall ≤ 4.56, - 1.05 to 3.83; metal ≤ 3.87, - 3.81 to 4.64; non-metal ≤ 4.90, - 1.68 to 5.86). The mean bias for both ZTE-AC and atlas-AC was ≤ 2.4% compared to CT-AC. In the metal region analysis, ZTE-AC demonstrated a narrower mean bias range-closer to zero-and narrower SD and 95% CI (ZTE 0.21-0.48, ≤ 2.50, - 1.70 to 2.57; Atlas 0.56-1.54, ≤ 4.01, - 1.81 to 4.89). The mean bias for both ZTE-AC and atlas-AC was within 1.6%. A perfect correlation (Pearson correlation) was found for both ZTE-AC and atlas-AC compared to CT-AC in the hotspot and metal analysis (ZTE ρ 1.00, p < 0.0001; atlas ρ 1.00, p < 0.0001). An almost perfect intraclass correlation coefficient for absolute agreement was found between Atlas-, ZTE and CT maps for maxSUR and meanSUR values in all the analyses (ICC > 0.99). CONCLUSIONS Both ZTE and atlas-AC showed a good performance against CT-AC in patients with brain tumour.
Collapse
Affiliation(s)
- Francesca De Luca
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Martin Bolin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surger, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Blomqvist
- Department of Molecular Medicine and Surger, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Wassberg
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Heather Martin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Falk Delgado
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Okazawa H, Ikawa M, Tsujikawa T, Makino A, Mori T, Kiyono Y, Kosaka H. Noninvasive Measurement of [ 11C]PiB Distribution Volume Using Integrated PET/MRI. Diagnostics (Basel) 2020; 10:diagnostics10120993. [PMID: 33255169 PMCID: PMC7760725 DOI: 10.3390/diagnostics10120993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 11/16/2022] Open
Abstract
A noninvasive image-derived input function (IDIF) method using PET/MRI was applied to quantitative measurements of [11C] Pittsburgh compound-B (PiB) distribution volume (DV) and compared with other metrics. Fifty-three patients suspected of early dementia (71 ± 11 y) underwent 70 min [11C]PiB PET/MRI. Nineteen of them (68 ± 11 y) without head motion during the scan were enrolled in this study and compared with 16 age-matched healthy controls (CTL: 68 ± 11 y). The dynamic frames reconstructed from listmode PET data were used for DV calculation. IDIF with metabolite correction was applied to the Logan plot method, and DV was normalized into DV ratio (DVR) images using the cerebellar reference (DVRL). DVR and standardized uptake value ratio (SUVR) images were also calculated using the reference tissue graphical method (DVRr) and the 50–70 min static data with cerebellar reference, respectively. Cortical values were compared using the 3D-T1WI MRI segmentation. All patients were assigned to the early Alzheimer’s disease (eAD) group because of positive [11C]PiB accumulation. The correlations of regional values were better for DVRL vs. DVRr (r2 = 0.97) than for SUVR vs. DVRr (r2 = 0.88). However, all metrics clearly differentiated eAD from CTL with appropriate thresholds. Noninvasive quantitative [11C]PiB PET/MRI measurement provided equivalent DVRs with the two methods. SUVR images showed acceptable results despite inferior variability and image quality to DVR images.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
- Correspondence: ; Tel.: +81-776-61-8491
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
- Department of Advanced Medicine for Community Healthcare, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| |
Collapse
|
14
|
Harries J, Jochimsen TH, Scholz T, Schlender T, Barthel H, Sabri O, Sattler B. A realistic phantom of the human head for PET-MRI. EJNMMI Phys 2020; 7:52. [PMID: 32757099 PMCID: PMC7406590 DOI: 10.1186/s40658-020-00320-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET-MRI) is a unique hybrid imaging modality mainly used in oncology and neurology. The MRI-based attenuation correction (MRAC) is crucial for correct quantification of PET data. A suitable phantom to validate quantitative results in PET-MRI is currently missing. In particular, the correction of attenuation due to bone is usually not verified by commonly available phantoms. The aim of this work was, thus, the development of such a phantom and to explore whether such a phantom might be used to validate MRACs. Method Various materials were investigated for their attenuation and MR properties. For the substitution of bone, water-saturated