1
|
Kustova T, Vodneva A, Tcepelevich M, Tkachenko I, Oreshina G, Zhukova MA, Golovanova I, Grigorenko EL. Psychophysiological correlates of learner-instructor interaction: A scoping review. Int J Psychophysiol 2025; 211:112556. [PMID: 40112952 DOI: 10.1016/j.ijpsycho.2025.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
This article reviews recent studies of real-time learner-instructor interactions and psychophysiological indicators associated with this process. The initial systematic search of the literature yielded 2,663 articles; 26 peer-reviewed articles in English were included in the final sample. The learner-instructor interpersonal relationships were studied using neuroimaging, eye movements, and peripheral physiological devices. Retrieved articles covered several phenomena accompanying learning interaction, including attention and meditation processes, mental effort, engagement, inter-brain synchronization, relationship quality, and interpersonal behavior. Some articles emphasized the link between the aforementioned processes and learning outcomes. The following psychophysiological correlates of processes underlying learning interaction were indicated. Inter-brain synchronization in the prefrontal cortex and temporal-parietal area is associated with the social component of learning interactions and positively correlates with learning outcomes. Students' engagement is accompanied by a decrease in electroencephalography occipital alpha rhythm, indicating heightened attention. Experienced teachers tend to focus their gaze on students while balancing gaze between learners and content facilitates students' attention. Students' gaze allocation toward learning-related areas indicates attention and engagement, which varies with instructional strategies. Heart rate and electrodermal activity positively correlate with learners' engagement, increasing during active educational strategies and decreasing throughout the lesson. Finally, heart rate, reflecting physiological arousal and interpersonal behavior, relates to the emotions experienced by the teacher. However, most of the registered associations require replication and further research, as at this point, their direction and magnitude are inconclusive due to, most likely, the differences in the methods and analytical strategies. Limitations and implications for future research are discussed.
Collapse
Affiliation(s)
- Tatiana Kustova
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia.
| | - Alena Vodneva
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia.
| | - Margarita Tcepelevich
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia
| | - Irina Tkachenko
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia
| | - Galina Oreshina
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia; Laboratory for Social and Cognitive Informatics, Sociology Department, HSE University, Saint Petersburg 192171, Russia
| | - Marina A Zhukova
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Irina Golovanova
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia; Department of Psychology, St Petersburg University, Saint Petersburg 199034, Russia
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, HEALTH-1, 4349 Martin Luther King Boulevard, Room 373, Houston, TX 77204-6022, USA.
| |
Collapse
|
2
|
Sobeh A, Shamay-Tsoory S. The emergence of moral alignment within human groups is facilitated by interbrain synchrony. Commun Biol 2025; 8:464. [PMID: 40114031 PMCID: PMC11926081 DOI: 10.1038/s42003-025-07831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Humans tend to align their behaviors and beliefs with their group peers. Establishing alignment between group members is crucial for group unity, yet the mechanisms underlying its emergence are under-explored. Here we examined the extent to which the brains of group members synchronize during deliberation on moral issues, and how interbrain synchrony supports alignment in their moral beliefs. We scanned 200 participants, who were divided into groups of four, using functional Near-Infrared Spectroscopy (fNIRS) during discussions on moral dilemmas. Behavioral results show that following group deliberations, members aligned their beliefs by adjusting their private beliefs towards the collective sentiment. Critically, neuroimaging results reveal that increased interbrain synchrony in the left inferior frontal gyrus (IFG) between group members predicts the degree of alignment post-deliberation. These findings indicate that the human tendency to align with group members extends to moral beliefs and reveal that regions related to mirroring and semantic sequence processing work across brains in coordination, to promote shared moral beliefs.
Collapse
Affiliation(s)
- Aial Sobeh
- Social and Affective Neuroscience Lab, Department of Psychology, University of Haifa, Haifa, Israel.
| | - Simone Shamay-Tsoory
- Social and Affective Neuroscience Lab, Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| |
Collapse
|
3
|
De Felice S, Chand T, Croy I, Engert V, Goldstein P, Holroyd CB, Kirsch P, Krach S, Ma Y, Scheele D, Schurz M, Schweinberger SR, Hoehl S, Vrticka P. Relational neuroscience: Insights from hyperscanning research. Neurosci Biobehav Rev 2025; 169:105979. [PMID: 39674533 DOI: 10.1016/j.neubiorev.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans are highly social, typically without this ability requiring noticeable efforts. Yet, such social fluency poses challenges both for the human brain to compute and for scientists to study. Over the last few decades, neuroscientific research of human sociality has witnessed a shift in focus from single-brain analysis to complex dynamics occurring across several brains, posing questions about what these dynamics mean and how they relate to multifaceted behavioural models. We propose the term 'Relational Neuroscience' to collate the interdisciplinary research field devoted to modelling the inter-brain dynamics subserving human connections, spanning from real-time joint experiences to long-term social bonds. Hyperscanning, i.e., simultaneously measuring brain activity from multiple individuals, has proven to be a highly promising technique to investigate inter-brain dynamics. Here, we discuss how hyperscanning can help investigate questions within the field of Relational Neuroscience, considering a variety of subfields, including cooperative interactions in dyads and groups, empathy, attachment and bonding, and developmental neuroscience. While presenting Relational Neuroscience in the light of hyperscanning, our discussion also takes into account behaviour, physiology and endocrinology to properly interpret inter-brain dynamics within social contexts. We consider the strengths but also the limitations and caveats of hyperscanning to answer questions about interacting people. The aim is to provide an integrative framework for future work to build better theories across a variety of contexts and research subfields to model human sociality.
Collapse
Affiliation(s)
| | - Tara Chand
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University, Sonipat, Haryana, India; Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany
| | - Ilona Croy
- Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Veronika Engert
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Pavel Goldstein
- Integrative Pain Laboratory, School of Public Health, University of Haifa, Haifa, Israel
| | - Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Psychology, University of Heidelberg, Germany; German Center for Mental Health (DZPG), Site Mannheim-Heidelberg-Ulm, Germany
| | - Sören Krach
- Klinik für Psychiatrie und Psychotherapie, University of Lübeck, Lübeck, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Medicine, Ruhr University Bochum, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, Ruhr University Bochum, Germany
| | - Matthias Schurz
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Stefan R Schweinberger
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Department of General Psychology, Friedrich Schiller University, Jena, Germany
| | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - Pascal Vrticka
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| |
Collapse
|
4
|
Kim JH. Music's ability to foster prosocial behavior: a teleofunctionalist perspective. Front Psychol 2025; 15:1472136. [PMID: 39911195 PMCID: PMC11794248 DOI: 10.3389/fpsyg.2024.1472136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Drawing on recent interdisciplinary music research-biologically or developmental psychologically oriented-which conceptualizes music as a communicative toolkit primarily serving affiliative communicative interaction, this paper investigates the question of whether and to what extent music is capable of fostering prosocial behavior within the framework of teleofunctionalism-a philosophical theory of mind. A teleofunctionalist perspective allows us to specify this question as follows: To what extent might a function of establishing affiliative socio-interactional relationships be considered a proper function of music, a concept suggested by philosopher Ruth Millikan? From an ontogenetic perspective, musical activities are considered to be rooted in protoconversational communication in early infancy, characterized as interpersonal coordination without involving propositional understanding. These activities develop into coordinated, non-representational forms of vitality, involving basic empathy, shared intentionality, and forms of understanding allowing for shared experiences. This effect of musical activities-establishing shared experiences-can be considered a proper function of music. A teleofunctional explanation of why musical practices that foster cooperation and prosocial behavior are reproduced is provided by the participants' positive evaluation of shared experiences structured by musical activities. By discussing a proper function of a musical activity, the author refines her own considerations concerning the minimal necessary conditions of music and musicality that can be conceived in a broader sense.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Department of Music and Technology, University of the Arts Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Sened H, Gorst Kaduri K, Nathan Gamliel H, Rafaeli E, Zilcha-Mano S, Shamay-Tsoory S. Inter-brain plasticity as a mechanism of change in psychotherapy: A proof of concept focusing on test anxiety. Psychother Res 2025:1-15. [PMID: 39832304 DOI: 10.1080/10503307.2025.2451798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE. There is a growing consensus that interpersonal processes are key to understanding psychotherapy. How might that be reflected in the brain? Recent research proposes that inter-brain synchrony is a crucial neural component of interpersonal interaction. The current proof-of-concept study examines, for the first time, therapist-patient inter-brain synchrony measurement during multiple sessions. To guide the design of future studies, we performed a precursory test in a small sample of the association between inter-brain synchrony and therapeutic change, hypothesizing that it would gradually increase over therapy, reflecting inter-brain plasticity. METHOD. We scanned 18 therapy sessions of participants (N = 8) who underwent a 6-session test anxiety treatment. We measured therapist and patient brain activity using functional near-infrared spectroscopy (fNIRS) and assessed perceived session quality, wellbeing, symptoms, and therapeutic alliance every session. RESULTS. In this proof-of-concept sample inter-brain synchrony gradually increased over treatment, and was associated with reduced symptoms, improved wellbeing and perceived session quality, but not with a stronger therapeutic alliance. fNIRS imaging had no discernable adverse effects. CONCLUSION. Our findings demonstrate that fNIRS imaging during psychotherapy is a feasible and viable research method and that inter-brain plasticity should be a candidate for future research on biological mechanisms underlying therapeutic change.
Collapse
Affiliation(s)
- Haran Sened
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | | | | | - Eshkol Rafaeli
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
6
|
Schilbach L, Redcay E. Synchrony Across Brains. Annu Rev Psychol 2025; 76:883-911. [PMID: 39441884 DOI: 10.1146/annurev-psych-080123-101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Second-person neuroscience focuses on studying the behavioral and neuronal mechanisms of real-time social interactions within single and across interacting brains. In this review article, we describe the developments that have been undertaken to study socially interactive phenomena and the behavioral and neurobiological processes that extend across interaction partners. More specifically, we focus on the role that synchrony across brains plays in enabling and facilitating social interaction and communication and in shaping social coordination and learning, and we consider how reduced synchrony across brains may constitute a core feature of psychopathology.
