1
|
Hazelton JL, Della Bella G, Barttfeld P, Dottori M, Gonzalez-Gomez R, Migeot J, Moguilner S, Legaz A, Hernandez H, Prado P, Cuadros J, Maito M, Fraile-Vazquez M, González Gadea ML, Çatal Y, Miller B, Piguet O, Northoff G, Ibáñez A. Altered spatiotemporal brain dynamics of interoception in behavioural-variant frontotemporal dementia. EBioMedicine 2025; 113:105614. [PMID: 39987747 PMCID: PMC11894334 DOI: 10.1016/j.ebiom.2025.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Dysfunctional allostatic-interoception, altered processing of bodily signals in response to environmental demands, occurs in behavioural-variant frontotemporal dementia (bvFTD) patients. Previous research has not investigated the dynamic nature of interoception using methods like intrinsic neural timescales. We hypothesised that longer intrinsic neural timescales of interoception would occur in bvFTD patients, evidencing dysfunctional allostatic-interoception. METHODS One-hundred and twelve participants (31 bvFTD patients, 35 Alzheimer's disease patients, AD and 46 healthy controls) completed a well-validated task measuring cardiac-interoception and exteroception. Simultaneous EEG and ECG were recorded. Intrinsic neural timescales were measured via the autocorrelation window (ACW) of broadband EEG signals from each heartbeat and a time-lagged version of itself. Spatiotemporal clustering analyses identified clusters with significant between-group differences in each condition. Voxel-based morphometry was used to target the allostatic-interoceptive network. Neuropsychological tests of cognition and social cognition were assessed. FINDINGS In bvFTD patients, longer interoceptive-ACWs than controls were observed in the bilateral fronto-temporal and parietal regions. In AD patients, longer interoceptive-ACWs than controls were observed in central and occipitoparietal brain regions. No differences were observed during exteroception. In bvFTD patients only, longer interoceptive-ACW was linked to worse sociocognitive performance. Structural neural correlates of interoceptive-ACW in bvFTD involved the anterior cingulate, insula, orbitofrontal cortex, hippocampus, and angular gyrus. INTERPRETATION Our findings suggest a core allostatic-interoceptive deficit occurs in people with bvFTD. Further, altered interoceptive intrinsic neural timescales may provide a neurobiological mechanism underpinning the complex behaviours observed in bvFTD patients. Our findings support synergistic models of brain disease and can inform clinical practice. FUNDING All funding sources are reported in the Acknowledgements.
Collapse
Affiliation(s)
- Jessica L Hazelton
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina; The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, Australia
| | - Gabriel Della Bella
- Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Matemática Astronomía y Física (FaMAF), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Barttfeld
- Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Martin Dottori
- Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Joaquín Migeot
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Agustina Legaz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | - Hernan Hernandez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago de Chile, Chile
| | - Jhosmary Cuadros
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Advanced Centre for Electrical and Electronic Engineering (AC3E), Universidad Técnica Federico Santa María, Valparaíso, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal, 5001, Venezuela
| | - Marcelo Maito
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina
| | - Matias Fraile-Vazquez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina; Life Span Institute, University of Kansas, Lawrence, KS, USA
| | - María Luz González Gadea
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Yasir Çatal
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Bruce Miller
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, Australia
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Agustin Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Centre (CNC), Universidad de San Andres, Buenos Aires, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Aranberri Ruiz A, Nevado B, Migueles Seco M, Aritzeta Galán A. Heart Rate Variability Biofeedback Intervention Programme to Improve Attention in Primary Schools. Appl Psychophysiol Biofeedback 2024; 49:651-664. [PMID: 39179947 PMCID: PMC11588880 DOI: 10.1007/s10484-024-09659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
The importance of attentional capacity for academic performance is highlighted by the increasing demands placed on students during primary school. Between the ages of 7 and 12, there is an evolutionary improvement in attentional capacity and the school environment is considered an appropriate setting in which to develop programmes to improve attention. Heart rate variability is an appropriate indicator of attentional capacity. For all these reasons, a heart rate variability biofeedback intervention focused on breathing was developed and implemented to improve attention. The intervention consisted of two phases. In the first phase, the school teachers were trained to develop the intervention; in the second, students received five individual sessions from their teachers. In each individual session, they learned to breathe to increase their heart rate variability. A total of 272 girls and 314 boys (N = 586) aged 7-12 years participated in the programme. To study the impact of the intervention on three primary school age groups, the attention of Control and Experimental groups was assessed before and after the implementation of the programme. According to the data obtained, despite developmental improvements, the students who participated in the programme showed an increase in heart rate variability and an improvement in attentional capacity, with a greater impact on the first cycle of primary school. The usefulness of heart rate variability biofeedback interventions in improving attention in primary school is discussed and arguments for their use in children are presented.
Collapse
Affiliation(s)
- Ainara Aranberri Ruiz
- Department of Basic Psychological Processes and their Development, Faculty of Psychology, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain.
| | - Borja Nevado
- Department of Basic Psychological Processes and their Development, Faculty of Psychology, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Malen Migueles Seco
- Department of Basic Psychological Processes and their Development, Faculty of Psychology, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Aitor Aritzeta Galán
- Department of Basic Psychological Processes and their Development, Faculty of Psychology, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Triana AM, Salmi J, Hayward NMEA, Saramäki J, Glerean E. Longitudinal single-subject neuroimaging study reveals effects of daily environmental, physiological, and lifestyle factors on functional brain connectivity. PLoS Biol 2024; 22:e3002797. [PMID: 39378200 PMCID: PMC11460715 DOI: 10.1371/journal.pbio.3002797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2024] [Indexed: 10/10/2024] Open
Abstract
Our behavior and mental states are constantly shaped by our environment and experiences. However, little is known about the response of brain functional connectivity to environmental, physiological, and behavioral changes on different timescales, from days to months. This gives rise to an urgent need for longitudinal studies that collect high-frequency data. To this end, for a single subject, we collected 133 days of behavioral data with smartphones and wearables and performed 30 functional magnetic resonance imaging (fMRI) scans measuring attention, memory, resting state, and the effects of naturalistic stimuli. We find traces of past behavior and physiology in brain connectivity that extend up as far as 15 days. While sleep and physical activity relate to brain connectivity during cognitively demanding tasks, heart rate variability and respiration rate are more relevant for resting-state connectivity and movie-watching. This unique data set is openly accessible, offering an exceptional opportunity for further discoveries. Our results demonstrate that we should not study brain connectivity in isolation, but rather acknowledge its interdependence with the dynamics of the environment, changes in lifestyle, and short-term fluctuations such as transient illnesses or restless sleep. These results reflect a prolonged and sustained relationship between external factors and neural processes. Overall, precision mapping designs such as the one employed here can help to better understand intraindividual variability, which may explain some of the observed heterogeneity in fMRI findings. The integration of brain connectivity, physiology data and environmental cues will propel future environmental neuroscience research and support precision healthcare.
Collapse
Affiliation(s)
- Ana María Triana
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Juha Salmi
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
- Aalto Behavioral Laboratory, Aalto Neuroimaging, Aalto University, Espoo, Finland
- MAGICS, Aalto Studios, Aalto University, Espoo, Finland
- Unit of Psychology, Faculty of Education and Psychology, Oulu University, Oulu, Finland
| | | | - Jari Saramäki
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
| | - Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
- Advanced Magnetic Imaging Centre, Aalto University, Espoo, Finland
| |
Collapse
|
4
|
Oh H, Cho AR, Jeon JH, Suh E, Moon J, Cho BH, Lee YK. Association between resting heart rate and low natural killer cell activity: a cross-sectional study. Front Immunol 2024; 15:1465953. [PMID: 39399484 PMCID: PMC11466811 DOI: 10.3389/fimmu.2024.1465953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Resting heart rate (RHR), a simple physiological indicator, has been demonstrated to be associated with inflammation and even metabolic disorders. This study aimed to investigate whether RHR is associated with natural killer cell activity (NKA) in a large population of healthy adults using a novel assay to measure NKA. This cross-sectional study included 7,500 subjects in the final analysis. NKA was estimated by measuring the amount of interferon-gamma (IFN-γ) released by activated natural killer cells; low NKA was defined as IFN-γ level <500 pg/mL. Subjects were categorized into four groups according to RHR as follows: C1 (≤ 60 bpm), C2 (60-70 bpm), C3 (70-80 bpm), and C4 (≥ 80 bpm). Individuals with higher RHR exhibited poorer metabolic and inflammatory profiles, with the prevalence of low NKA being highest in the highest RHR category. Compared with C1 as reference, the fully adjusted odd ratios (ORs) [95% confidence intervals (CIs)] for low NKA were significantly higher in C3 (OR: 1.37, 95% CI: 1.08-1.75) and C4 (OR: 1.55, 95% CI: 1.20-2.00). In addition, RHR was shown to exert indirect effects on NKA upon consideration of the mediation effect of serum cortisol in path analysis. Our findings confirm a significant link between elevated RHR and low NKA, and suggest the usefulness of RHR, a simple indicator reflecting increased sympathetic nervous system activity and stress, in predicting reduced immune function.