gypsum plaster was used. The attenuation of 511 keV annihilation photons was regulated by addition of iodine. Adipose tissue was imitated by silicone and brain tissue by agarose gel, respectively. The practicability with respect to the comparison of MRACs was checked as follows: A small flask inserted into the phantom and a large spherical phantom (serving as a reference with negligible error in MRAC) were filled with the very same activity concentration. The activity concentration was measured and compared using clinical protocols on PET-MRI and different built-in and offline MRACs. The same measurements were carried out using PET-CT for comparison. Results The phantom imitates the human head in sufficient detail. All tissue types including bone were detected as such so that the phantom-based comparison of the quantification accuracy of PET-MRI was possible. Quantitatively, the activity concentration in the brain, which was determined using different MRACs, showed a deviation of about 5% on average and a maximum deviation of 11% compared to the spherical phantom. For PET-CT, the deviation was 5%. Conclusions The comparatively small error in quantification indicates that it is possible to construct a brain PET-MRI phantom that leads to MR-based attenuation-corrected images with reasonable accuracy.
Collapse
Affiliation(s)
- Johanna Harries
- Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig, Germany.,Department of Radiation Safety and Medical Physics, Medizinische Hochschule Hannover, Carl-Neuberg Straße 1, Hannover, Germany
| | - Thies H Jochimsen
- Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig, Germany.
| | - Thomas Scholz
- Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig, Germany
| | - Tina Schlender
- Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig, Germany
| |
Collapse
|
15
|
The impact of atlas-based MR attenuation correction on the diagnosis of FDG-PET/MR for Alzheimer's diseases- A simulation study combining multi-center data and ADNI-data. PLoS One 2020; 15:e0233886. [PMID: 32492074 PMCID: PMC7269241 DOI: 10.1371/journal.pone.0233886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Background The purpose of this study was to assess the impact of vendor-provided atlas-based MRAC on FDG PET/MR for the evaluation of Alzheimer’s disease (AD) by using simulated images. Methods We recruited 47 patients, from two institutions, who underwent PET/CT and PET/MR (GE SIGNA) examination for oncological staging. From the PET raw data acquired on PET/MR, two FDG-PET series were generated, using vendor-provided MRAC (atlas-based) and CTAC. The following simulation steps were performed in MNI space: After spatial normalization and smoothing of the PET datasets, we calculated the error map for each patient, PETMRAC/PETCTAC. We multiplied each of these 47 error maps with each of the 203 Alzheimer’s Disease Neuroimaging Initiative (ADNI) cases after the identical normalization and smoothing. This resulted in 203*47 = 9541 datasets. To evaluate the probability of AD in each resulting image, a cumulative t-value was calculated automatically using commercially-available software (PMOD PALZ) which has been used in multiple large cohort studies. The diagnostic accuracy for the discrimination of AD and predicting progression from mild cognitive impairment (MCI) to AD were evaluated in simulated images compared with ADNI original images. Results The accuracy and specificity for the discrimination of AD-patients from normal controls were not substantially impaired, but sensitivity was slightly impaired in 5 out of 47 datasets (original vs. error; 83.2% [CI 75.0%-89.0%], 83.3% [CI 74.2%-89.8%] and 83.1% [CI 75.6%-88.3%] vs. 82.7% [range 80.4–85.0%], 78.5% [range 72.9–83.3%,] and 86.1% [range 81.4–89.8%]). The accuracy, sensitivity and specificity for predicting progression from MCI to AD during 2-year follow-up was not impaired (original vs. error; 62.5% [CI 53.3%-69.3%], 78.8% [CI 65.4%-88.6%] and 54.0% [CI 47.0%-69.1%] vs. 64.8% [range 61.5–66.7%], 75.7% [range 66.7–81.8%,] and 59.0% [range 50.8–63.5%]). The worst 3 error maps show a tendency towards underestimation of PET scores. Conclusion FDG-PET/MR based on atlas-based MR attenuation correction showed similar diagnostic accuracy to the CT-based method for the diagnosis of AD and the prediction of progression of MCI to AD using commercially-available software, although with a minor reduction in sensitivity.