Collapse
Affiliation(s)
- Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf / Kliniken der Heinrich-Heine-Universität, Düsseldorf, Germany;
- Department of Psychiatry and Psychotherapy, Clinic of the Ludwig-Maximilians-University, Munich, Germany
| | - Elizabeth Redcay
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
7
|
Li J, Chen P, Pan J, Zhu C. Decision-making power enhances investors' neural processing of persuasive message in partnership investment. Neuroimage 2024; 304:120938. [PMID: 39557137 DOI: 10.1016/j.neuroimage.2024.120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Partnership investment is a common form of business where investors have different levels of power and need to persuade each other to reach a consensus. This study investigated the neural mechanisms underlying the impact of decision-making power on persuasive communication in partnership investment, aiming to provide neural evidence to test two competing hypotheses: the power-responsibility hypothesis and the power-overconfidence hypothesis. Using functional near-infrared spectroscopy (fNIRS), we recorded brain activity from persuader-receiver dyads as they engaged in a partnership investment task. Behavioral results showed that receivers' decisions were more affected by persuaders' persuasive messages when receivers had dominant decision-making power. Neurally, the functional connectivity (FC) between the left and right temporo-parietal junctions (lTPJ and rTPJ) of the receiver was significantly increased by their decision-making power. Additionally, we identified four pairs of interpersonal neural synchronization (INS) that exhibited significant enhancement when persuaders used numeric persuasion rather than non-numeric persuasion: lTPJ-rTPJ, left superior temporal gyrus (lSTG)-rTPJ, left middle temporal gyrus (lMTG)-rTPJ, and medial prefrontal cortex (mPFC)-lTPJ. The decision-making power amplified the INS difference in the last three pairs. Furthermore, using a support vector machine (SVM) algorithm, the INS could accurately predict receivers' adoption of persuasive messages when they held dominant decision-making power. Finally, we found that FC at lTPJ-rTPJ and INS at lSTG-rTPJ were positively associated with receivers' adoption of persuasive messages as well. Our study clarifies how decision-making power alters the way individuals process persuasive messages in partnership investment, providing insights into the neural basis of persuasion in group decision-making contexts and supporting the power-responsibility hypothesis.
Collapse
Affiliation(s)
- Jianbiao Li
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China
| | - Peikun Chen
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China
| | - Jingjing Pan
- Business School, University of Jinan, Jinan, China
| | - Chengkang Zhu
- School of Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan, China.
| |
Collapse
|
8
|
Li Q, Wang D, Xiao W, Tang Y, Sun Q, Sun B, Hu Z. Structured interaction between teacher and student in the flipped classroom enhances learning and interbrain synchrony. NPJ SCIENCE OF LEARNING 2024; 9:73. [PMID: 39622866 PMCID: PMC11612419 DOI: 10.1038/s41539-024-00286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Studies have found that flipped classroom teaching (FT) improves learning compared to lecture-based teaching (LT). However, whether the structured teacher-student interaction-the key feature of FT-plays an essential role in enhancing learning remains unclear, as do its neural underpinnings. Here, we compared three teaching conditions: FT with a video lecture and structured interaction, LT with a face-to-face lecture and spontaneous interaction, and control teaching (CT) with a video lecture and spontaneous interaction. The fNIRS-based hyperscanning technique was used to assess the interbrain synchrony (IBS) from teacher-student dyads. Results showed that the learning was significantly improved in FT than in LT and CT, and FT significantly increased teacher-student IBS in left DLPFC. Moreover, the IBS and learning improvements were positively correlated. Therefore, these findings indicate that the structured teacher-student interaction is crucial for enhancing learning in FT, and IBS serves as its neural foundation.
Collapse
Affiliation(s)
- Qi Li
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
| | - Die Wang
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
| | - Weilong Xiao
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China
- Research Center of Tin Ka Ping Moral Education, Zhejiang Normal University, Jinhua, P. R. China
| | - Yingying Tang
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qi Sun
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China.
| | - Binghai Sun
- School of Psychology, Zhejiang Normal University, Jinhua, P. R. China.
- Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, P. R. China.
- Research Center of Tin Ka Ping Moral Education, Zhejiang Normal University, Jinhua, P. R. China.
| | - Zhishan Hu
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.
| |
Collapse
|
9
|
Markus A, Shamay-Tsoory SG. Hyperscanning: from inter-brain coupling to causality. Front Hum Neurosci 2024; 18:1497034. [PMID: 39606786 PMCID: PMC11599244 DOI: 10.3389/fnhum.2024.1497034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
In hyperscanning studies, participants perform a joint task while their brain activation is simultaneously recorded. Evidence of inter-brain coupling is examined, in these studies, as a predictor of behavioral change. While the field of hyperscanning has made significant strides in unraveling the associations between inter-brain coupling and changes in social interactions, drawing causal conclusions between brain and behavior remains challenging. This difficulty arises from factors like the inherently different timescales of behavioral responses and measured cerebral activity, as well as the predominant focus of existing methods on associations rather than causality. Specifically, a question remains as to whether inter-brain coupling between specific brain regions leads to changes in behavioral synchrony, or vice-versa. We propose two novel approaches to addressing this question. The first method involves using dyadic neurofeedback, wherein instances of inter-brain coupling are directly reinforced. Such a system could examine if continuous changes of inter-brain coupling are the result of deliberate mutual attempts to synchronize. The second method employs statistical approaches, including Granger causality and Structural Equation Modeling (SEM). Granger causality assesses the predictive influence of one time series on another, enabling the identification of directional neural interactions that drive behavior. SEM allows for detailed modeling of both direct and indirect effects of inter-brain coupling on behavior. We provide an example of data analysis with the SEM approach, discuss the advantages and limitations of each approach and posit that applying these approaches could provide significant insights into how inter-brain coupling supports crucial processes that occur in social interactions.
Collapse
Affiliation(s)
- Andrey Markus
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center, Haifa, Israel
| | - Simone G. Shamay-Tsoory
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center, Haifa, Israel
| |
Collapse
|
10
|
Qiao X, Zhang W, Hao N. Different neural correlates of deception: Crafting high and low creative scams. Neuroscience 2024; 558:37-49. [PMID: 39159840 DOI: 10.1016/j.neuroscience.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Deception is a complex social behavior that manifests in various forms, including scams. To successfully deceive victims, liars have to continually devise novel scams. This ability to create novel scams represents one kind of malevolent creativity, referred to as lying. This study aimed to explore different neural substrates involved in the generation of high and low creative scams. A total of 40 participants were required to design several creative scams, and their cortical activity was recorded by functional near-infrared spectroscopy. The results revealed that the right frontopolar cortex (FPC) was significantly active in scam generation. This region associated with theory of mind may be a key region for creating novel and complex scams. Moreover, creativity-related regions were positively involved in creative scams, while morality-related areas showed negative involvement. This suggests that individuals might attempt to use malevolent creativity while simultaneously minimizing the influence of moral considerations. The right FPC exhibited increased coupling with the right precentral gyrus during the design of high-harmfulness scams, suggesting a diminished control over immoral thoughts in the generation of harmful scams. Additionally, the perception of the victim's emotions (related to right pre-motor cortex) might diminish the quality of highly original scams. Furthermore, an efficient and cohesive neural coupling state appears to be a key factor in generating high-creativity scams. These findings suggest that the right FPC was crucial in scam creation, highlighting a neural basis for balancing malevolent creativity against moral considerations in high-creativity deception.
Collapse
Affiliation(s)
- Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Wenyu Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
11
|
Li Y, Su C, Pan Y. Spontaneous movement synchrony as an exogenous source for interbrain synchronization in cooperative learning. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230155. [PMID: 39155721 PMCID: PMC11391278 DOI: 10.1098/rstb.2023.0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 08/20/2024] Open
Abstract
Learning through cooperation with conspecifics-'cooperative learning'-is critical to cultural evolution and survival. Recent progress has established that interbrain synchronization (IBS) between individuals predicts success in cooperative learning. However, the likely sources of IBS during learning interactions remain poorly understood. To address this dearth of knowledge, we tested whether movement synchrony serves as an exogenous factor that drives IBS, taking an embodiment perspective. We formed dyads of individuals with varying levels of prior knowledge (high-high (HH), high-low (HL), low-low (LL) dyads) and instructed them to collaboratively analyse an ancient Chinese poem. During the task, we simultaneously recorded their brain activity using functional near-infrared spectroscopy and filmed the entire experiment to parse interpersonal movement synchrony using the computer-vision motion energy analysis. Interestingly, the homogeneous groups (HH and/or LL) exhibited stronger movement synchrony and IBS compared with the heterogeneous group. Importantly, mediation analysis revealed that spontaneous and synchronized body movements between individuals contribute to IBS, hence facilitating learning. This study therefore fills a critical gap in our understanding of how interpersonal transmission of information between individual brains, associated with behavioural entrainment, shapes social learning. This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
| | - Chang Su
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University , Hangzhou 310058, People's Republic of China
| |
Collapse
|
12
|
Curzel F, Tillmann B, Ferreri L. Lights on music cognition: A systematic and critical review of fNIRS applications and future perspectives. Brain Cogn 2024; 180:106200. [PMID: 38908228 DOI: 10.1016/j.bandc.2024.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Research investigating the neural processes related to music perception and production constitutes a well-established field within the cognitive neurosciences. While most neuroimaging tools have limitations in studying the complexity of musical experiences, functional Near-Infrared Spectroscopy (fNIRS) represents a promising, relatively new tool for studying music processes in both laboratory and ecological settings, which is also suitable for both typical and pathological populations across development. Here we systematically review fNIRS studies on music cognition, highlighting prospects and potentialities. We also include an overview of fNIRS basic theory, together with a brief comparison to characteristics of other neuroimaging tools. Fifty-nine studies meeting inclusion criteria (i.e., using fNIRS with music as the primary stimulus) are presented across five thematic sections. Critical discussion of methodology leads us to propose guidelines of good practices aiming for robust signal analyses and reproducibility. A continuously updated world map is proposed, including basic information from studies meeting the inclusion criteria. It provides an organized, accessible, and updatable reference database, which could serve as a catalyst for future collaborations within the community. In conclusion, fNIRS shows potential for investigating cognitive processes in music, particularly in ecological contexts and with special populations, aligning with current research priorities in music cognition.