Collapse
Affiliation(s)
- Hyoju Oh
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - A-Ra Cho
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Hwan Jeon
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - Eunkyung Suh
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - Junhyung Moon
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Baek Hwan Cho
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Yun-Kyong Lee
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ramakumar N, Sama S. Exploring Heart Rate Variability Biofeedback as a Nonpharmacological Intervention for Enhancing Perioperative Care: A Narrative Review. Turk J Anaesthesiol Reanim 2024; 52:125-133. [PMID: 39287174 PMCID: PMC11590695 DOI: 10.4274/tjar.2024.241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Heart rate variability biofeedback (HRVBF) is a non-invasive therapeutic technique that aims to regulate variability in heart rate. This intervention has promise in mitigating perioperative stress, a critical factor for surgical patient outcomes. This comprehensive review aimed to explore the current evidence on the perioperative role of HRV biofeedback in improving patient outcomes, reducing perioperative stress, enhancing recovery, and optimizing anaesthesia management. A review of the PubMed and Google Scholar databases was conducted to identify articles focused on HRVBF in relation to the perioperative period. Studies were selected using appropriate keywords in English (MeSH). Ample potential applications of HRVBF in clinical anaesthesia have been identified and proven feasible. It is a non-invasive and an easy method an anaesthesiologists has at its disposal with potential utility in reducing perioperative stress, as a tool of optimization of comorbidities, analgesia supplementation and in predicting catastrophic complications. Although HRVBF has the potential to enhance anaesthesia management and improve patient outcomes, several limitations and challenges must be addressed to maximize its clinical utility. Overcoming these obstacles through research and technological advancements will be crucial for realizing the full benefits of HRVBF in perioperative care.
Collapse
Affiliation(s)
- Nirupa Ramakumar
- Himalayan Institute of Medical Sciences, Department of Anaesthesiology, Uttarakhand, India
| | - Sonu Sama
- Himalayan Institute of Medical Sciences, Department of Critical Care, Uttarakhand, India
| |
Collapse
|
6
|
Ko DK, Lee H, Kim DI, Park YM, Kang N. Transcranial direct current stimulation improves heart rate variability: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111072. [PMID: 38925337 DOI: 10.1016/j.pnpbp.2024.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Heart rate variability (HRV) is a useful tool for evaluating cardiovascular autonomic nervous system (ANS) functions. This systematic review and meta-analysis examined the potential effects of transcranial direct current stimulation (tDCS) protocols on HRV parameters. METHODS This study acquired 97 comparisons from 24 qualified studies for data synthesis. Using standardized mean difference (SMD), individual and overall effect sizes were estimated to show differences in HRV variables between active tDCS and sham stimulation conditions. More positive effect size values indicated that active tDCS caused greater increases in HRV than sham stimulation. Furthermore, moderator variable analyses were performed to determine whether changes in HRV variables differed depending on (a) task types (physical stress versus psychological stress versus resting condition), (b) targeted brain regions, (c) stimulation polarity, (d) characteristics of participants, and (e) specific HRV variables. Finally, we used meta-regression analyses to determine whether different tDCS parameters (i.e., the number of tDCS sessions, stimulation duration, and density) were associated with changes in HRV patterns. RESULTS The random-effects model meta-analysis showed that tDCS protocols significantly improved HRV variables (SMD = 0.400; P < 0.001). Moreover, for increasing HRV during the physical stress task (SMD = 1.352; P = 0.001), anodal stimulation on the M1 was effective, while combined polarity stimulation on the PFC improved HRV during the psychological stress task (SMD = 0.550; P < 0.001) and resting condition (SMD = 0.192; P = 0.012). Additional moderator variables and meta-regression analyses failed to show that tDCS protocols had positive effects in certain conditions, such as different stimulus polarity, characteristics of participants, specific HRV variables, and tDCS parameters. CONCLUSION These findings tentatively suggest that using tDCS protocols to stimulate optimal targeted brain areas may be effective in improving HRV patterns potentially related to cardiovascular ANS functions.
Collapse
Affiliation(s)
- Do-Kyung Ko
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| | - Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| | - Dong-Il Kim
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Health & Kinesiology, Incheon National University, Incheon, South Korea.
| | - Young-Min Park
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Health & Kinesiology, Incheon National University, Incheon, South Korea.
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| |
Collapse
|
7
|
Stuyck H, Demeyer F, Bratanov C, Cleeremans A, Van den Bussche E. Insight and non-insight problem solving: A heart rate variability study. Q J Exp Psychol (Hove) 2024; 77:1462-1484. [PMID: 37688497 DOI: 10.1177/17470218231202519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Occasionally, problems are solved with a sudden Aha! moment (insight), while the mundane approach to solving problems is analytical (non-insight). At first glance, non-insight appears to depend on the availability and taxation of cognitive resources to execute the step-by-step approach, whereas insight does not, or to a lesser extent. However, this remains debated. To investigate the reliance of both solution types on cognitive resources, we assessed the involvement of the prefrontal cortex using vagally mediated heart rate variability (vmHRV) as an index. Participants (N = 68) solved 70 compound remote associates word puzzles solvable with insight and non-insight. Before, during, and after solving the word puzzles, we measured the vmHRV. Our results showed that resting-state vmHRV (trait) showed a negative association with behavioural performance for both solution types. This might reflect inter-individual differences in inhibitory control. As the solution search requires one to think of remote associations, inhibitory control might hamper rather than aid this process. Furthermore, we observed, for both solution types, a vmHRV increase from resting-state to solution search (state), lingering on in the post-task recovery period. This could mark the increase of prefrontal resources to promote an open-minded stance, essential for divergent thinking, which arguably is crucial for this task. Our findings suggest that, at a general level, both solution types share common aspects. However, a closer analysis of early and late solutions and puzzle difficulty suggested that metacognitive differentiation between insight and non-insight improved with higher trait vmHRV, and that a unique association between trait vmHRV and puzzle difficulty was present for each solution type.