Collapse
|
16
|
Zero Echo Time–Based PET/MRI Attenuation Correction in Patients With Oral Cavity Cancer. Clin Nucl Med 2020; 45:501-505. [DOI: 10.1097/rlu.0000000000003091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Mackewn JE, Stirling J, Jeljeli S, Gould SM, Johnstone RI, Merida I, Pike LC, McGinnity CJ, Beck K, Howes O, Hammers A, Marsden PK. Practical issues and limitations of brain attenuation correction on a simultaneous PET-MR scanner. EJNMMI Phys 2020; 7:24. [PMID: 32372135 PMCID: PMC7200964 DOI: 10.1186/s40658-020-00295-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Despite the advent of clinical PET-MR imaging for routine use in 2011 and the development of several methods to address the problem of attenuation correction, some challenges remain. We have identified and investigated several issues that might affect the reliability and accuracy of current attenuation correction methods when these are implemented for clinical and research studies of the brain. These are (1) the accuracy of converting CT Hounsfield units, obtained from an independently acquired CT scan, to 511 keV linear attenuation coefficients; (2) the effect of padding used in the MR head coil; (3) the presence of close-packed hair; (4) the effect of headphones. For each of these, we have examined the effect on reconstructed PET images and evaluated practical mitigating measures. RESULTS Our major findings were (1) for both Siemens and GE PET-MR systems, CT data from either a Siemens or a GE PET-CT scanner may be used, provided the conversion to 511 keV μ-map is performed by the PET-MR vendor's own method, as implemented on their PET-CT scanner; (2) the effect of the head coil pads is minimal; (3) the effect of dense hair in the field of view is marked (> 10% error in reconstructed PET images); and (4) using headphones and not including them in the attenuation map causes significant errors in reconstructed PET images, but the risk of scanning without them may be acceptable following sound level measurements. CONCLUSIONS It is important that the limitations of attenuation correction in PET-MR are considered when designing research and clinical PET-MR protocols in order to enable accurate quantification of brain PET scans. Whilst the effect of pads is not significant, dense hair, the use of headphones and the use of an independently acquired CT-scan can all lead to non-negligible effects on PET quantification. Although seemingly trivial, these effects add complications to setting up protocols for clinical and research PET-MR studies that do not occur with PET-CT. In the absence of more sophisticated PET-MR brain attenuation correction, the effect of all of the issues above can be minimised if the pragmatic approaches presented in this work are followed.
Collapse
Affiliation(s)
- J. E. Mackewn
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - J. Stirling
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - S. Jeljeli
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - S-M. Gould
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - R. I. Johnstone
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - I. Merida
- CERMEP-Imagerie du vivant, Lyon, France
| | - L. C. Pike
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - C. J. McGinnity
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - K. Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - O. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| | - A. Hammers
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - P. K. Marsden
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
18
|
Han PK, Horng DE, Gong K, Petibon Y, Kim K, Li Q, Johnson KA, El Fakhri G, Ouyang J, Ma C. MR-based PET attenuation correction using a combined ultrashort echo time/multi-echo Dixon acquisition. Med Phys 2020; 47:3064-3077. [PMID: 32279317 DOI: 10.1002/mp.14180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To develop a magnetic resonance (MR)-based method for estimation of continuous linear attenuation coefficients (LACs) in positron emission tomography (PET) using a physical compartmental model and ultrashort echo time (UTE)/multi-echo Dixon (mUTE) acquisitions. METHODS We propose a three-dimensional (3D) mUTE sequence to acquire signals from water, fat, and short T2 components (e.g., bones) simultaneously in a single acquisition. The proposed mUTE sequence integrates 3D UTE with multi-echo Dixon acquisitions and uses sparse radial trajectories to accelerate imaging speed. Errors in the radial k-space trajectories are measured using a special k-space trajectory mapping sequence and corrected for image reconstruction. A physical compartmental model is used to fit the measured multi-echo MR signals to obtain fractions of water, fat, and bone components for each voxel, which are then used to estimate the continuous LAC map for PET attenuation correction. RESULTS The performance of the proposed method was evaluated via phantom and in vivo human studies, using LACs from computed tomography (CT) as reference. Compared to Dixon- and atlas-based MRAC methods, the proposed method yielded PET images with higher correlation and similarity in relation to the reference. The relative absolute errors of PET activity values reconstructed by the proposed method were below 5% in all of the four lobes (frontal, temporal, parietal, and occipital), cerebellum, whole white matter, and gray matter regions across all subjects (n = 6). CONCLUSIONS The proposed mUTE method can generate subject-specific, continuous LAC map for PET attenuation correction in PET/MR.