Collapse
Affiliation(s)
- Federico Curzel
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France.
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France; LEAD CNRS UMR5022, Université de Bourgogne-Franche Comté, Dijon, Bourgogne-Franche Comté 21000, France.
| | - Laura Ferreri
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, Lombardia 27100, Italy.
| |
Collapse
|
13
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
14
|
Jin Z, Yin J, Pan Y, Zhang Y, Li Y, Xu X, Luo J. Teach a man to fish: Hyper-brain evidence on scaffolding strategy enhancing creativity acquisition and transfer. Neuroimage 2024; 297:120757. [PMID: 39067552 DOI: 10.1016/j.neuroimage.2024.120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
Creativity is an indispensable competency in today's innovation-driven society. Yet, the influences of instructional strategy, a key determinant of educational outcomes, on the creativity-fostering process remains an unresolved mystery. We proposed that instructional strategy affects creativity cultivation and further investigated the intricate neural mechanisms underlying this relationship. In a naturalistic laboratory setting, 66 instructor-learner dyads were randomized into three groups (scaffolding, explanation, and control), with divergent thinking instructions separately. Functional near-infrared spectroscopy (fNIRS) hyperscanning simultaneously collected brain signals in the prefrontal cortex and temporal-parietal junction regions. Results indicated that learners instructed with a scaffolding strategy demonstrated superior creative performance both in acquisition (direct learning) and transfer (use in a novel context) of creativity skills, compared to pretest levels. In contrast, the control and explanation groups did not exhibit such effects. Notably, we also observed remarkable interbrain neural synchronization (INS) between instructors and learners in the left superior frontal cortex in the scaffolding group, but not in the explanation or control groups. Furthermore, INS positively predicted enhancements in creativity performance (acquisition and transfer), indicating that it is a crucial neural mechanism in the creativity-fostering process. These findings reveal that scaffolding facilitates the acquisition and transfer of creativity and deepen our understanding of the neural mechanisms underlying the process of creativity-fostering. The current study provides valuable insights for implementing teaching strategies to fostering creativity.
Collapse
Affiliation(s)
- Zheyu Jin
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China; School of Education Faculty Development Center, Shanghai Normal University, Shanghai, 200234, China
| | - Junting Yin
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxuan Zhang
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China
| | - Yangzhuo Li
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China.
| | - Xiongwei Xu
- School of Education Faculty Development Center, Shanghai Normal University, Shanghai, 200234, China.
| | - Junlong Luo
- School of Psychology, Shanghai Normal University, Shanghai, 200234, China; Lab for Educational Big Data and Policymaking, Ministry of Education, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
15
|
Li Z, Hong B, Nolte G, Engel AK, Zhang D. Speaker-listener neural coupling correlates with semantic and acoustic features of naturalistic speech. Soc Cogn Affect Neurosci 2024; 19:nsae051. [PMID: 39012092 PMCID: PMC11296674 DOI: 10.1093/scan/nsae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024] Open
Abstract
Recent research has extensively reported the phenomenon of inter-brain neural coupling between speakers and listeners during speech communication. Yet, the specific speech processes underlying this neural coupling remain elusive. To bridge this gap, this study estimated the correlation between the temporal dynamics of speaker-listener neural coupling with speech features, utilizing two inter-brain datasets accounting for different noise levels and listener's language experiences (native vs. non-native). We first derived time-varying speaker-listener neural coupling, extracted acoustic feature (envelope) and semantic features (entropy and surprisal) from speech, and then explored their correlational relationship. Our findings reveal that in clear conditions, speaker-listener neural coupling correlates with semantic features. However, as noise increases, this correlation is only significant for native listeners. For non-native listeners, neural coupling correlates predominantly with acoustic feature rather than semantic features. These results revealed how speaker-listener neural coupling is associated with the acoustic and semantic features under various scenarios, enriching our understanding of the inter-brain neural mechanisms during natural speech communication. We therefore advocate for more attention on the dynamic nature of speaker-listener neural coupling and its modeling with multilevel speech features.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Bo Hong
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Dan Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Zhou X, Hong X, Wong PCM. Autistic Traits Modulate Social Synchronizations Between School-Aged Children: Insights From Three fNIRS Hyperscanning Experiments. Psychol Sci 2024; 35:840-857. [PMID: 38743614 DOI: 10.1177/09567976241237699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The current study investigated how autistic traits modulate peer interactions using functional near-infrared spectroscopy (fNIRS) hyperscanning. Across three experiments, we tested the effect of copresence, joint activity, and a tangible goal during cooperative interactions on interbrain coherence (IBC) in school-aged children between 9 and 11 years old. Twenty-three dyads of children watched a video alone or together in Experiment 1, engaged in joint or self-paced book reading in Experiment 2, and pretended to play a Jenga game or played for real in Experiment 3. We found that all three formats of social interactions increased IBC in the frontotemporoparietal networks, which have been reported to support social interaction. Further, our results revealed the shared and unique interbrain connections that were predictive of the lower and higher parent-reported autism-spectrum quotient scores, which indicated child autistic traits. Results from a convergence of three experiments provide the first evidence to date that IBC is modulated by child autistic traits.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
- Brain and Mind Institute, the Chinese University of Hong Kong
- National Acoustic Laboratories, Macquarie Park, Australia
| | - Xuancu Hong
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
- Brain and Mind Institute, the Chinese University of Hong Kong
| |
Collapse
|
17
|
Ding K, Li J, Li X, Li H. Understanding the Effect of Listening to Music, Playing Music, and Singing on Brain Function: A Scoping Review of fNIRS Studies. Brain Sci 2024; 14:751. [PMID: 39199446 PMCID: PMC11352997 DOI: 10.3390/brainsci14080751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Music is integrated into daily life when listening to it, playing it, and singing, uniquely modulating brain activity. Functional near-infrared spectroscopy (fNIRS), celebrated for its ecological validity, has been used to elucidate this music-brain interaction. This scoping review synthesizes 22 empirical studies using fNIRS to explore the intricate relationship between music and brain function. This synthesis of existing evidence reveals that diverse musical activities, such as listening to music, singing, and playing instruments, evoke unique brain responses influenced by individual traits and musical attributes. A further analysis identifies five key themes, including the effect of passive and active music experiences on relevant human brain areas, lateralization in music perception, individual variations in neural responses, neural synchronization in musical performance, and new insights fNIRS has revealed in these lines of research. While this review highlights the limited focus on specific brain regions and the lack of comparative analyses between musicians and non-musicians, it emphasizes the need for future research to investigate the complex interplay between music and the human brain.
Collapse
Affiliation(s)
- Keya Ding
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
- Lab for Educational Big Data and Policymaking, Ministry of Education, Shanghai 200234, China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Jingwen Li
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
| | - Xuemei Li
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
| | - Hui Li
- Faculty of Education and Human Development, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Li Z, Zhang D. How does the human brain process noisy speech in real life? Insights from the second-person neuroscience perspective. Cogn Neurodyn 2024; 18:371-382. [PMID: 38699619 PMCID: PMC11061069 DOI: 10.1007/s11571-022-09924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Comprehending speech with the existence of background noise is of great importance for human life. In the past decades, a large number of psychological, cognitive and neuroscientific research has explored the neurocognitive mechanisms of speech-in-noise comprehension. However, as limited by the low ecological validity of the speech stimuli and the experimental paradigm, as well as the inadequate attention on the high-order linguistic and extralinguistic processes, there remains much unknown about how the brain processes noisy speech in real-life scenarios. A recently emerging approach, i.e., the second-person neuroscience approach, provides a novel conceptual framework. It measures both of the speaker's and the listener's neural activities, and estimates the speaker-listener neural coupling with regarding of the speaker's production-related neural activity as a standardized reference. The second-person approach not only promotes the use of naturalistic speech but also allows for free communication between speaker and listener as in a close-to-life context. In this review, we first briefly review the previous discoveries about how the brain processes speech in noise; then, we introduce the principles and advantages of the second-person neuroscience approach and discuss its implications to unravel the linguistic and extralinguistic processes during speech-in-noise comprehension; finally, we conclude by proposing some critical issues and calls for more research interests in the second-person approach, which would further extend the present knowledge about how people comprehend speech in noise.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 334, Mingzhai Building, Beijing, 100084 China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084 China
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 334, Mingzhai Building, Beijing, 100084 China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
19
|
Takeuchi N. A dual-brain therapeutic approach using noninvasive brain stimulation based on two-person neuroscience: A perspective review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5118-5137. [PMID: 38872529 DOI: 10.3934/mbe.2024226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Our actions and decisions in everyday life are heavily influenced by social interactions, which are dynamic feedback loops involving actions, reactions, and internal cognitive processes between individual agents. Social interactions induce interpersonal synchrony, which occurs at different biobehavioral levels and comprises behavioral, physiological, and neurological activities. Hyperscanning-a neuroimaging technique that simultaneously measures the activity of multiple brain regions-has provided a powerful second-person neuroscience tool for investigating the phase alignment of neural processes during interactive social behavior. Neural synchronization, revealed by hyperscanning, is a phenomenon called inter-brain synchrony- a process that purportedly facilitates social interactions by prompting appropriate anticipation of and responses to each other's social behaviors during ongoing shared interactions. In this review, I explored the therapeutic dual-brain approach using noninvasive brain stimulation to target inter-brain synchrony based on second-person neuroscience to modulate social interaction. Artificially inducing synchrony between the brains is a potential adjunct technique to physiotherapy, psychotherapy, and pain treatment- which are strongly influenced by the social interaction between the therapist and patient. Dual-brain approaches to personalize stimulation parameters must consider temporal, spatial, and oscillatory factors. Multiple data fusion analysis, the assessment of inter-brain plasticity, a closed-loop system, and a brain-to-brain interface can support personalized stimulation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
20
|
Shamay-Tsoory SG, Marton-Alper IZ, Markus A. Post-interaction neuroplasticity of inter-brain networks underlies the development of social relationship. iScience 2024; 27:108796. [PMID: 38292433 PMCID: PMC10825012 DOI: 10.1016/j.isci.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Inter-brain coupling has been increasingly recognized for its role in supporting connectedness during social communication. Here we investigate whether inter-brain coupling is plastic and persists beyond the offset of social interaction, facilitating the emergence of social closeness. Dyads were concurrently scanned using functional near infrared spectroscopy (fNIRS) while engaging in a task that involved movement synchronization. To assess post-interaction neuroplasticity, participants performed a baseline condition with no interaction before and after the interaction. The results reveal heightened inter-brain coupling in neural networks comprising the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex in the post-task compared to the pre-task baseline. Critically, the right IFG emerged as a highly connected hub, with post-task inter-brain coupling in this region predicting the levels of motivation to connect socially. We suggest that post-interactions inter-brain coupling may reflect consolidation of socially related cues, underscoring the role of inter-brain plasticity in fundamental aspects of relationship development.