Collapse
Affiliation(s)
- Hans Stuyck
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Center for Research in Cognition and Neurosciences, Faculty of Psychology and Education Sciences, Université libre de Bruxelles, Brussel, Belgium
| | - Febe Demeyer
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Christo Bratanov
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Axel Cleeremans
- Center for Research in Cognition and Neurosciences, Faculty of Psychology and Education Sciences, Université libre de Bruxelles, Brussel, Belgium
| | - Eva Van den Bussche
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Mather M. The emotion paradox in the aging body and brain. Ann N Y Acad Sci 2024; 1536:13-41. [PMID: 38676452 DOI: 10.1111/nyas.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
With age, parasympathetic activity decreases, while sympathetic activity increases. Thus, the typical older adult has low heart rate variability (HRV) and high noradrenaline levels. Younger adults with this physiological profile tend to be unhappy and stressed. Yet, with age, emotional experience tends to improve. Why does older adults' emotional well-being not suffer as their HRV decreases? To address this apparent paradox, I present the autonomic compensation model. In this model, failing organs, the initial phases of Alzheimer's pathology, and other age-related diseases trigger noradrenergic hyperactivity. To compensate, older brains increase autonomic regulatory activity in the pregenual prefrontal cortex (PFC). Age-related declines in nerve conduction reduce the ability of the pregenual PFC to reduce hyperactive noradrenergic activity and increase peripheral HRV. But these pregenual PFC autonomic compensation efforts have a significant impact in the brain, where they bias processing in favor of stimuli that tend to increase parasympathetic activity (e.g., stimuli that increase feelings of safety) and against stimuli that tend to increase sympathetic activity (e.g., threatening stimuli). In summary, the autonomic compensation model posits that age-related chronic sympathetic/noradrenergic hyperactivity stimulates regulatory attempts that have the side effect of enhancing emotional well-being.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, and Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Pollatou A, Holland CM, Stockton TJ, Peterson BS, Scheinost D, Monk C, Spann MN. Mapping Early Brain-Body Interactions: Associations of Fetal Heart Rate Variation with Newborn Brainstem, Hypothalamic, and Dorsal Anterior Cingulate Cortex Functional Connectivity. J Neurosci 2024; 44:e2363232024. [PMID: 38604780 PMCID: PMC11140686 DOI: 10.1523/jneurosci.2363-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
The autonomic nervous system (ANS) regulates the body's physiology, including cardiovascular function. As the ANS develops during the second to third trimester, fetal heart rate variability (HRV) increases while fetal heart rate (HR) decreases. In this way, fetal HR and HRV provide an index of fetal ANS development and future neurobehavioral regulation. Fetal HR and HRV have been associated with child language ability and psychomotor development behavior in toddlerhood. However, their associations with postbirth autonomic brain systems, such as the brainstem, hypothalamus, and dorsal anterior cingulate cortex (dACC), have yet to be investigated even though brain pathways involved in autonomic regulation are well established in older individuals. We assessed whether fetal HR and HRV were associated with the brainstem, hypothalamic, and dACC functional connectivity in newborns. Data were obtained from 60 pregnant individuals (ages 14-42) at 24-27 and 34-37 weeks of gestation using a fetal actocardiograph to generate fetal HR and HRV. During natural sleep, their infants (38 males and 22 females) underwent a fMRI scan between 40 and 46 weeks of postmenstrual age. Our findings relate fetal heart indices to brainstem, hypothalamic, and dACC connectivity and reveal connections with widespread brain regions that may support behavioral and emotional regulation. We demonstrated the basic physiologic association between fetal HR indices and lower- and higher-order brain regions involved in regulatory processes. This work provides the foundation for future behavioral or physiological regulation research in fetuses and infants.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Cristin M Holland
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Thirsten J Stockton
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California 90027
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Dustin Scheinost
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut 06520
- Child Study Center, Yale School of Medicine, New Haven, Connecticut 06520
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut 06520
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06511
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06506
| | - Catherine Monk
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
10
|
Philippi CL, Weible E, Ehlers A, Walsh EC, Hoks RM, Birn RM, Abercrombie HC. Effects of cortisol administration on heart rate variability and functional connectivity across women with different depression histories. Behav Brain Res 2024; 463:114923. [PMID: 38408523 PMCID: PMC10942667 DOI: 10.1016/j.bbr.2024.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Abnormalities within the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system have been implicated in depression. Studies have reported glucocorticoid insensitivity and reduced heart rate variability (HRV) in depressive disorders. However, little is known about the effects of cortisol on HRV and resting-state functional connectivity (rsFC) of the central autonomic network (CAN) in depression. We collected resting-state fMRI and cardiac data for women with different depression histories (n = 61) after administration of cortisol and placebo using a double-blind crossover design. We computed rsFC for R-amygdala and L-amygdala seeds and assessed the change in HRV after cortisol (cortisol-placebo). Analyses examined the effects of acute cortisol administration on HRV and rsFC of the R-amygdala and L-amygdala. There was a significant interaction between HRV and treatment for rsFC between the amygdala and CAN regions. We found lower rsFC between the L-amygdala and putamen for those with a greater decrease in HRV after cortisol. There was also reduced rsFC between the R-amygdala and dorsomedial prefrontal cortex, putamen, middle cingulate cortex, insula, and cerebellum in those with lower HRV after cortisol. These results remained significant after adjusting for depression symptoms, age, and race. Our findings suggest that the effect of cortisol on CAN connectivity is related to its effects on HRV. Overall, these results could inform transdiagnostic interventions targeting HRV and the stress response systems across clinical and non-clinical populations.
Collapse
Affiliation(s)
- Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd, St. Louis, MO 63121, USA.
| | - Emily Weible
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd, St. Louis, MO 63121, USA
| | - Alissa Ehlers
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Center for Healthy Minds, University of Wisconsin-Madison., 625 W. Washington Ave, Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Heather C Abercrombie
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Center for Healthy Minds, University of Wisconsin-Madison., 625 W. Washington Ave, Madison, WI 53703, USA
| |
Collapse
|
11
|
Xie F, Zhou L, Hu Q, Zeng L, Wei Y, Tang X, Gao Y, Hu Y, Xu L, Chen T, Liu H, Wang J, Lu Z, Chen Y, Zhang T. Cardiovascular variations in patients with major depressive disorder versus bipolar disorder. J Affect Disord 2023; 341:219-227. [PMID: 37657620 DOI: 10.1016/j.jad.2023.08.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Differentiating depression in major depressive disorder and bipolar disorder is challenging in clinical practice. Therefore, reliable biomarkers are urgently needed to differentiate between these diseases. This study's main objective was to assess whether cardiac autonomic function can distinguish patients with unipolar depression (UD), bipolar depression (BD), and bipolar mania (BM). METHODS We recruited 791 patients with mood disorders, including 191 with UD, 286 with BD, and 314 with BM, who had been drug free for at least 2 weeks. Cardiovascular status was measured using heart rate variability (HRV) and pulse wave velocity (PWV) indicators via finger photoplethysmography during a 5-min rest period. RESULTS Patients with BD showed lower HRV but higher heart rates than those with UD and BM. The PWV indicators were lower in the UD group than in the bipolar disorder group. The covariates of age, sex, and body mass index affected the cardiovascular characteristics. After adjusting for covariates, the HRV and PWV variations among the three groups remained significant. Comparisons between the UD and BD groups showed that the variable with the largest effect size was the frequency-domain indices of HRV, very low and high frequency, followed by heart rate. The area under the receiver operating characteristic curve (AUC) for each cardiovascular variable ranged from 0.661 to 0.714. The High-frequency index reached the highest AUC. LIMITATIONS Cross-sectional design and the magnitude of heterogeneity across participants with mood disorders limited our findings. CONCLUSION Patients with BD, but not BM, had a greater extent of cardiac imbalance than those with UD. Thus, HRV may serve as a psychophysiological biomarker for the differential diagnosis of UD and BD.
Collapse
Affiliation(s)
- Fei Xie
- School of Public Health, Fudan University, Shanghai, China; Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - LinLin Zhou
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Qiang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; Department of Psychiatry, ZhenJiang Mental Health Center, Zhenjiang, China
| | - LingYun Zeng
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, ShenZhen, China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - YuQing Gao
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada; Labor and Worklife Program, Harvard University, MA, United States
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Zheng Lu
- Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai 200065, China.
| | - YingYao Chen
- School of Public Health, Fudan University, Shanghai, China.
| | - TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China.
| |
Collapse
|
12
|
Cubillo A, Tkalcec A, Oldenhof H, Unternaehrer E, Raschle N, Kohls G, Nauta-Jansen L, Hervas A, Fernandez-Rivas A, Konrad K, Popma A, Freitag C, de Brito S, Fairchild G, Stadler C. Linking heart rate variability to psychological health and brain structure in adolescents with and without conduct disorder. Front Psychiatry 2023; 14:1101064. [PMID: 37441149 PMCID: PMC10333527 DOI: 10.3389/fpsyt.2023.1101064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Aims Heart rate variability (HRV) measures have been suggested in healthy individuals as a potential index of self-regulation skills, which include both cognitive and emotion regulation aspects. Studies in patients with a range of psychiatric disorders have however mostly focused on the potential association between abnormally low HRV at rest and specifically emotion regulation difficulties. Emotion regulation deficits have been reported in patients with Conduct Disorder (CD) however, the association between these emotion regulation deficits and HRV measures has yet to be fully understood. This study investigates (i) the specificity of the association between HRV and emotion regulation skills in adolescents with and without CD and (ii) the association between HRV and grey matter brain volumes in key areas of the central autonomic network which are involved in self-regulation processes, such as insula, lateral/medial prefrontal cortices or amygdala. Methods Respiratory sinus arrhythmia (RSA) measures of HRV were collected from adolescents aged between 9-18 years (693 CD (427F)/753 typically developing youth (TD) (500F)), as part of a European multi-site project (FemNAT-CD). The Inverse Efficiency Score, a speed-accuracy trade-off measure, was calculated to assess emotion and cognitive regulation abilities during an Emotional Go/NoGo task. The association between RSA and task performance was tested using multilevel regression models. T1-weighted structural MRI data were included for a subset of 577 participants (257 CD (125F); 320 TD (186F)). The CerebroMatic toolbox was used to create customised Tissue Probability Maps and DARTEL templates, and CAT12 to segment brain images, followed by a 2 × 2 (sex × group) full factorial ANOVA with RSA as regressor of interest. Results There were no significant associations between RSA and task performance, neither during emotion regulation nor during cognitive regulation trials. RSA was however positively correlated with regional grey matter volume in the left insula (pFWE = 0.011) across all subjects. Conclusion RSA was related to increased grey matter volume in the left insula across all subjects. Our results thus suggest that low RSA at rest might be a contributing or predisposing factor for potential self-regulation difficulties. Given the insula's role in both emotional and cognitive regulation processes, these brain structural differences might impact either of those.