Collapse
Affiliation(s)
- Paul Kyu Han
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Debra E Horng
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kuang Gong
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yoann Petibon
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kyungsang Kim
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Quanzheng Li
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith A Johnson
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Georges El Fakhri
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinsong Ouyang
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chao Ma
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Okazawa H, Ikawa M, Jung M, Maruyama R, Tsujikawa T, Mori T, Rahman MGM, Makino A, Kiyono Y, Kosaka H. Multimodal analysis using [ 11C]PiB-PET/MRI for functional evaluation of patients with Alzheimer's disease. EJNMMI Res 2020; 10:30. [PMID: 32232573 PMCID: PMC7105527 DOI: 10.1186/s13550-020-00619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/19/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Multimodal PET/MRI image data simultaneously obtained from patients with early-stage of Alzheimer's disease (eAD) were assessed in order to observe pathophysiologic and functional changes, as well as alterations of morphology and connectivity in the brain. Fifty-eight patients with mild cognitive impairment and early dementia (29 males, 69 ± 12 years) underwent [11C]Pittsburgh compound-B (PiB) PET/MRI with 70-min PET and MRI scans. Sixteen age-matched healthy controls (CTL) (9 males, 68 ± 11 years) were also studied with the same scanning protocol. Cerebral blood flow (CBF) was calculated from the early phase PET images using the image-derived input function method. A standardized uptake value ratio (SUVr) was calculated from 50 to 70 min PET data with a reference region of the cerebellar cortex. MR images such as 3D-T1WI, resting-state functional MRI (RS-fMRI), diffusion tensor image (DTI), and perfusion MRI acquired during the dynamic PET scan were also analyzed to evaluate various brain functions on MRI. RESULTS Twenty-seven of the 58 patients were determined as eAD based on the results of PiB-PET and clinical findings, and a total of 43 subjects' data including CTL were analyzed in this study. PiB SUVr values in all cortical regions of eAD were significantly greater than those of CTL. The PiB accumulation intensity was negatively correlated with cognitive scores. The regional PET-CBF values of eAD were significantly lower in the bilateral parietal lobes and right temporal lobe compared with CTL, but not in MRI perfusion; however, SPM showed regional differences on both PET- and MRI-CBF. SPM analysis of RS-fMRI delineated regional differences between the groups in the anterior cingulate cortex and the left precuneus. VBM analysis showed atrophic changes in the AD group in a part of the bilateral hippocampus; however, analysis of fractional anisotropy calculated from DTI data did not show differences between the two groups. CONCLUSION Multimodal analysis conducted with various image data from PiB-PET/MRI scans showed differences in regional CBF, cortical volume, and neuronal networks in different regions, indicating that pathophysiologic and functional changes in the AD brain can be observed from various aspects of neurophysiologic parameters. Application of multimodal brain images using PET/MRI would be ideal for investigating pathophysiologic changes in patients with dementia and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.,Department of Neurology, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Minyoung Jung
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.,Department of Psychiatry, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Rikiya Maruyama
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Mahmudur G M Rahman
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.,Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Hirotaka Kosaka
- Department of Psychiatry, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| |
Collapse
|
20
|