Collapse
Affiliation(s)
- Simone G. Shamay-Tsoory
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| | | | - Andrey Markus
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| |
Collapse
|
21
|
Xu X, Kong Q, Zhang D, Zhang Y. An evaluation of inter-brain EEG coupling methods in hyperscanning studies. Cogn Neurodyn 2024; 18:67-83. [PMID: 38406199 PMCID: PMC10881924 DOI: 10.1007/s11571-022-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
EEG-based hyperscanning technology has been increasingly applied to analyze interpersonal interactions in social neuroscience in recent years. However, different methods are employed in various of studies without a complete investigation of the suitability of these methods. Our study aimed to systematically compare typical inter-brain EEG coupling methods, with simulated EEG data generated by real EEG data. In particular, two critical metrics of noise level and time delay were manipulated, and three different coupling models were tested. The results revealed that: (1) under certain conditions, various methods were leveraged by noise level and time delay, leading to different performances; (2) most algorithms achieved better experimental results and performance under high coupling degree; (3) with our simulation process, temporal and spectral models showed relatively good results, while data simulated with phase coupling model performed worse. This is the first systematic comparison of typical inter-brain EEG coupling methods, with simulated EEG data generated by real EEG data from different subjects. Existing methods mainly focused on intra-brain coupling. To our knowledge, there was only one previous study that compared five inter-brain EEG coupling methods (Burgess in Front Human Neurosci 7:881, 2013). However, the simulated data used in this study were generated time series with varied degrees of phase coupling without considering any EEG characteristics. For future research, appropriate methods need to be selected based on possible underlying mechanisms (temporal, spectral and phase coupling model hypothesis) of a specific study, as well as the expected coupling degree and conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09911-1.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Institute of Education, Tsinghua University, Beijing, China
| | - Qiuyue Kong
- School of Public Health, Harvard University, Cambridge, MA USA
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, China
| | - Yu Zhang
- Institute of Education, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Boukarras S, Ferri D, Borgogni L, Aglioti SM. Neurophysiological markers of asymmetric emotional contagion: implications for organizational contexts. Front Integr Neurosci 2024; 18:1321130. [PMID: 38357225 PMCID: PMC10861795 DOI: 10.3389/fnint.2024.1321130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Emotions play a vital role within organizations, impacting various crucial aspects of work such as job satisfaction, performance, and employee well-being. Understanding how emotional states spread in organizational settings is therefore essential. Recent studies have highlighted that a leader's emotional state can influence their followers, with significant consequences on job performance. Leaders thus possess the ability to influence their employees' psychological state and, consequently, their well-being. However, the biological underpinnings of emotional contagion from leaders to followers remain unexplored. The field of interpersonal (neuro)physiology, which involves recording brain and peripheral activity of multiple individuals during interactions, holds great potential for investigating this phenomenon. Analyzing the time-lagged synchronization of neurophysiological activity during interactions may serve as a measure of the leader's influence on their followers in organizational contexts. In this "mini review," we examine empirical studies that have employed interpersonal (neuro)physiology to quantify the asymmetrical contagion of emotions in different contexts. Asymmetrical contagion was operationalized as the unidirectional influence exerted by one individual (i.e., the "sender") to another one (i.e., the "receiver"), whereby the receiver's state can be predicted by the sender's one. The reviewed literature reveals that delayed synchronization of physiological states is a widespread phenomenon that may underpin the transmission of emotions. These findings have significant implications for various aspects of organizational life, including leader-to-employee communication, and could drive the development of effective leadership training programs. We propose that Organizational Neuroscience may benefit from including interpersonal neurophysiology in its methodological toolkit for laboratory and field studies of leader-follower dynamics.
Collapse
Affiliation(s)
- Sarah Boukarras
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Donato Ferri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ernst and Young (EY), Rome, Italy
| | - Laura Borgogni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Salvatore Maria Aglioti
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLN2S@Sapienza, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
23
|
Tan SHJ, Wong JN, Teo WP. Is neuroimaging ready for the classroom? A systematic review of hyperscanning studies in learning. Neuroimage 2023; 281:120367. [PMID: 37689175 DOI: 10.1016/j.neuroimage.2023.120367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Whether education research can be informed by findings from neuroscience studies has been hotly debated since Bruer's (1997) famous claim that neuroscience and education are "a bridge too far". However, this claim came before recent advancements in portable electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) technologies, and second-person neuroscience techniques that brought about significant headway in understanding instructor-learner interactions in the classroom. To explore whether neuroscience and education are still two very separate fields, we systematically review 15 hyperscanning studies that were conducted in real-world classrooms or that implemented a teaching-learning task to investigate instructor-learner dynamics. Findings from this investigation illustrate that inter-brain synchrony between instructor and learner is an additional and valuable dimension to understand the complex web of instructor- and learner-related variables that influence learning. Importantly, these findings demonstrate the possibility of conducting real-world classroom studies with portable neuroimaging techniques and highlight the potential of such studies in providing translatable real-world implications. Once thought of as incompatible, a successful coupling between neuroscience and education is now within sight.
Collapse
Affiliation(s)
- S H Jessica Tan
- Science of Learning in Education Centre, Office of Education Research, National Institute of Education, Nanyang Technological University, Singapore.
| | - Jin Nen Wong
- Science of Learning in Education Centre, Office of Education Research, National Institute of Education, Nanyang Technological University, Singapore
| | - Wei-Peng Teo
- Science of Learning in Education Centre, Office of Education Research, National Institute of Education, Nanyang Technological University, Singapore; Physical Education and Sport Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore
| |
Collapse
|
24
|
Zhang W, Qiu L, Tang F, Sun HJ. Gender differences in cognitive and affective interpersonal emotion regulation in couples: an fNIRS hyperscanning. Soc Cogn Affect Neurosci 2023; 18:nsad057. [PMID: 37837406 PMCID: PMC10612568 DOI: 10.1093/scan/nsad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/24/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023] Open
Abstract
Emotion regulation is vital in maintaining romantic relationships in couples. Although gender differences exist in cognitive and affective strategies during 'intrapersonal' emotion regulation, it is unclear how gender differences through affective bonds work in 'interpersonal' emotion regulation (IER) in couples. Thirty couple dyads and 30 stranger dyads underwent functional near-infrared spectroscopy hyperscanning recordings when targets complied with their partner's cognitive engagement (CE) and affective engagement (AE) strategies after viewing sad and neutral videos. Behaviorally, for males, CE was less effective than AE in both groups, but little difference occurred for females between AE and CE. For couples, Granger causality analysis showed that male targets had less neural activity than female targets in CH06, CH13 and CH17 during CE. For inflow and outflow activities on CH06 and CH13 (frontopolar cortex), respectively, male targets had less activity in the CE condition than in the AE condition, while for outflow activities on CH 17 (dorsolateral prefrontal cortex), female targets had more activity in the CE condition than in the AE condition. However, these differences were not observed in strangers. These results suggest gender differences in CE but not in AE and dissociable flow patterns in male and female targets in couples during sadness regulation.