Collapse
Affiliation(s)
- Ana Cubillo
- Department of Child and Adolescent Psychiatry (research section), University Psychiatric Clinics, Basel, Switzerland
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Antonia Tkalcec
- Department of Child and Adolescent Psychiatry (research section), University Psychiatric Clinics, Basel, Switzerland
| | - Helena Oldenhof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Public Health, Amsterdam, Netherlands
| | - Eva Unternaehrer
- Department of Child and Adolescent Psychiatry (research section), University Psychiatric Clinics, Basel, Switzerland
| | - Nora Raschle
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Gregor Kohls
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Lucres Nauta-Jansen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Public Health, Amsterdam, Netherlands
| | - Amaia Hervas
- Hospital Universitario Mutua Terrassa, IGAIN, Barcelona, Spain
| | - Aranzazu Fernandez-Rivas
- Biocruces Bizkaia Health Research Institute, Basurto University Hospital, University of the Basque Country, Bilbao, Spain
| | - Kerstin Konrad
- RWTH Aachen University & JARA-Brain Institute, Aachen, Germany
| | - Arne Popma
- Child and Adolescent Psychiatry Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Christine Freitag
- Child and Adolescent Psychiatry, Goethe University, Frankfurt, Germany
| | | | - Graeme Fairchild
- Developmental Psychopathology, University of Bath, Bath, United Kingdom
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry (research section), University Psychiatric Clinics, Basel, Switzerland
| |
Collapse
|
13
|
Tupitsa E, Egbuniwe I, Lloyd WK, Puertollano M, Macdonald B, Joanknecht K, Sakaki M, van Reekum CM. Heart Rate Variability Covaries with Amygdala Functional Connectivity During Voluntary Emotion Regulation. Neuroimage 2023; 274:120136. [PMID: 37116768 DOI: 10.1016/j.neuroimage.2023.120136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/19/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
The Neurovisceral Integration Model posits that shared neural networks support the effective regulation of emotions and heart rate, with heart rate variability (HRV) serving as an objective, peripheral index of prefrontal inhibitory control. Prior neuroimaging studies have predominantly examined both HRV and associated neural functional connectivity at rest, as opposed to contexts that require active emotion regulation. The present study sought to extend upon previous resting-state functional connectivity findings, examining task-related HRV and corresponding amygdala functional connectivity during a cognitive reappraisal task. Seventy adults (52 older and 18 younger adults, 18-84 years, 51% male) received instructions to cognitively reappraise negative affective images during functional MRI scanning. HRV measures were derived from a finger pulse signal throughout the scan. During the task, younger adults exhibited a significant inverse association between HRV and amygdala-medial prefrontal cortex (mPFC) functional connectivity, in which higher task-related HRV was correlated with weaker amygdala-mPFC coupling, whereas older adults displayed a slight positive, albeit non-significant correlation. Furthermore, voxelwise whole-brain functional connectivity analyses showed that higher task-based HRV was linked to weaker right amygdala-posterior cingulate cortex connectivity across older and younger adults, and in older adults, higher task-related HRV correlated positively with stronger right amygdala-right ventrolateral prefrontal cortex connectivity. Collectively, these findings highlight the importance of assessing HRV and neural functional connectivity during active regulatory contexts to further identify neural concomitants of HRV and adaptive emotion regulation.
Collapse
Affiliation(s)
- Emma Tupitsa
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Ifeoma Egbuniwe
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - William K Lloyd
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK; School of Health Sciences, University of Manchester, Manchester, UK
| | - Marta Puertollano
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Birthe Macdonald
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK; URPP Dynamics of Healthy Ageing, University of Zurich, Zurich, Switzerland
| | - Karin Joanknecht
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Michiko Sakaki
- Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany; Research Institute, Kochi University of Technology, Kochi, Japan
| | - Carien M van Reekum
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| |
Collapse
|
14
|
Arakaki X, Arechavala RJ, Choy EH, Bautista J, Bliss B, Molloy C, Wu DA, Shimojo S, Jiang Y, Kleinman MT, Kloner RA. The connection between heart rate variability (HRV), neurological health, and cognition: A literature review. Front Neurosci 2023; 17:1055445. [PMID: 36937689 PMCID: PMC10014754 DOI: 10.3389/fnins.2023.1055445] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
The heart and brain have bi-directional influences on each other, including autonomic regulation and hemodynamic connections. Heart rate variability (HRV) measures variation in beat-to-beat intervals. New findings about disorganized sinus rhythm (erratic rhythm, quantified as heart rate fragmentation, HRF) are discussed and suggest overestimation of autonomic activities in HRV changes, especially during aging or cardiovascular events. When excluding HRF, HRV is regulated via the central autonomic network (CAN). HRV acts as a proxy of autonomic activity and is associated with executive functions, decision-making, and emotional regulation in our health and wellbeing. Abnormal changes of HRV (e.g., decreased vagal functioning) are observed in various neurological conditions including mild cognitive impairments, dementia, mild traumatic brain injury, migraine, COVID-19, stroke, epilepsy, and psychological conditions (e.g., anxiety, stress, and schizophrenia). Efforts are needed to improve the dynamic and intriguing heart-brain interactions.
Collapse
Affiliation(s)
- Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Rebecca J. Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Elizabeth H. Choy
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Jayveeritz Bautista
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Bishop Bliss
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Cathleen Molloy
- Cognition and Brain Integration Laboratory, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Daw-An Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Shinsuke Shimojo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Yang Jiang
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael T. Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Robert A. Kloner
- Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
Matusik PS, Zhong C, Matusik PT, Alomar O, Stein PK. Neuroimaging Studies of the Neural Correlates of Heart Rate Variability: A Systematic Review. J Clin Med 2023; 12:jcm12031016. [PMID: 36769662 PMCID: PMC9917610 DOI: 10.3390/jcm12031016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
Direct and indirect links between brain regions and cardiac function have been reported. We performed a systematic literature review to summarize current knowledge regarding the associations of heart rate variability (HRV) and brain region morphology, activity and connectivity involved in autonomic control at rest in healthy subjects. Both positive and negative correlations of cortical thickness and gray matter volumes of brain structures with HRV were observed. The strongest were found for a cluster located within the cingulate cortex. A decline in HRV, as well as cortical thickness with increasing age, especially in the orbitofrontal cortex were noted. When associations of region-specific brain activity with HRV were examined, HRV correlated most strongly with activity in the insula, cingulate cortex, frontal and prefrontal cortices, hippocampus, thalamus, striatum and amygdala. Furthermore, significant correlations, largely positive, between HRV and brain region connectivity (in the amygdala, cingulate cortex and prefrontal cortex) were observed. Notably, right-sided neural structures may be preferentially involved in heart rate and HRV control. However, the evidence for left hemispheric control of cardiac vagal function has also been reported. Our findings provide support for the premise that the brain and the heart are interconnected by both structural and functional networks and indicate complex multi-level interactions. Further studies of brain-heart associations promise to yield insights into their relationship to health and disease.
Collapse
Affiliation(s)
- Patrycja S. Matusik
- Department of Diagnostic Imaging, University Hospital, 30-688 Kraków, Poland
| | - Chuwen Zhong
- Center for Social Epidemiology and Population Health, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Paweł T. Matusik
- Department of Electrocardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Department of Electrocardiology, The John Paul II Hospital, 31-202 Kraków, Poland
| | - Omar Alomar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Phyllis K. Stein
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
16
|
Riganello F, Vatrano M, Tonin P, Cerasa A, Cortese MD. Heart Rate Complexity and Autonomic Modulation Are Associated with Psychological Response Inhibition in Healthy Subjects. ENTROPY (BASEL, SWITZERLAND) 2023; 25:152. [PMID: 36673293 PMCID: PMC9857955 DOI: 10.3390/e25010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND the ability to suppress/regulate impulsive reactions has been identified as common factor underlying the performance in all executive function tasks. We analyzed the HRV signals (power of high (HF) and low (LF) frequency, Sample Entropy (SampEn), and Complexity Index (CI)) during the execution of cognitive tests to assess flexibility, inhibition abilities, and rule learning. METHODS we enrolled thirty-six healthy subjects, recording five minutes of resting state and two tasks of increasing complexity based on 220 visual stimuli with 12 × 12 cm red and white squares on a black background. RESULTS at baseline, CI was negatively correlated with age, and LF was negatively correlated with SampEn. In Task 1, the CI and LF/HF were negatively correlated with errors. In Task 2, the reaction time positively correlated with the CI and the LF/HF ratio errors. Using a binary logistic regression model, age, CI, and LF/HF ratio classified performance groups with a sensitivity and specificity of 73 and 71%, respectively. CONCLUSIONS this study performed an important initial exploration in defining the complex relationship between CI, sympathovagal balance, and age in regulating impulsive reactions during cognitive tests. Our approach could be applied in assessing cognitive decline, providing additional information on the brain-heart interaction.