Breighner RE, Bogner EA, Lee SC, Koff MF, Potter HG. Evaluation of Osseous Morphology of the Hip Using Zero Echo Time Magnetic Resonance Imaging. Am J Sports Med 2019; 47:3460-3468. [PMID: 31633993 DOI: 10.1177/0363546519878170] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Femoroacetabular impingement syndrome (FAIS) is a common disorder of the hip resulting in groin pain and ultimately osteoarthritis. Radiologic assessment of FAI morphologies, which may present with overlapping radiologic features of hip dysplasia, often requires the use of computed tomography (CT) for evaluation of osseous abnormality, owing to the difficulty of direct visualization of cortical and subchondral bone with conventional magnetic resonance imaging (MRI). The use of a zero echo time (ZTE) MRI pulse sequence may obviate the need for CT by rendering bone directly from MRI. PURPOSE/HYPOTHESIS The purpose was to explore the application of ZTE MRI to the assessment of osseous FAI and dysplasia morphologies of the hip. It was hypothesized that angular measurements from ZTE images would show significant agreement with measurements obtained from CT images. STUDY DESIGN Cohort study (diagnosis); Level of evidence, 2. METHODS Thirty-eight hips from 23 patients were imaged with ZTE MRI and CT. Clinically relevant angular measurements of hip morphology were made in both modalities and compared to assess agreement. Measurements included coronal and sagittal center-edge angles, femoral neck-shaft angle, acetabular version (at 1-, 2-, and 3-o'clock positions), Tönnis angle, alpha angle, and modified-beta angle. Interrater agreement was assessed for a subset of 10 hips by 2 raters. Intermodal agreement was assessed on the complete cohort and a single rater. RESULTS Interrater agreement was demonstrated in both CT and ZTE, with intraclass correlation coefficient values ranging from 0.636 to 0.990 for ZTE and 0.747 to 0.983 for CT, indicating "good" to "excellent" agreement. Intermodal agreement was also shown to be significant, with intraclass correlation coefficients ranging from 0.618 to 0.904. CONCLUSION Significant agreement of angular measurements for hip morphology exists between ZTE MRI and CT imaging. ZTE MRI may be an effective method to quantitatively evaluate osseous hip morphology.
Collapse
Affiliation(s)
- Ryan E Breighner
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Eric A Bogner
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Susan C Lee
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Matthew F Koff
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Hollis G Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
21
|
Sgard B, Khalifé M, Bouchut A, Fernandez B, Soret M, Giron A, Zaslavsky C, Delso G, Habert MO, Kas A. ZTE MR-based attenuation correction in brain FDG-PET/MR: performance in patients with cognitive impairment. Eur Radiol 2019; 30:1770-1779. [DOI: 10.1007/s00330-019-06514-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/28/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
22
|
Delso G, Gillett D, Bashari W, Matys T, Mendichovszky I, Gurnell M. Clinical Evaluation of 11C-Met-Avid Pituitary Lesions Using a ZTE-Based AC Method. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2886838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Rezaei A, Schramm G, Willekens SMA, Delso G, Van Laere K, Nuyts J. A Quantitative Evaluation of Joint Activity and Attenuation Reconstruction in TOF PET/MR Brain Imaging. J Nucl Med 2019; 60:1649-1655. [PMID: 30979823 DOI: 10.2967/jnumed.118.220871] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Time-of-flight (TOF) PET data provide an effective means for attenuation correction (AC) when no (or incomplete or inaccurate) attenuation information is available. Since MR scanners provide little information on photon attenuation of different tissue types, AC in hybrid PET/MR scanners has always been challenging. In this contribution, we aim at validating the activity reconstructions of the maximum-likelihood ordered-subsets activity and attenuation (OSAA) reconstruction algorithm on a patient brain data set. We present a quantitative comparison of joint reconstructions with the current clinical gold standard-ordered-subsets expectation maximization-using CT-based AC in PET/CT, as well as the current state of the art in PET/MR, that is, zero time echo (ZTE)-based AC. Methods: The TOF PET emission data were initially used in a preprocessing