Collapse
Affiliation(s)
- Wenhai Zhang
- School of Education Science, Hengyang Normal University, Hengyang 421002, China
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang 421002, China
| | - Lanting Qiu
- School of Education Science, Hengyang Normal University, Hengyang 421002, China
| | - Fanggui Tang
- School of Education Science, Hengyang Normal University, Hengyang 421002, China
| | - Hong-Jin Sun
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
25
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
26
|
Pan Y, Vinding MC, Zhang L, Lundqvist D, Olsson A. A Brain-To-Brain Mechanism for Social Transmission of Threat Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304037. [PMID: 37544901 PMCID: PMC10558655 DOI: 10.1002/advs.202304037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/08/2023]
Abstract
Survival and adaptation in environments require swift and efficacious learning about what is dangerous. Across species, much of such threat learning is acquired socially, e.g., through the observation of others' ("demonstrators'") defensive behaviors. However, the specific neural mechanisms responsible for the integration of information shared between demonstrators and observers remain largely unknown. This dearth of knowledge is addressed by performing magnetoencephalography (MEG) neuroimaging in demonstrator-observer dyads. A set of stimuli are first shown to a demonstrator whose defensive responses are filmed and later presented to an observer, while neuronal activity is recorded sequentially from both individuals who never interacted directly. These results show that brain-to-brain coupling (BtBC) in the fronto-limbic circuit (including insula, ventromedial, and dorsolateral prefrontal cortex) within demonstrator-observer dyads predict subsequent expressions of learning in the observer. Importantly, the predictive power of BtBC magnifies when a threat is imminent to the demonstrator. Furthermore, BtBC depends on how observers perceive their social status relative to the demonstrator, likely driven by shared attention and emotion, as bolstered by dyadic pupillary coupling. Taken together, this study describes a brain-to-brain mechanism for social threat learning, involving BtBC, which reflects social relationships and predicts adaptive, learned behaviors.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhou310058China
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Mikkel C. Vinding
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagen2650Denmark
| | - Lei Zhang
- Centre for Human Brain HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- Institute for Mental HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- SocialCognitive and Affective Neuroscience UnitDepartment of CognitionEmotionand Methods in PsychologyFaculty of PsychologyUniversity of ViennaVienna1010Austria
| | - Daniel Lundqvist
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Andreas Olsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| |
Collapse
|
27
|
Qiao X, Lu K, Yun Q, Hao N. Similarities and Distinctions between Cortical Neural Substrates That Underlie Generation of Malevolent Creative Ideas. eNeuro 2023; 10:ENEURO.0127-23.2023. [PMID: 37696664 PMCID: PMC10512885 DOI: 10.1523/eneuro.0127-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Creativity can be driven by negative intentions, and this is called malevolent creativity (MC). It is a type of creativity that serves antisocial purposes and deliberately leads to harmful or immoral results. A possible classification indicates that there are three kinds of MC in daily life: hurting people, lying, and playing tricks. This study aimed to explore similar and distinct neural substrates underlying these different kinds of MC idea generation. The participants were asked to perform different MC tasks, and their neural responses were recorded using a functional near-infrared spectroscopy device. The findings revealed that most regions within the prefrontal and temporal lobes [e.g., the right dorsolateral prefrontal cortex (rDLPFC), and right angular gyrus] were involved in the three MC tasks. However, the right frontopolar cortex (rFPC) was more activated and less coupled with the rDLPFC and right precuneus during the lying task than during the other tasks. Thus, rFPC may play an important role in constructing novel lies. In the lying task, individuals were more selfish and less compassionate. In the playing tricks and hurting people tasks, there was less neural coupling between the rDLPFC and the left inferior frontal gyrus/right inferior parietal lobule than that in the lying task. This may imply that selfish motivation is released when individuals try to ignore victims' distress or generate aggressive tricks in hurting people or playing tricks tasks. These findings indicate that the three kinds of MC idea generation involve common cortical regions related to creative idea generation and moral judgment, whereas differences in cortical responses exist because of their unique features.
Collapse
Affiliation(s)
- Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou Zhejiang, 325035, People's Republic of China
| | - Qiang Yun
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, People's Republic of China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
28
|
Liu J, Zhang R, Xie E, Lin Y, Chen D, Liu Y, Li K, Chen M, Li Y, Wang G, Li X. Shared intentionality modulates interpersonal neural synchronization at the establishment of communication system. Commun Biol 2023; 6:832. [PMID: 37563301 PMCID: PMC10415255 DOI: 10.1038/s42003-023-05197-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Whether and how shared intentionality (SI) influences the establishment of a novel interpersonal communication system is poorly understood. To investigate this issue, we designed a coordinating symbolic communication game (CSCG) and applied behavioral, functional near-infrared spectroscopy (fNIRS)-based hyperscanning, and hyper-transcranial alternating current stimulation (hyper-tACS) methods. Here we show that SI is a strong contributor to communicative accuracy. Moreover, SI, communicative accuracy, and interpersonal neural synchronization (INS) in the right superior temporal gyrus (rSTG) are higher when dyads successfully establish a novel communication system. Furthermore, the SI influences communicative accuracy by increasing INS. Additionally, using time series and long short-term memory neural network analyses, we find that the INS can predict communicative accuracy at the early formation stage of the communication system. Importantly, the INS partially mediates the relationship between the SI and the communicative accuracy only at the formation stage of the communication system. In contrast, when the communication system is established, SI and INS no longer contribute to communicative accuracy. Finally, the hyper-tACS experiment confirms that INS has a causal effect on communicative accuracy. These findings suggest a behavioral and neural mechanism, subserved by the SI and INS, that underlies the establishment of a novel interpersonal communication system.
Collapse
Affiliation(s)
- Jieqiong Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Paediatric Translational Medicine Institute, Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruqian Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Enhui Xie
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yixuan Lin
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Danni Chen
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yang Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Keshuang Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Mei Chen
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yangzhuo Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guanghai Wang
- Paediatric Translational Medicine Institute, Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
| |
Collapse
|
29
|
Izen SC, Cassano-Coleman RY, Piazza EA. Music as a window into real-world communication. Front Psychol 2023; 14:1012839. [PMID: 37496799 PMCID: PMC10368476 DOI: 10.3389/fpsyg.2023.1012839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
Communication has been studied extensively in the context of speech and language. While speech is tremendously effective at transferring ideas between people, music is another communicative mode that has a unique power to bring people together and transmit a rich tapestry of emotions, through joint music-making and listening in a variety of everyday contexts. Research has begun to examine the behavioral and neural correlates of the joint action required for successful musical interactions, but it has yet to fully account for the rich, dynamic, multimodal nature of musical communication. We review the current literature in this area and propose that naturalistic musical paradigms will open up new ways to study communication more broadly.
Collapse
|
30
|
Zhou S, Yang H, Yang H, Liu T. Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation. Soc Cogn Affect Neurosci 2023; 18:nsad031. [PMID: 37261919 PMCID: PMC10306364 DOI: 10.1093/scan/nsad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The complexity of the environment requires humans to solve problems collaboratively. The aim of this study was to investigate the neural mechanism of social navigation in group problem-solving situations. A novel cooperative task was designed in which dyadic participants assumed the role of an operator or a navigator with different skills and knowledge and worked together to complete the task. Using functional near-infrared spectroscopy-based hyperscanning, we found stronger interbrain neural synchronization of the right temporoparietal junction (rTPJ) between dyads when the operator received instructions from the navigator rather than from a computer. The functional connections between the rTPJ and the other brain areas indicated the involvement of the mirror neural system during the task. Further directional analysis using Granger causality analysis revealed a flow of information from the temporal to the parietal and then to the pre-motor cortex in the operator's brain. These findings provide empirical evidence for the neural mechanism of social navigation and highlight the importance of the rTPJ for communication and joint attention in uncertain group problem-solving situations.
Collapse
Affiliation(s)
- Song Zhou
- School of Psychology, Fujian Normal University, Fuzhou 350117, China
| | - Huaqi Yang
- School of Psychology, Fujian Normal University, Fuzhou 350117, China
| | - Haibo Yang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 350387, China
- Faculty of Psychology, Tianjin Normal University, Tianjin 350387, China
| | - Tao Liu
- School of Management, Shanghai University, Shanghai 200237, China
- School of Health, Fujian Medical University, Fuzhou 350122, China
- School of Management, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Koul A, Ahmar D, Iannetti GD, Novembre G. Spontaneous dyadic behaviour predicts the emergence of interpersonal neural synchrony. Neuroimage 2023:120233. [PMID: 37348621 DOI: 10.1016/j.neuroimage.2023.120233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Synchronization of neural activity across brains - interpersonal neural synchrony (INS) - is emerging as a powerful marker of social interaction that predicts success of multi-person coordination, communication, and cooperation. As the origins of INS are poorly understood, we tested whether and how INS might emerge from spontaneous dyadic behavior. We recorded neural activity (EEG) and human behavior (full-body kinematics, eye movements and facial expressions) while dyads of participants were instructed to look at each other without speaking or making co-verbal gestures. We made four fundamental observations. First, despite the absence of a structured social task, INS emerged spontaneously only when participants were able to see each other. Second, we show that such spontaneous INS, comprising specific spectral and topographic profiles, did not merely reflect intra-personal modulations of neural activity, but it rather reflected real-time and dyad-specific coupling of neural activities. Third, using state-of-art video-image processing and deep learning, we extracted the temporal unfolding of three notable social behavioral cues - body movement, eye contact, and smiling - and demonstrated that these behaviors also spontaneously synchronized within dyads. Fourth, we probed the correlates of INS in such synchronized social behaviors. Using cross-correlation and Granger causality analyses, we show that synchronized social behaviors anticipate and in fact Granger cause INS. These results provide proof-of-concept evidence for studying interpersonal neural and behavioral synchrony under natural and unconstrained conditions. Most importantly, the results suggest that INS could be conceptualized as an emergent property of two coupled neural systems: an entrainment phenomenon, promoted by real-time dyadic behavior.
Collapse
Affiliation(s)
- Atesh Koul
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| | - Davide Ahmar
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy
| | - Gian Domenico Iannetti
- Neuroscience and Behavior Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| |
Collapse
|
32
|
Zhang W, Qiu L, Tang F, Li H. Affective or cognitive interpersonal emotion regulation in couples: an fNIRS hyperscanning study. Cereb Cortex 2023; 33:7960-7970. [PMID: 36944535 DOI: 10.1093/cercor/bhad091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
Sadness regulation is crucial for maintaining the romantic relationships of couples. Interpersonal emotion regulation, including affective engagement (AE) and cognitive engagement (CE), activates social brain networks. However, it is unclear how AE and CE regulate sadness in couples through affective bonds. We recruited 30 heterosexual couple dyads and 30 heterosexual stranger dyads and collected functional near-infrared spectroscopy hyperscanning data while each dyad watched sad or neutral videos and while the regulator regulated the target's sadness. Then, we characterized interbrain synchronization (IBS) and Granger causality (GC). The results indicated that AE and CE were more effective for couples than for strangers and that sadness evaluation of female targets was lower than that of male targets. CE-induced IBS at CH13 (BA10, right middle frontal gyrus) was lower for female targets than for male targets, while no gender difference in AE was detected. GC change at CH13 during CE was lower in the sad condition for male targets than for female targets, while no gender difference in AE was discovered. These observations suggest that AE and CE activate affective bonds but that CE was more effective for regulating sadness in female targets, revealing different neural patterns of cognitive and affective sadness regulation in couples.