Collapse
Affiliation(s)
| | | | - Paolo Tonin
- S. Anna Institute, Via Siris 11, 88900 Crotone, Italy
| | - Antonio Cerasa
- S. Anna Institute, Via Siris 11, 88900 Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98100 Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | | |
Collapse
|
17
|
Beuchel P, Cramer C. Heart Rate Variability and Perceived Stress in Teacher Training: Facing the Reality Shock With Mindfulness? GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2023; 12:27536130231176538. [PMID: 37216037 PMCID: PMC10196549 DOI: 10.1177/27536130231176538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Background The beginning of the career of teachers is a demanding phase. In the combined roles of teacher and trainee, and in the shift from academic to practical learning, trainee teachers have to acquire competencies in teaching as well as coping with stress. In this phase, the phenomenon of "reality shock" is widely observed. Objective A mindfulness training was developed to support teacher trainees during their first year. This intervention study investigated perceived and physiological stress at teachers' career start and the stress reducing effects of the mindfulness training in this phase. Methods In a quasi-experimental design, 19 out of 42 participants from this sample underwent mindfulness-based stress reduction training and a wait-list control group (N = 23) underwent a compact course after post measurements. We measured physiological stress parameters and perceived stress at 3 different time points. Heart rate signals were acquired in ambulatory assessment sequences, including teaching, rest periods, and cognitive tasks. The data were analyzed in linear mixed-effects models. Results We found high physiological stress in the very beginning of teacher training, which attenuated over time. The mindfulness intervention only led to a greater reduction in heart rate (d = .53 to .74) in situations where the intervention group had shown higher heart rate levels initially, but not in heart rate variability. However, the mindfulness group significantly reduced (d = .63) their perceived stress and maintained (d = .55) this improvement, while the control group maintained a highly elevated perceived stress level throughout. Conclusion The mindfulness training could reduce subjective stress, which otherwise seems to be a long-lasting aspect of beginning teachers' "reality shock". Indications of a superior reduction of physiological stress in demanding situations were weak, while generally, undue physiological stress seems to be a temporary phenomenon in the initial phase of teacher induction.
Collapse
Affiliation(s)
- Philipp Beuchel
- Department of Clinical Psychology
and Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of School Education, University of Tübingen, Tübingen, Germany
| | - Colin Cramer
- Department of School Education, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Stuyck H, Dalla Costa L, Cleeremans A, Van den Bussche E. Validity of the Empatica E4 wristband to estimate resting-state heart rate variability in a lab-based context. Int J Psychophysiol 2022; 182:105-118. [DOI: 10.1016/j.ijpsycho.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
19
|
The Dosage Effect of Laser Acupuncture at PC6 (Neiguan) on Heart Rate Variability: A Pilot Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121951. [PMID: 36556316 PMCID: PMC9786668 DOI: 10.3390/life12121951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Laser acupuncture (LA) has been more applicated in the clinical practice with good responses, but the dosage and parameter settings are still inconsistent with the arguments. This study is focused on the effect of LA on heart rate variability (HRV) with different energy density (ED). Based on the Arndt-Schulz law, we hypothesized that the effective range should fall within 0.01 to 10 J/cm2 of ED, and settings above 10 J/cm2 would perform opposite or inhibitory results. We recruited healthy adults in both sexes as subjects and choose bilateral PC6 (Neiguan) as the intervention points to observe the HRV indexes changes by an external wrist autonomic nerve system (ANS) watch on the left forearm. The data from the ANS watch, including heart rate, blood pressure, and ANS activity indexes, such as low frequency (LF), high frequency (HF), LF%, HF%, LF/HF ratio, and so on, were analyzed by the one-way ANOVA method to test the possible effect. In this study, every subject received all three different EDs of LA in a randomized order. After analyzing the data of 20 subjects, the index of HF% was upward and LF/HF ratio was downward when the ED was 7.96 J/cm2. Otherwise, the strongest ED 23.87 J/cm2 performed the opposite reaction. Appropriately, LA intervention could affect the ANS activities, with the tendency to increase the ratio of parasympathetic and decrease the ratio of sympathetic nerve system activities with statistically significant results, and different ED interventions are consistent with Arndt-Schulz law with opposite performance below and above 10 J/cm2.
Collapse
|
20
|
Yoo HJ, Nashiro K, Min J, Cho C, Bachman SL, Nasseri P, Porat S, Dutt S, Grigoryan V, Choi P, Thayer JF, Lehrer PM, Chang C, Mather M. Heart rate variability (HRV) changes and cortical volume changes in a randomized trial of five weeks of daily HRV biofeedback in younger and older adults. Int J Psychophysiol 2022; 181:50-63. [PMID: 36030986 PMCID: PMC11195601 DOI: 10.1016/j.ijpsycho.2022.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/02/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Previous studies indicate that the structure and function of medial prefrontal cortex (PFC) and lateral orbitofrontal cortex (OFC) are associated with heart rate variability (HRV). Typically, this association is assumed to reflect the PFC's role in controlling HRV and emotion regulation, with better prefrontal structural integrity supporting greater HRV and better emotion regulation. However, as a control system, the PFC must monitor and respond to heart rate oscillatory activity. Thus, engaging in regulatory feedback during heart rate oscillatory activity may over time help shape PFC structure, as relevant circuits and connections are modified. In the current study with younger and older adults, we tested whether 5 weeks of daily sessions of biofeedback to increase heart rate oscillations (Osc+ condition) vs. to decrease heart rate oscillations (Osc- condition) affected cortical volume in left OFC and right OFC, two regions particularly associated with HRV in prior studies. The left OFC showed significant differences in volume change across conditions, with Osc+ increasing volume relative to Osc-. The volume changes in left OFC were significantly correlated with changes in mood disturbance. In addition, resting low frequency HRV increased more in the Osc+ than in the Osc- condition. These findings indicate that daily biofeedback sessions regulating heart rate oscillatory activity can shape both resting HRV and the brain circuits that help control HRV and regulate emotion.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Shelby L Bachman
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Padideh Nasseri
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Shai Porat
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Vardui Grigoryan
- University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Paul Choi
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Julian F Thayer
- University of California, Irvine, Irvine, CA 92697, United States of America
| | - Paul M Lehrer
- Rutgers University, Piscataway, NJ 08854, United States of America
| | - Catie Chang
- Vanderbilt University, TN 37235, United States of America
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, United States of America.
| |
Collapse
|
21
|
Scheitz JF, Sposato LA, Schulz-Menger J, Nolte CH, Backs J, Endres M. Stroke-Heart Syndrome: Recent Advances and Challenges. J Am Heart Assoc 2022; 11:e026528. [PMID: 36056731 PMCID: PMC9496419 DOI: 10.1161/jaha.122.026528] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After ischemic stroke, there is a significant burden of cardiovascular complications, both in the acute and chronic phase. Severe adverse cardiac events occur in 10% to 20% of patients within the first few days after stroke and comprise a continuum of cardiac changes ranging from acute myocardial injury and coronary syndromes to heart failure or arrhythmia. Recently, the term stroke–heart syndrome was introduced to provide an integrated conceptual framework that summarizes neurocardiogenic mechanisms that lead to these cardiac events after stroke. New findings from experimental and clinical studies have further refined our understanding of the clinical manifestations, pathophysiology, and potential long‐term consequences of the stroke–heart syndrome. Local cerebral and systemic mediators, which mainly involve autonomic dysfunction and increased inflammation, may lead to altered cardiomyocyte metabolism, dysregulation of (tissue‐resident) leukocyte populations, and (micro‐) vascular changes. However, at the individual patient level, it remains challenging to differentiate between comorbid cardiovascular conditions and stroke‐induced heart injury. Therefore, further research activities led by joint teams of basic and clinical researchers with backgrounds in both cardiology and neurology are needed to identify the most relevant therapeutic targets that can be tested in clinical trials.
Collapse
Affiliation(s)
- Jan F Scheitz
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany.,World Stroke Organization Brain & Heart Task Force
| | - Luciano A Sposato
- World Stroke Organization Brain & Heart Task Force.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry Western University London Ontario Canada.,Heart & Brain Laboratory Western University London Ontario Canada
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Department of Cardiology and Nephrology HELIOS Klinikum Berlin Buch Berlin Germany
| | - Christian H Nolte
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany
| | - Johannes Backs
- Institute of Experimental Cardiology Heidelberg University Heidelberg Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim Heidelberg Germany
| | - Matthias Endres
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany.,DZNE (German Center for Neurodegenerative Disease), Partner Site Berlin Berlin Germany.,ExcellenceCluster NeuroCure Berlin Germany
| |
Collapse
|
22
|
Chen X, Xu L, Li Z. Autonomic Neural Circuit and Intervention for Comorbidity Anxiety and Cardiovascular Disease. Front Physiol 2022; 13:852891. [PMID: 35574459 PMCID: PMC9092179 DOI: 10.3389/fphys.2022.852891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
Abstract
Anxiety disorder is a prevalent psychiatric disease and imposes a significant influence on cardiovascular disease (CVD). Numerous evidence support that anxiety contributes to the onset and progression of various CVDs through different physiological and behavioral mechanisms. However, the exact role of nuclei and the association between the neural circuit and anxiety disorder in CVD remains unknown. Several anxiety-related nuclei, including that of the amygdala, hippocampus, bed nucleus of stria terminalis, and medial prefrontal cortex, along with the relevant neural circuit are crucial in CVD. A strong connection between these nuclei and the autonomic nervous system has been proven. Therefore, anxiety may influence CVD through these autonomic neural circuits consisting of anxiety-related nuclei and the autonomic nervous system. Neuromodulation, which can offer targeted intervention on these nuclei, may promote the development of treatment for comorbidities of CVD and anxiety disorders. The present review focuses on the association between anxiety-relevant nuclei and CVD, as well as discusses several non-invasive neuromodulations which may treat anxiety and CVD.