stage to estimate crystal maps of efficiencies, timing offsets, and timing resolutions. Applying these additional corrections during reconstructions, OSAA, ZTE-based, and the vendor-provided atlas-based AC techniques were analyzed and compared with CT-based AC. In our initial study, we used the CT-based estimate of the expected scatter and later used the ZTE-based and OSAA attenuation estimates to compute the expected scatter contribution of the data during reconstructions. In all reconstructions, a maximum-likelihood scaling of the single-scatter simulation estimate to the emission data was used for scatter correction. The reconstruction results were analyzed in the 86 segmented regions of interest of the Hammers atlas. Results: Our quantitative analysis showed that, in practice, a tracer activity difference of +0.5% (±2.1%) and +0.1% (±2.3%) could be expected for the state-of-the-art ZTE-based and OSAA AC methods, respectively, in PET/MR compared with the clinical gold standard in PET/CT. Conclusion: Joint activity and attenuation estimation methods can provide an effective solution to the challenging AC problem for brain studies in hybrid TOF PET/MR scanners. With an accurate TOF-based (timing offsets and timing resolutions) calibration, and similar to the results of the state-of-the-art method in PET/MR, regional errors of joint TOF PET reconstructions are within a few percentage points.
Collapse
Affiliation(s)
- Ahmadreza Rezaei
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| | - Georg Schramm
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| | - Stefanie M A Willekens
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| | - Gaspar Delso
- MR Applications and Workflow, GE Healthcare, Waukesha, Wisconsin
| | - Koen Van Laere
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| | - Johan Nuyts
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine & Molecular Imaging (NMMI), Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium; and
| |
Collapse
|
24
|
No significant difference found in PET/MRI CBF values reconstructed with CT-atlas-based and ZTE MR attenuation correction. EJNMMI Res 2019; 9:26. [PMID: 30888559 PMCID: PMC6424990 DOI: 10.1186/s13550-019-0494-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 01/31/2023] Open
Abstract
Background Accurate attenuation correction (AC) is one of the most important issues to be addressed in quantitative brain PET/MRI imaging. Atlas-based MRI AC (AB-MRAC), one of the representative MRAC methods, has been used to estimate the skull attenuation in brain scans. The zero echo time (ZTE) pulse sequence is also expected to provide a better MRAC estimation in brain PET scans. The difference in quantitative measurements of cerebral blood flow (CBF) using H215O-PET/MRI was compared between the two MRAC methods, AB and ZTE. Method Twelve patients with cerebrovascular disease (4 males, 43.2 ± 11.7 years) underwent H215O-PET/MRI studies with a 3-min PET scan and MRI scans including the ZTE sequence. Eleven of them were also studied under the conditions of baseline and 10 min after acetazolamide administration, and 2 of them were followed up after several months interval. A total of 25 PET images were reconstructed as dynamic data using 2 sets of reconstruction parameters to obtain the image-derived input function (IDIF), the time-activity curves of the major cerebral artery extracted from images, and CBF images. The CBF images from AB- and ZTE-MRAC were then compared for global and regional differences. Results The mean differences of IDIF curves at each point obtained from AB- and ZTE-MRAC dynamic data were less than 5%, and the differences in time-activity curves were very small. The means of CBF from AB- and ZTE-MRAC reconstructions calculated using each IDIF showed differences of less than 5% for all cortical regions. CBF images from AB-MRAC tended to show greater values in the parietal region and smaller values in the skull base region. Conclusion The CBF images from AB- and ZTE-MRAC reconstruction showed no significant differences in regional values, although the parietal region tended to show greater values in AB-MRAC reconstruction. Quantitative values in the skull base region were very close, and almost the same IDIFs were obtained.
Collapse
|