Collapse
Affiliation(s)
- Wenhai Zhang
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang 421002, China
- Mental Health Center, Yancheng Institute of Technology, Yancheng 224051, China
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, East China Normal University, Shanghai 200062, China
| | - Lanting Qiu
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang 421002, China
| | - Fanggui Tang
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang 421002, China
| | - Hong Li
- Key Laboratory of Brain Cognition and Educational Science, Ministry of Education; School of Psychology, South China Normal University, Guangzhou Guangdong, China
| |
Collapse
|
33
|
Shao C, Zhang X, Wu Y, Zhang W, Sun B. Increased Interpersonal Brain Synchronization in Romantic Couples Is Associated with Higher Honesty: An fNIRS Hyperscanning Study. Brain Sci 2023; 13:brainsci13050833. [PMID: 37239304 DOI: 10.3390/brainsci13050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies on the brain-brain interaction of deception have shown different patterns of interpersonal brain synchronization (IBS) between different genders. However, the brain-brain mechanisms in the cross-sex composition need to be better understood. Furthermore, there needs to be more discussion about how relationships (e.g., romantic couples vs. strangers) affect the brain-brain mechanism under interactive deception. To elaborate on these issues, we used the functional near-infrared spectroscopy (fNIRS)-based hyperscanning approach to simultaneously measure interpersonal brain synchronization (IBS) in romantic couples (heterosexual) and cross-sex stranger dyads during the sender-receiver game. The behavioral results found that the deception rate of males was lower than that of females, and romantic couples were deceived less than strangers. Significantly increased IBS was observed in the frontopolar cortex (FPC) and right temporoparietal junction (rTPJ) of the romantic couple group. Moreover, the IBS is negatively correlated with the deception rate. No significantly increased IBS was observed in cross-sex stranger dyads. The result corroborated the lower deception of males and romantic couples in cross-sex interactions. Furthermore, IBS in the PFC and rTPJ was the underlying dual-brain neural basis for supporting honesty in romantic couples.
Collapse
Affiliation(s)
- Chong Shao
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - Xuecheng Zhang
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - You Wu
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - Wenhai Zhang
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Big Data Center for Educational Neuroscience and Artificial Intelligence, Hengyang Normal University, Hengyang 421001, China
| | - Binghai Sun
- School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
34
|
Zhao H, Zhang C, Tao R, Duan H, Xu S. Distinct inter-brain synchronization patterns underlying group decision-making under uncertainty with partners in different interpersonal relationships. Neuroimage 2023; 272:120043. [PMID: 37003448 DOI: 10.1016/j.neuroimage.2023.120043] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Humans may behave in different manners when making decisions with friends and strangers. Whether the interpersonal relationship and the characteristics of the individuals in the group affected the group decision-making under uncertainty in the real-time interaction remains unknown. Using the turn-based Balloon Analogue Risk Task (BART), the present study examined the group decision-making propensity under uncertainty with partners in different interpersonal relationships and interpersonal orientations. Corresponding inter-brain synchronization (IBS) patterns at the prefrontal cortex (PFC) were also uncovered with the fNIRS-based hyperscanning approach. Behavioral results identified that dyads in the friend group exhibited the uncertainty-averse propensity when comparing with the stranger group. The fNIRS results reported that feedback-related IBS at the left inferior frontal gyrus (l-IFG) and medial frontopolar cortex (mFPC) during different feedbacks was modulated by interpersonal relationships. The IBS at all channels in the PFC during the positive and negative feedbacks, respectively, predicted the decision-making propensity under uncertainty in the stranger and friend groups based on the support vector machine (SVM) algorithm. The moderating role of the social value orientation (SVO) was also verified in the mediation effect of the dyad closeness on the decision-making propensity under uncertainty via the IBS at the right lateral frontopolar cortex (r-FPC). These findings demonstrated disparate behavioral responses and inter-brain synchronization patterns underlying group decision-making under uncertainty with partners in different interpersonal relationships.
Collapse
Affiliation(s)
- Hanxuan Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Can Zhang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Ruiwen Tao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China
| | - Haijun Duan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, 199 South Chang' an Road, Xi'an 710062, China.
| | - Sihua Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, 550, Dalian West Street, Shanghai 200083, China; College of International Business, Shanghai International Studies University, Shanghai, China; School of Education, Huaibei Normal University, Huaibei, China; Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior, Huaibei Normal University, Huaibei, China.
| |
Collapse
|
35
|
Sun B, Wang Y, Ye Q, Pan Y. Associations of Empathy with Teacher-Student Interactions: A Potential Ternary Model. Brain Sci 2023; 13:brainsci13050767. [PMID: 37239239 DOI: 10.3390/brainsci13050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Empathy has garnered increasing recognition as a pivotal component of teacher-student interactions and a notable determinant of student achievement. Nevertheless, the exact impact of empathy on teacher-student interactions remains elusive, despite research endeavors into the neural mechanisms of teacher empathy. Our article examines the cognitive neural processes of teacher empathy during various forms of teacher-student interactions. To this end, we first present a concise review of theoretical considerations related to empathy and interactions, followed by an extensive discussion of teacher-student interactions and teacher empathy through both "single-brain" and "dual-brain" perspectives. Drawing on these discussions, we propose a potential model of empathy that integrates the affective contagion, cognitive evaluation, and behavior prediction aspects of teacher-student interactions. Finally, future research directions are discussed.
Collapse
Affiliation(s)
- Binghai Sun
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Yaoyao Wang
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Qun Ye
- Intelligent Laboratory of Child and Adolescent Mental Health and Crisis Intervention of Zhejiang Province, School of Psychology, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Zhang Q, Liu Z, Qian H, Hu Y, Gao X. Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sci 2023; 13:brainsci13040600. [PMID: 37190565 DOI: 10.3390/brainsci13040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Elderly people tend not to compete with others, and if they do, the mechanism behind the competition is not clear. In this study, groups of elderly couples and matched cross-sex controls were recruited to perform a competitive button-pressing task, while their brain signals were simultaneously collected using functional near-infrared spectroscopy (fNIRS) hyperscanning. Several fundamental observations were made. First, controls showed attenuated interpersonal competition across task processes, but couples held the competition with each other. Second, couples demonstrated increased inter-brain synchronization (IBS) between the middle temporal cortex and the temporoparietal junction across task processes. Third, Granger causality analysis in couples revealed significant differences between the directions (i.e., from men to women, and from women to men) in the first half of the competitive task, whereas there was no significant difference in the second half. Finally, the groups of couples and controls could be successfully discriminated against based on IBS by using a machine-learning approach. In sum, these findings indicate that elderly couples can maintain interpersonal competition, and such maintenance might be associated with changes in the IBS of the mentalizing system. It suggests the possible positive impact of long-term spouse relationships on interpersonal interactions, both behaviorally and neurally, in terms of competition.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Zhennan Liu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Haoyue Qian
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200234, China
| | - Yinying Hu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Xiangping Gao
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
37
|
Lu K, Gao Z, Wang X, Qiao X, He Y, Zhang Y, Hao N. The hyper-brain neural couplings distinguishing high-creative group dynamics: an fNIRS hyperscanning study. Cereb Cortex 2023; 33:1630-1642. [PMID: 35441220 DOI: 10.1093/cercor/bhac161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/12/2022] Open
Abstract
This hyperscanning study aimed to identify a neural coupling profile that distinguishes high-creative group dynamics through functional near infrared spectroscopy. A total of 123 dyads completed one creativity task (alternative uses task, AUT) and contrast task (objective characteristics task). A K-means clustering analysis on AUT performance grouped 31/29 dyads into high/low-creative group, respectively. In comparison with the low-creative group, the high-creative group showed: (i) higher collective flexibility and delayed perspective-taking behaviors, but lower immediate perspective-taking behaviors; (ii) enhanced interpersonal brain synchronization (IBS) between the left inferior frontal gyrus (lIFG) and right motor cortex, and nodal Eloc at the right superior temporal gyrus (rSTG); (iii) declined intrapersonal functional connectivity between the right angular gyrus (rAG) and rSTG, and IBS between the lIFG and rAG. The enhanced neural couplings positively correlated with group creative performance, whereas a reverse correlation pattern existed in the declined ones. A leave-one-out cross-validation analysis showed these neural couplings reliably predicted group creative performance within the sample. These indicate that high-creative group dynamics are characterized by utilizing partners' shared information when necessary (e.g. encountering idea exhaustion). A neural coupling profile consisting of sophisticated interplays between regions within frontal, temporal, and parietal lobes may underlie high-creative creative dynamics.