Collapse
Affiliation(s)
- Xuanzhao Chen
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Li Xu
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command, Wuhan, China
| | - Zeyan Li
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
23
|
Quadt L, Critchley H, Nagai Y. Cognition, emotion, and the central autonomic network. Auton Neurosci 2022; 238:102948. [PMID: 35149372 DOI: 10.1016/j.autneu.2022.102948] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
The demands of both mental and physical activity are integrated with the dynamic control of internal bodily states. The set of neural interactions that supports autonomic regulation extends beyond afferent-efferent homeostatic reflexes (interoceptive feedback, autonomic action) to encompass allostatic policies reflecting more abstract and predictive mental representations, often accessed as conscious thoughts and feelings. Historically and heuristically, reason is contrasted with passion, cognition with emotion, and 'cold' with 'hot' cognition. These categories are themselves arbitrary and blurred. Investigations of psychological processes have been generally pursued during states of musculoskeletal quiescence and are thus relatively insensitive to autonomic interaction with attentional, perceptual, mnemonic and decision-making processes. Autonomic psychophysiology has nevertheless highlighted the bidirectional coupling of distinct cognitive domains to the internal states of bodily arousal. More powerfully perhaps, in the context of emotion, autonomically mediated changes in inner bodily physiological states are viewed as intrinsic constituents of the expression of emotions, while their feedback representation is proposed to underpin emotional and motivational feelings. Here, we review the brain systems, encapsulated by the notion of central autonomic network, that provide the interface between cognitive, emotional and autonomic state. These systems span the neuraxis, overlap with the more general governance of behaviour, and represent district levels of proximity to survival-related imperatives. We touch upon the conceptual relevance of prediction and surprise to understanding the integration of cognition and emotion with autonomic control.
Collapse
Affiliation(s)
- Lisa Quadt
- BSMS Department of Neuroscience, University of Brighton and University of Sussex, UK; Sussex Neuroscience, University of Sussex, UK
| | - Hugo Critchley
- BSMS Department of Neuroscience, University of Brighton and University of Sussex, UK; Sussex Neuroscience, University of Sussex, UK; Sackler Centre for Consciousness Science, University of Sussex, UK; Sussex Partnership NHS Foundation Trust, UK.
| | - Yoko Nagai
- BSMS Department of Neuroscience, University of Brighton and University of Sussex, UK; Sussex Neuroscience, University of Sussex, UK
| |
Collapse
|
24
|
Gribanov AV, Kottsova ON, Anikina NY, Pankov MN, Startseva LF. Impact Of Seasonal Fluctuations In Natural Light On Cerebral Metabolism In Arctic Region Residents With Different Autonomic Tones. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background — The study of physiological mechanisms of human acclimatization to extreme climatic conditions is an urgent task in current socioeconomic conditions of the Arctic region development. Natural cycles of seasonal adaptation based on light stimulus cause functional restructuring of the cerebral cortex and subcortical activity centers and change the activity of the autonomic nervous system. Objective — The article aims at determining the characteristics of brain energy metabolism in Arctic region residents with different autonomic tones during different seasons. Material and Methods — The first stage of our study was conducted using the computer appliance VNS-Spectrum (Neurosoft LLC, Russia) and resulted in setting up two groups: with predominance of the parasympathetic autonomic nervous system (26 subjects) and with prevailing sympathetic autonomic nervous system (23 individuals). At the second stage, the study of the seasonal dynamics in cerebral energy processes took place (in October, December, March, and June) by means of using the five-channel diagnostic complex Neuro-KM for topographic mapping of brain electrical activity via direct current potential levels (DCPL). Results — Our results did not exhibit statistically significant gender-related differences, hence they permitted to form a single group. The results were compared with the software reference values for the norm. Conclusion — Enlarged levels of natural light prompt the activation of energy metabolism in frontal and occipital lobes of the Arctic residents’ cortex, accompanied by forming an exhaustion area in the temporal lobes. In the group of sympathotonic individuals, we revealed somewhat tense adaptation processes. Adaptation process of brain energy supply in vagotonic individuals occur less stressfully during the annual cycle.
Collapse
|
25
|
Estimating Resting HRV during fMRI: A Comparison between Laboratory and Scanner Environment. SENSORS 2021; 21:s21227663. [PMID: 34833744 PMCID: PMC8619981 DOI: 10.3390/s21227663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022]
Abstract
Heart rate variability (HRV) is regularly assessed in neuroimaging studies as an indicator of autonomic, emotional or cognitive processes. In this study, we investigated the influence of a loud and cramped environment during magnetic resonance imaging (MRI) on resting HRV measures. We compared recordings during functional MRI sessions with recordings in our autonomic laboratory (LAB) in 101 healthy subjects. In the LAB, we recorded an electrocardiogram (ECG) and a photoplethysmogram (PPG) over 15 min. During resting state functional MRI, we acquired a PPG for 15 min. We assessed anxiety levels before the scanning in each subject. In 27 participants, we performed follow-up sessions to investigate a possible effect of habituation. We found a high intra-class correlation ranging between 0.775 and 0.996, indicating high consistency across conditions. We observed no systematic influence of the MRI environment on any HRV index when PPG signals were analyzed. However, SDNN and RMSSD were significantly higher when extracted from the PPG compared to the ECG. Although we found a significant correlation of anxiety and the decrease in HRV from LAB to MRI, a familiarization session did not change the HRV outcome. Our results suggest that psychological factors are less influential on the HRV outcome during MRI than the methodological choice of the cardiac signal to analyze.
Collapse
|
26
|
Schumann A, de la Cruz F, Köhler S, Brotte L, Bär KJ. The Influence of Heart Rate Variability Biofeedback on Cardiac Regulation and Functional Brain Connectivity. Front Neurosci 2021; 15:691988. [PMID: 34267625 PMCID: PMC8275647 DOI: 10.3389/fnins.2021.691988] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects. Methods HRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC. Results First, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions. Conclusion Our results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.
Collapse
Affiliation(s)
- Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Feliberto de la Cruz
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefanie Köhler
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Lisa Brotte
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany.,Institute of Medical Psychology and Behavioral Immunobiology, Essen University Hospital, Essen, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
27
|
Sun J, Zhang Q, Lin B, He M, Pang Y, Liang Q, Huang Z, Xu P, Que D, Xu S. Association Between Postoperative Long-Term Heart Rate Variability and Postoperative Delirium in Elderly Patients Undergoing Orthopedic Surgery: A Prospective Cohort Study. Front Aging Neurosci 2021; 13:646253. [PMID: 34135747 PMCID: PMC8200544 DOI: 10.3389/fnagi.2021.646253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Postoperative delirium (POD) is a common complication after orthopedic surgery in elderly patients. The elderly may experience drastic changes in autonomic nervous system (ANS) activity and circadian rhythm disorders after surgery. Therefore, we intend to explore the relationship between postoperative long-term heart rate (HR) variability (HRV), as a measure of ANS activity and circadian rhythm, and occurrence of POD in elderly patients. Methods The study population of this cohort was elderly patients over 60 years of age who scheduled for orthopedic surgery under spinal anesthesia. Patients were screened for inclusion and exclusion criteria before surgery. Then, participants were invited to wear a Holter monitor on the first postoperative day to collect 24-h electrocardiographic (ECG) data. Parameters in the time domain [the standard deviation of the normal-to-normal (NN) intervals (SDNN), mean of the standard deviations of all the NN intervals for each 5-min segment of a 24-h HRV recording (SDNNI), and the root mean square of successive differences of the NN intervals (RMSSD)] and frequency domain [heart rate (HR), high frequency (HF), low frequency (LF), very low frequency (VLF), ultra low frequency (ULF), and total power (TP)] were calculated. Assessment of delirium was performed daily up to the seventh postoperative day using the Chinese version of the 3-Min Diagnostic Interview for CAM-defined Delirium (3D-CAM). The relationship between HRV and POD, as well as the association between HRV and duration of POD, was assessed. Results Of the 294 cases that finally completed the follow-up, 60 cases developed POD. Among the HRV parameters, SDNNI, VLF, and ULF were related to the occurrence of POD. After adjustment for potential confounders, the correlation between HRV indices and POD disappeared. Through stratified analysis, two significant negative correlations emerged: ULF in young-old participants and SDNNI, VLF, and ULF in male patients. Conclusion The lower HRV parameters may be related to the occurrence of POD, and this correlation is more significant in young-old and male patients. ANS disorders and rhythm abnormalities reflected by HRV changes may represent a possible mechanism that promotes POD.