Collapse
Affiliation(s)
- Kelong Lu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Zhenni Gao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinyue Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yingyao He
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yu Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
38
|
De Felice S, Hamilton AFDC, Ponari M, Vigliocco G. Learning from others is good, with others is better: the role of social interaction in human acquisition of new knowledge. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210357. [PMID: 36571126 PMCID: PMC9791495 DOI: 10.1098/rstb.2021.0357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Learning in humans is highly embedded in social interaction: since the very early stages of our lives, we form memories and acquire knowledge about the world from and with others. Yet, within cognitive science and neuroscience, human learning is mainly studied in isolation. The focus of past research in learning has been either exclusively on the learner or (less often) on the teacher, with the primary aim of determining developmental trajectories and/or effective teaching techniques. In fact, social interaction has rarely been explicitly taken as a variable of interest, despite being the medium through which learning occurs, especially in development, but also in adulthood. Here, we review behavioural and neuroimaging research on social human learning, specifically focusing on cognitive models of how we acquire semantic knowledge from and with others, and include both developmental as well as adult work. We then identify potential cognitive mechanisms that support social learning, and their neural correlates. The aim is to outline key new directions for experiments investigating how knowledge is acquired in its ecological niche, i.e. socially, within the framework of the two-person neuroscience approach. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Sara De Felice
- Institute of Cognitive Neuroscience, University College London (UCL), 17–19 Alexandra House Queen Square, London WC1N 3AZ, UK
| | - Antonia F. de C. Hamilton
- Institute of Cognitive Neuroscience, University College London (UCL), 17–19 Alexandra House Queen Square, London WC1N 3AZ, UK
| | - Marta Ponari
- School of Psychology, University of Kent, Canterbury CT2 7NP, UK
| | | |
Collapse
|
39
|
Pan Y, Cheng X, Hu Y. Three heads are better than one: cooperative learning brains wire together when a consensus is reached. Cereb Cortex 2023; 33:1155-1169. [PMID: 35348653 DOI: 10.1093/cercor/bhac127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/14/2022] Open
Abstract
Theories of human learning converge on the view that individuals working together learn better than do those working independently. Little is known, however, about the neural mechanisms of learning through cooperation. We addressed this research gap by leveraging functional near-infrared spectroscopy to record the brain activity of triad members in a group simultaneously. Triads were instructed to analyze an ancient Chinese poem either cooperatively or independently. Four main findings emerged. First, we observed significant within-group neural synchronization (GNS) in the left superior temporal cortex, supramarginal gyrus, and postcentral gyrus during cooperative learning compared with independent learning. Second, the enhancement of GNS in triads was amplified when a consensus was reached (vs. elaboration or argument) during cooperative learning. Third, GNS was predictive of learning outcome at an early stage (156-170 s after learning was initiated). Fourth, social factors such as social closeness (e.g. how much learners liked one other) were reflected in GNS and co-varied with learning engagement. These results provide neuroscientific support for Piaget's theory of cognitive development and favor the notion that successful learning through cooperation involves dynamic consensus-building, which is captured in neural patterns shared across learners in a group.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, 310063 Hangzhou, China.,Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, 518060 Shenzhen, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, 200031 Shanghai, China
| |
Collapse
|
40
|
Pan Y, Wen Y, Wang Y, Schilbach L, Chen J. Interpersonal coordination in schizophrenia: a concise update on paradigms, computations, and neuroimaging findings. PSYCHORADIOLOGY 2023; 3:kkad002. [PMID: 38666124 PMCID: PMC10917372 DOI: 10.1093/psyrad/kkad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 04/28/2024]
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yalan Wen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yajie Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leonhard Schilbach
- Department of General Psychiatry 2 and Neuroimaging Section, LVR-Klinikum Düsseldorf, Düsseldorf 40629, Germany
- Medical Faculty, Ludwig-Maximilians University, Munich 80539, Germany
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| |
Collapse
|
41
|
Zhao H, Zhang T, Cheng T, Chen C, Zhai Y, Liang X, Cheng N, Long Y, Li Y, Wang Z, Lu C. Neurocomputational mechanisms of young children's observational learning of delayed gratification. Cereb Cortex 2022; 33:6063-6076. [PMID: 36562999 DOI: 10.1093/cercor/bhac484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ability to delay gratification is crucial for a successful and healthy life. An effective way for young children to learn this ability is to observe the action of adult models. However, the underlying neurocomputational mechanism remains unknown. Here, we tested the hypotheses that children employed either the simple imitation strategy or the goal-inference strategy when learning from adult models in a high-uncertainty context. Results of computational modeling indicated that children used the goal-inference strategy regardless of whether the adult model was their mother or a stranger. At the neural level, results showed that successful learning of delayed gratification was associated with enhanced interpersonal neural synchronization (INS) between children and the adult models in the dorsal lateral prefrontal cortex but was not associated with children's own single-brain activity. Moreover, the discounting of future reward's value obtained from computational modeling of the goal-inference strategy was positively correlated with the strength of INS. These findings from our exploratory study suggest that, even for 3-year-olds, the goal-inference strategy is used to learn delayed gratification from adult models, and the learning strategy is associated with neural interaction between the brains of children and adult models.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Tengfei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Tong Cheng
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, United States
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Xi Liang
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Nanhua Cheng
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Yuhang Long
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Ying Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Zhengyan Wang
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| |
Collapse
|
42
|
Hou Y, Zhang D, Gan X, Hu Y. Group polarization calls for group-level brain communication. Neuroimage 2022; 264:119739. [PMID: 36356821 DOI: 10.1016/j.neuroimage.2022.119739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Group of people shows the shift towards extreme of decision-making as opposed to individuals. Previous studies have revealed two directions of group polarization, i.e., risky shift and cautious shift, but how group of brains drive these shifts remains unknown. In the current study, we arranged risk advantage and disadvantage situations to elicit group polarization of risky shift and cautious shift respectively, and examined the averaged inter-brain synchronization (ABS) among participant triads during group decision making versus individual decision making. The elicited group polarizations were accompanied by the enhanced ABS at bilateral prefrontal areas and left temporoparietal junction (TPJ). Specifically, the TPJ ABS was equivalent in risky shift and cautious shift, and based on machine learning analyses, could predict the extent of group polarization; for two shifts, it negatively correlated with negative emotion. However, the right prefrontal ABS was stronger in risky shift than in cautious shift, and the same area showed the larger brain deactivation in former shift, indicating weaker executive control. For the left prefrontal ABS, only the equivalent ABS was found for two shifts. In sum, group polarization of risky shift and cautious shift calls for inter-brain communication at the group level, and the former shift is with deactivation and more brain synchronization. Our study suggests emotional and cognitive adjustment in decision making of the group compared with individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Dingning Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaorong Gan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
43
|
Boukarras S, Ferri D, Frisanco A, Farnese ML, Consiglio C, Alvino I, Bianchi F, D’Acunto A, Borgogni L, Aglioti SM. Bringing social interaction at the core of organizational neuroscience. Front Psychol 2022; 13:1034454. [PMID: 36467198 PMCID: PMC9714489 DOI: 10.3389/fpsyg.2022.1034454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 10/25/2023] Open
Abstract
Organizations are composed of individuals working together for achieving specific goals, and interpersonal dynamics do exert a strong influence on workplace behaviour. Nevertheless, the dual and multiple perspective of interactions has been scarcely considered by Organizational Neuroscience (ON), the emerging field of study that aims at incorporating findings from cognitive and brain sciences into the investigation of organizational behaviour. This perspective article aims to highlight the potential benefits of adopting experimental settings involving two or more participants (the so-called "second person" approach) for studying the neural bases of organizational behaviour. Specifically, we stress the idea that moving beyond the individual perspective and capturing the dynamical relationships occurring within dyads or groups (e.g., leaders and followers, salespersons and clients, teams) might bring novel insights into the rising field of ON. In addition, designing research paradigms that reliably recreate real work and life situations might increase the generalizability and ecological validity of its results. We start with a brief overview of the current state of ON research and we continue by describing the second-person approach to social neuroscience. In the last paragraph, we try and outline how this approach could be extended to ON. To this end, we focus on leadership, group processes and emotional contagion as potential targets of interpersonal ON research.
Collapse
Affiliation(s)
- Sarah Boukarras
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Donato Ferri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- EY, Rome, Italy
| | - Althea Frisanco
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLNS@Sapienza, Italian Institute of Technology, Rome, Italy
| | | | - Chiara Consiglio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Ilario Alvino
- Department of Legal Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Bianchi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- EY, Rome, Italy
| | | | - Laura Borgogni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Salvatore Maria Aglioti
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLNS@Sapienza, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
44
|
Cheng X, Guo B, Hu Y. Distinct neural couplings to shared goal and action coordination in joint action: evidence based on fNIRS hyperscanning. Soc Cogn Affect Neurosci 2022; 17:956-964. [PMID: 35325237 PMCID: PMC9527463 DOI: 10.1093/scan/nsac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
Joint action is central to human nature, enabling individuals to coordinate in time and space to achieve a joint outcome. Such interaction typically involves two key elements: shared goal and action coordination. Yet, the substrates entrained to these two components in joint action remained unclear. In the current study, dyads performed two tasks involving both sharing goal and action coordination, i.e. complementary joint action and imitative joint action, a task only involving shared goal and a task only involving action coordination, while their brain activities were recorded by the functional near-infrared spectroscopy hyperscanning technique. The results showed that both complementary and imitative joint action (i.e. involving shared goal and action coordination) elicited better behavioral performance than the task only involving shared goal/action coordination. We observed that the interbrain synchronization (IBS) at the right inferior frontal cortex (IFC) entrained more to shared goal, while left-IFC IBS entrained more to action coordination. We also observed that the right-IFC IBS was greater during completing a complementary action than an imitative action. Our results suggest that IFC plays an important role in joint action, with distinct lateralization for the sub-components of joint action.
Collapse
Affiliation(s)
- Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Bing Guo
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yinying Hu
- Institute of Brain and Education Innovation, East China Normal University, Shanghai 200062, China
| |
Collapse
|
45
|
Lin JFL, Imada T, Meltzoff AN, Hiraishi H, Ikeda T, Takahashi T, Hasegawa C, Yoshimura Y, Kikuchi M, Hirata M, Minabe Y, Asada M, Kuhl PK. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cereb Cortex 2022; 33:4116-4134. [PMID: 36130088 PMCID: PMC10068303 DOI: 10.1093/cercor/bhac330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan.,Institute of Linguistics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| | - Hirotoshi Hiraishi
- Hamamatsu University School of Medicine, 1 Chome-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | | | - Chiaki Hasegawa
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2 Chome-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
46
|
Yoneta N, Watanabe H, Shimojo A, Takano K, Saito T, Yagyu K, Shiraishi H, Yokosawa K, Boasen J. Magnetoencephalography Hyperscanning Evidence of Differing Cognitive Strategies Due to Social Role During Auditory Communication. Front Neurosci 2022; 16:790057. [PMID: 35983225 PMCID: PMC9380591 DOI: 10.3389/fnins.2022.790057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Auditory communication is an essential form of human social interaction. However, the intra-brain cortical-oscillatory drivers of auditory communication exchange remain relatively unexplored. We used improvisational music performance to simulate and capture the creativity and turn-taking dynamics of natural auditory communication. Using magnetoencephalography (MEG) hyperscanning in musicians, we targeted brain activity during periods of music communication imagery, and separately analyzed theta (5–7 Hz), alpha (8–13 Hz), and beta (15–29 Hz) source-level activity using a within-subjects, two-factor approach which considered the assigned social role of the subject (leader or follower) and whether communication responses were improvisational (yes or no). Theta activity related to improvisational communication and social role significantly interacted in the left isthmus cingulate cortex. Social role was furthermore differentiated by pronounced occipital alpha and beta amplitude increases suggestive of working memory retention engagement in Followers but not Leaders. The results offer compelling evidence for both musical and social neuroscience that the cognitive strategies, and correspondingly the memory and attention-associated oscillatory brain activities of interlocutors during communication differs according to their social role/hierarchy, thereby indicating that social role/hierarchy needs to be controlled for in social neuroscience research.
Collapse
Affiliation(s)
- Nano Yoneta
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hayato Watanabe
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Child Studies, Toyooka Junior College, Toyooka, Japan
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Shimojo
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuyoshi Takano
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Saito
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuyori Yagyu
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- *Correspondence: Koichi Yokosawa,
| | - Jared Boasen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Tech3Lab, HEC Montréal, Montréal, QC, Canada
| |
Collapse
|
47
|
Liang Z, Li S, Zhou S, Chen S, Li Y, Chen Y, Zhao Q, Huang F, Lu C, Yu Q, Zhou Z. Increased or decreased? Interpersonal neural synchronization in group creation. Neuroimage 2022; 260:119448. [PMID: 35843516 DOI: 10.1016/j.neuroimage.2022.119448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022] Open
Abstract
Group creation is the process by which group members collaborate to produce novel and useful ideas or products, including ideas generation and evaluation. However, the interpersonal neural mechanism of group creation during natural communication remains unclear. In this study, two groups of same-sex dyads with similar individual creativity collaborated to complete the Product Improvement Task (creative condition) and the Item Purchase Plan Task (control condition), respectively. Functional near-infrared spectroscopy (fNIRS) was used to record both members' neural activity in the left prefrontal (lPFC) and right temporal-parietal junction (rTPJ) regions during the task. Considering that the role asymmetry of group members may have an impact on interpersonal neural patterns, we identified leaders and followers in the dyads based on participant performance. The results showed that leaders and followers in the creative condition had significantly lower interpersonal neural synchronization (INS) in the right superior temporal gyrus-left superior frontal gyrus, right supramarginal gyrus-left superior frontal gyrus, and right supramarginal gyrus-left middle frontal gyrus than in the control condition. Partial multivariate Granger causality analyses revealed the influence between dyads was bidirectional but was significantly stronger from the leaders to the followers than the other direction. In addition, in the creative task, the INS was significantly associated with novelty, appropriateness, and conflict of views. All these findings suggest that the ideas generation and ideas evaluation process in group creation have poor interpersonal neural activity coupling due to factors such as the difficulty of understanding novel ideas. However, performances may be improved when groups can better integrate views and reach collective understanding, intentions, and goals. Furthermore, we found that there are differences in the dynamics of INS in different brain regions. The INS related to the novelty of the group creation decreased in the early stages, while the INS related to the appropriateness decreased in the middle stages. Our findings reveal a unique interpersonal neural pattern of group creation processes in the context of natural communication.
Collapse
Affiliation(s)
- Zheng Liang
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Songqing Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China; College of Electronic Engineering, Naval University of Engineering, Wuhan, China
| | - Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shi Chen
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Ying Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China; School of Preschool Education, Changsha Normal University, Changsha, China
| | - Yanran Chen
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Qingbai Zhao
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang, China.
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Quanlei Yu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Zhijin Zhou
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| |
Collapse
|
48
|
Pan Y, Dikker S, Zhu Y, Yang C, Hu Y, Goldstein P. Instructor-learner body coupling reflects instruction and learning. NPJ SCIENCE OF LEARNING 2022; 7:15. [PMID: 35764662 PMCID: PMC9240028 DOI: 10.1038/s41539-022-00131-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/24/2022] [Indexed: 06/01/2023]
Abstract
It is widely accepted that nonverbal communication is crucial for learning, but the exact functions of interpersonal coordination between instructors and learners remain unclear. Specifically, it is unknown what role instructional approaches play in the coupling of physical motion between instructors and learners, and crucially, how such instruction-mediated Body-to-Body Coupling (BtBC) might affect learning. We used a video-based, computer-vision Motion Energy Analysis (MEA) to quantify BtBC between learners and instructors who used two different instructional approaches to teach psychological concepts. BtBC was significantly greater when the instructor employed a scaffolding approach than when an explanation approach was used. The importance of the instructional approach was further underscored by the fact that an increase in motion in the instructor was associated with boosted BtBC, but only during scaffolding; no such relationship between the instructor movements and BtBC was found during explanation interactions. Finally, leveraging machine learning approaches (i.e., support vector and logistic regression models), we demonstrated that both learning outcome and instructional approaches could be decoded based on BtBC. Collectively, these results show that the real-time interaction of teaching and learning bodies is important for learning and that the instructional approach matters, with possible implications for both in-person and online learning.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Suzanne Dikker
- NYU-Max Planck Center for Language, Music and Emotion, New York City, NY, USA
- Department of Clinical Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yi Zhu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Cuirong Yang
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Pavel Goldstein
- Integrative Pain (iPain) Laboratory, School of Public Health, University of Haifa, Haifa, Israel.
| |
Collapse
|
49
|
Bilek E, Zeidman P, Kirsch P, Tost H, Meyer-Lindenberg A, Friston K. Directed coupling in multi-brain networks underlies generalized synchrony during social exchange. Neuroimage 2022; 252:119038. [PMID: 35231631 PMCID: PMC8987739 DOI: 10.1016/j.neuroimage.2022.119038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
Advances in social neuroscience have made neural signatures of social exchange measurable simultaneously across people. This has identified brain regions differentially active during social interaction between human dyads, but the underlying systems-level mechanisms are incompletely understood. This paper introduces dynamic causal modeling and Bayesian model comparison to assess the causal and directed connectivity between two brains in the context of hyperscanning (h-DCM). In this setting, correlated neuronal responses become the data features that have to be explained by models with and without between-brain (effective) connections. Connections between brains can be understood in the context of generalized synchrony, which explains how dynamical systems become synchronized when they are coupled to each another. Under generalized synchrony, each brain state can be predicted by the other brain or a mixture of both. Our results show that effective connectivity between brains is not a feature within dyads per se but emerges selectively during social exchange. We demonstrate a causal impact of the sender's brain activity on the receiver of information, which explains previous reports of two-brain synchrony. We discuss the implications of this work; in particular, how characterizing generalized synchrony enables the discovery of between-brain connections in any social contact, and the advantage of h-DCM in studying brain function on the subject level, dyadic level, and group level within a directed model of (between) brain function.
Collapse
Affiliation(s)
- Edda Bilek
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159 , Germany.
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159 , Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159 , Germany
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
50
|
Hakim U, Pinti P, Noah AJ, Zhang X, Burgess P, Hamilton A, Hirsch J, Tachtsidis I. Investigation of functional near-infrared spectroscopy signal quality and development of the hemodynamic phase correlation signal. NEUROPHOTONICS 2022; 9:025001. [PMID: 35599691 PMCID: PMC9116886 DOI: 10.1117/1.nph.9.2.025001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Significance: There is a longstanding recommendation within the field of fNIRS to use oxygenated (HbO 2 ) and deoxygenated (HHb) hemoglobin when analyzing and interpreting results. Despite this, many fNIRS studies do focus onHbO 2 only. Previous work has shown thatHbO 2 on its own is susceptible to systemic interference and results may mostly reflect that rather than functional activation. Studies using bothHbO 2 and HHb to draw their conclusions do so with varying methods and can lead to discrepancies between studies. The combination ofHbO 2 and HHb has been recommended as a method to utilize both signals in analysis. Aim: We present the development of the hemodynamic phase correlation (HPC) signal to combineHbO 2 and HHb as recommended to utilize both signals in the analysis. We use synthetic and experimental data to evaluate how the HPC and current signals used for fNIRS analysis compare. Approach: About 18 synthetic datasets were formed using resting-state fNIRS data acquired from 16 channels over the frontal lobe. To simulate fNIRS data for a block-design task, we superimposed a synthetic task-related hemodynamic response to the resting state data. This data was used to develop an HPC-general linear model (GLM) framework. Experiments were conducted to investigate the performance of each signal at different SNR and to investigate the effect of false positives on the data. Performance was based on each signal's mean T -value across channels. Experimental data recorded from 128 participants across 134 channels during a finger-tapping task were used to investigate the performance of multiple signals [HbO 2 , HHb, HbT, HbD, correlation-based signal improvement (CBSI), and HPC] on real data. Signal performance was evaluated on its ability to localize activation to a specific region of interest. Results: Results from varying the SNR show that the HPC signal has the highest performance for high SNRs. The CBSI performed the best for medium-low SNR. The next analysis evaluated how false positives affect the signals. The analyses evaluating the effect of false positives showed that the HPC and CBSI signals reflect the effect of false positives onHbO 2 and HHb. The analysis of real experimental data revealed that the HPC and HHb signals provide localization to the primary motor cortex with the highest accuracy. Conclusions: We developed a new hemodynamic signal (HPC) with the potential to overcome the current limitations of usingHbO 2 and HHb separately. Our results suggest that the HPC signal provides comparable accuracy to HHb to localize functional activation while at the same time being more robust against false positives.
Collapse
Affiliation(s)
- Uzair Hakim
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Paola Pinti
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- University of London, Birkbeck College, Centre for Brain and Cognitive Development, London, United Kingdom
| | - Adam J. Noah
- Yale University, Department of Neuroscience and Comparative Medicine, Yale School of Medicine, United States
| | - Xian Zhang
- Yale University, Department of Neuroscience and Comparative Medicine, Yale School of Medicine, United States
| | - Paul Burgess
- University College London, Institute of Cognitive Neuroscience, London, United Kingdom
| | - Antonia Hamilton
- University College London, Institute of Cognitive Neuroscience, London, United Kingdom
| | - Joy Hirsch
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Yale University, Department of Neuroscience and Comparative Medicine, Yale School of Medicine, United States
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|