Collapse
Affiliation(s)
- Jiaduo Sun
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingguo Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baojia Lin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mengjiao He
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yimin Pang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qibo Liang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhibin Huang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dongdong Que
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Burma JS, Lapointe AP, Soroush A, Oni IK, Smirl JD, Dunn JF. The validity and reliability of an open source biosensing board to quantify heart rate variability. Heliyon 2021; 7:e07148. [PMID: 34124405 PMCID: PMC8173091 DOI: 10.1016/j.heliyon.2021.e07148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/17/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Heart rate variability (HRV) is a popular tool to quantify autonomic function. However, this typically requires an expensive 3-12 lead electrocardiogram (ECG) and BioAmp system. This investigation sought to determine the validity and reliability of an OpenBCI cyton biosensing board (open source) for accurately quantifying HRV. New method A cyton board with a 3-lead ECG was employed to acquire heart rate waveform data, which was processed to obtain HRV within both time- and frequency-domains. The concurrent validity was compared to a simultaneous recording from an industry-standard 3-lead ECG (ADInstruments) (n = 15). The reliability of the cyton board was compared between three days within a 7-day timespan (n = 10). Upright quiet-stance short-term HRV metrics were quantified in time- and frequency-domains. Results The two devices displayed excellent limits of agreements (all log mean differences ±0.4) and very high between-device variable associations (all r 2 > 0.98). Between the three time points in the same subjects, no differences were noted within time- (all p > 0.71) or frequency-domains (all p > 0.88) across testing points. Finally, all HRV metrics exhibited excellent levels of reliability through high Cronbach's Alpha (all ≥0.916) and intraclass correlation coefficients (all ≥0.930); and small standard error of the measurement (all ≤0.7) and typical error of the measurement (all ≤0.1) metrics. Comparison with existing methods The cyton board with 3-lead ECG was compared with an industry-standard ADInstruments ECG during HRV assessments. There were no significant differences between devices with respect to time- and frequency-domains. The cyton board displayed high-levels of between-day reliability and provided values harmonious to previous ECG literature highlighting the applicability for longitudinal studies. Conclusion With proper background knowledge regarding ECG principles and a small degree of set-up complexity, an open source cyton board can be created and employed to perform multimodal HRV assessments at a fraction of the cost (~4%) of an industry-standard ECG setup.
Collapse
Affiliation(s)
- Joel S. Burma
- Cerebrovascular Concussion Laboratory, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Andrew P. Lapointe
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ateyeh Soroush
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ibukunoluwa K. Oni
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Laboratory, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Jeff F. Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Corresponding author.
| |
Collapse
|
29
|
Torres S, Alexander A, O'Bryant S, Medina LD. Cognition and the Predictive Utility of Three Risk Scores in an Ethnically Diverse Sample. J Alzheimers Dis 2021; 75:1049-1059. [PMID: 32390625 DOI: 10.3233/jad-191284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Various factors, such as age, cardiovascular concerns, and lifestyle patterns, are associated with risk for cognitive decline and Alzheimer's disease (AD). Risk scores model predictive risk of developing a disease (e.g., dementia, stroke). Many of these scores have been primarily developed in largely non-Hispanic/Latino (non-H/L) White samples and little is known about their applicability in ethno-racially diverse populations. OBJECTIVE The primary aim was to examine the relationship between three established risk scores and cognitive performance. These relationships were compared across ethnic groups. METHODS We conducted a cross-sectional study with a multi-ethnic, rural-dwelling group of participants (Mage = 61.6±12.6 years, range: 40-96 years; 373F:168M; 39.7% H/L). The Cardiovascular Risk Factors, Aging and Dementia (CAIDE), Framingham Risk Score (FRS), and Washington Heights-Inwood Columbia Aging Project (WHICAP) score were calculated for each participant. RESULTS All three scores were significantly associated with cognition in both H/L and non-H/L groups. In H/Ls, cognition was predicted by FRS: β= -0.08, p = 0.022; CAIDE: β= -0.08, p < 0.001; and WHICAP: β= -0.04, p < 0.001. In non-H/Ls, cognition was predicted by FRS: β= -0.11, p < 0.001; CAIDE: β= -0.14, p < 0.001; and WHICAP: β= -0.08, p < 0.001. The strength of this relationship differed between groups for FRS [t(246) = -4.61, p < 0.001] and CAIDE [t(420) = -3.20, p = 0.001], but not for WHICAP [t(384) = -1.03, p = 0.30], which already includes ethnicity in its calculation. CONCLUSION These findings support the utility of these three risk scores in predicting cognition while underscoring the need to account for ethnicity. Moreover, our results highlight the importance of cardiovascular and other demographic factors in predicting cognitive outcomes.
Collapse
Affiliation(s)
- Stephanie Torres
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Angel Alexander
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Sid O'Bryant
- Department of Pharmacology & Neuroscience, University of Northern Texas Health Science Center, Fort Worth, TX, USA
| | - Luis D Medina
- Department of Psychology, University of Houston, Houston, TX, USA
| |
Collapse
|
30
|
Validity of the Polar V800 Monitor for Assessing Heart Rate Variability in Elderly Adults under Mental Stress and Dual Task Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030869. [PMID: 33498381 PMCID: PMC7908342 DOI: 10.3390/ijerph18030869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 01/21/2023]
Abstract
Background: Aging may result in autonomic nervous dysfunction. Heart rate variability (HRV) is a non-invasive method to measure autonomic nervous activities. Many studies have shown that HRV contributes to the risk assessment of diseases. A Polar V800 heart rate monitor is a wearable device that measures R-R intervals, but has only been validated in younger adults under limited testing conditions. There is no validation of the V800 under mental stress or in dual task testing conditions. Therefore, this study investigated the validity of the Polar V800 heart rate monitor for assessing R-R intervals and evaluated if there were differences on HRV parameters under different situations in community-dwelling elderly adults. Methods: Forty community-dwelling elderly adults were recruited. Heart rates were recorded via electrocardiogram (ECG) and the V800 under sitting, during an arithmetic test, during a naming test, a self-selected walking velocity test (SSWV), and dual tasks (SSWV performing mental arithmetic test and SSWV performing naming test). Indices of time and frequency domains of HRV were calculated afterwards. The intra-class correlation coefficient (ICC) analysis and effect size were calculated to examine the concurrent validity between the V800 and the ECG. Results: All HRV indices from the V800 were highly correlated with the ECG under all tested conditions (ICC = 0.995–1.000, p < 0.001) and the effect size of bias was small (<0.1). Conclusion: Overall, the V800 has good validity on the assessment of HRV in community-dwelling elderly adults during sitting, mental arithmetic test, naming test, SSWV, and dual tasks.
Collapse
|
31
|
Haigh SM, Walford TP, Brosseau P. Heart Rate Variability in Schizophrenia and Autism. Front Psychiatry 2021; 12:760396. [PMID: 34899423 PMCID: PMC8656307 DOI: 10.3389/fpsyt.2021.760396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
Suppressed heart rate variability (HRV) has been found in a number of psychiatric conditions, including schizophrenia and autism. HRV is a potential biomarker of altered autonomic functioning that can predict future physiological and cognitive health. Understanding the HRV profiles that are unique to each condition will assist in generating predictive models of health. In the current study, we directly compared 12 adults with schizophrenia, 25 adults with autism, and 27 neurotypical controls on their HRV profiles. HRV was measured using an electrocardiogram (ECG) channel as part of a larger electroencephalography (EEG) study. All participants also completed the UCLA Loneliness Questionnaire as a measure of social stress. We found that the adults with schizophrenia exhibited reduced variability in R-R peaks and lower low frequency power in the ECG trace compared to controls. The HRV in adults with autism was slightly suppressed compared to controls but not significantly so. Interestingly, the autism group reported feeling lonelier than the schizophrenia group, and HRV did not correlate with feelings of loneliness for any of the three groups. However, suppressed HRV was related to worse performance on neuropsychological tests of cognition in the schizophrenia group. Together, this suggests that autonomic functioning is more abnormal in schizophrenia than in autism and could be reflecting health factors that are unique to schizophrenia.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Reno, NV, United States
| | - Tabatha P Walford
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Reno, NV, United States
| | - Pat Brosseau
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Brain Connectivity Changes after Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Brain Sci 2020; 10:brainsci10120969. [PMID: 33322255 PMCID: PMC7764238 DOI: 10.3390/brainsci10120969] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
The effects of osteopathic manipulative treatment (OMT) on functional brain connectivity in healthy adults is missing in the literature. To make up for this lack, we applied advanced network analysis methods to analyze resting state functional magnetic resonance imaging (fMRI) data, after OMT and Placebo treatment (P) in 30 healthy asymptomatic young participants randomized into OMT and placebo groups (OMTg; Pg). fMRI brain activity measures, performed before (T0), immediately after (T1) and three days after (T2) OMT or P were used for inferring treatment effects on brain circuit functional organization. Repeated measures ANOVA and post-hoc analysis demonstrated that Right Precentral Gyrus (F (2, 32) = 5.995, p < 0.005) was more influential over the information flow immediately after the OMT, while decreased betweenness centrality in Left Caudate (F (2, 32) = 6.496, p < 0.005) was observable three days after. Clustering coefficient showed a distinct time-point and group effect. At T1, reduced neighborhood connectivity was observed after OMT in the Left Amygdala (L-Amyg) (F (2, 32) = 7.269, p < 0.005) and Left Middle Temporal Gyrus (F (2, 32) = 6.452, p < 0.005), whereas at T2 the L-Amyg and Vermis-III (F (2, 32) = 6.772, p < 0.005) increased functional interactions. Data demonstrated functional connectivity re-arrangement after OMT.
Collapse
|
33
|
McIntosh RC, Hoshi R, Nomi JS, Di Bello M, Goodman ZT, Kornfeld S, Uddin LQ, Ottaviani C. Neurovisceral integration in the executive control network: A resting state analysis. Biol Psychol 2020; 157:107986. [PMID: 33137415 DOI: 10.1016/j.biopsycho.2020.107986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022]
Abstract
Neurovisceral integration models emphasize the role of frontal lobes in cognitive, behavioral, and emotional regulation. Two candidate hubs for the regulation of cardio-autonomic control, anxiety, and executive attention are the dorsolateral prefrontal cortex (DLPFC) and middle frontal gyrus (MFG). Two-hundred and seventy-one adults (62.9 % female) aged 18-85 years were selected from the NKI-Rockland Sample. Resting state functional imaging data was preprocessed, and seeds extracted from bilateral DLPFC and MFG to test 4 regression models predicting connectivity with high frequency HRV (HF-HRV), trait anxiety (TA), and reaction time on an executive attention task. After controlling for age, sex, body mass index and head motion, the right DLPFC-MFG seed pair provided strongest support for neurovisceral integration indexed by HF-HRV, low TA and shorter reaction time on the attention network task. This hemispheric effect may underlie the inhibitory role of right PFC in the regulation of cardio-autonomic function, emotion, and executive attention.
Collapse
Affiliation(s)
- Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States.
| | - Rosangela Hoshi
- University Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States
| | - Maria Di Bello
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Zachary T Goodman
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States
| | - Salome Kornfeld
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
34
|
Pei Z, Shi M, Guo J, Shen B. Heart Rate Variability Based Prediction of Personalized Drug Therapeutic Response: The Present Status and the Perspectives. Curr Top Med Chem 2020; 20:1640-1650. [PMID: 32493191 DOI: 10.2174/1568026620666200603105002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Heart rate variability (HRV) signals are reported to be associated with the personalized drug
response in many diseases such as major depressive disorder, epilepsy, chronic pain, hypertension, etc.
But the relationships between HRV signals and the personalized drug response in different diseases and
patients are complex and remain unclear. With the fast development of modern smart sensor technologies
and the popularization of big data paradigm, more and more data on the HRV and drug response
will be available, it then provides great opportunities to build models for predicting the association of
the HRV with personalized drug response precisely. We here review the present status of the HRV data
resources and models for predicting and evaluating of personalized drug responses in different diseases.
The future perspectives on the integration of knowledge and personalized data at different levels such as,
genomics, physiological signals, etc. for the application of HRV signals to the precision prediction of
drug therapy and their response will be provided.
Collapse
Affiliation(s)
- Zejun Pei
- Nanjing Medical University Affiliated Wuxi Second Hospital, No. 68,Zhongshan road, Wuxi, Jiangsu, China
| | - Manhong Shi
- Centre for Systems Biology, Soochow University, Suzhou 215006, China
| | - Junping Guo
- The Affiliated Yixing Hospital of Jiangsu University, No. 75, Tongzhenguan Road, Yixing, Jiangsu, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Nicolini P, Mari D, Abbate C, Inglese S, Bertagnoli L, Tomasini E, Rossi PD, Lombardi F. Autonomic function in amnestic and non-amnestic mild cognitive impairment: spectral heart rate variability analysis provides evidence for a brain-heart axis. Sci Rep 2020; 10:11661. [PMID: 32669640 PMCID: PMC7363846 DOI: 10.1038/s41598-020-68131-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Mild cognitive impairment (MCI) is a heterogeneous syndrome with two main clinical subtypes, amnestic (aMCI) and non-amnestic (naMCI). The analysis of heart rate variability (HRV) is a tool to assess autonomic function. Cognitive and autonomic processes are linked via the central autonomic network. Autonomic dysfunction entails several adverse outcomes. However, very few studies have investigated autonomic function in MCI and none have considered MCI subtypes or the relationship of HRV indices with different cognitive domains and structural brain damage. We assessed autonomic function during an active orthostatic challenge in 253 oupatients aged ≥ 65, [n = 82 aMCI, n = 93 naMCI, n = 78 cognitively normal (CN), neuropsychologically tested] with power spectral analysis of HRV. We used visual rating scales to grade cerebrovascular burden and hippocampal/insular atrophy (HA/IA) on neuroimaging. Only aMCI showed a blunted response to orthostasis. Postural changes in normalised low frequency (LF) power and in the LF to high frequency ratio correlated with a memory test (positively) and HA/IA (negatively) in aMCI, and with attention/executive function tests (negatively) and cerebrovascular burden (positively) in naMCI. These results substantiate the view that the ANS is differentially impaired in aMCI and naMCI, consistently with the neuroanatomic substrate of Alzheimer's and small-vessel subcortical ischaemic disease.
Collapse
Affiliation(s)
- Paola Nicolini
- Cardiovascular Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical and Community Sciences, University of Milan, Milan, Italy.
| | - Daniela Mari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| | - Carlo Abbate
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical and Community Sciences, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Silvia Inglese
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| | - Laura Bertagnoli
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| | - Emanuele Tomasini
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical and Community Sciences, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Paolo D Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| | - Federico Lombardi
- Cardiovascular Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Koenig J. Neurovisceral regulatory circuits of affective resilience in youth. Psychophysiology 2020; 57:e13568. [DOI: 10.1111/psyp.13568] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Julian Koenig
- Section for Experimental Child and Adolescent Psychiatry Department of Child and Adolescent Psychiatry Centre for Psychosocial Medicine University of Heidelberg Heidelberg Germany
- KOENIG Group University Hospital of Child and Adolescent Psychiatry and Psychotherapy University of Bern Bern Switzerland
| |
Collapse
|
37
|
Wang W, Zhornitsky S, Le TM, Zhang S, Li CSR. Heart Rate Variability, Cue-Evoked Ventromedial Prefrontal Cortical Response, and Problem Alcohol Use in Adult Drinkers. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:619-628. [PMID: 32061544 DOI: 10.1016/j.bpsc.2019.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Many studies employed cue exposure paradigms to investigate the neural processes underlying cue-elicited alcohol craving. Cue exposure elicits robust autonomic reactivity. However, whether or how cue-elicited autonomic response relates to the severity of alcohol misuse and the neural bases underlying the potential relationship remain unclear. METHODS We examined cue-related brain activations in association with heart rate variability, as indexed by the root mean square of the successive differences (RMSSD), during alcohol versus neutral cue blocks in 50 adult alcohol drinkers (24 men). Imaging and heart rate variability data were collected and processed with published routines. Mediation analyses were conducted to examine the interrelationship between regional activities, cue-elicited changes in RMSSD, and the severity of problem alcohol use, as assessed with the Alcohol Use Disorders Identification Test (AUDIT). RESULTS The results showed higher RMSSD during alcohol than during neutral cue exposures, with alcohol (vs. neutral) cue-evoked RMSSD positively correlated with AUDIT score. Further, alcohol (vs. neutral) cue-elicited activity in the ventromedial prefrontal cortex was negatively correlated both with increases in RMSSD and with the AUDIT score. Mediation analyses suggested that the RMSSD mediated the relationship between ventromedial prefrontal cortex cue activity and the AUDIT score. CONCLUSIONS These findings substantiate the neural correlates of the presumably parasympathetic response during alcohol cue exposure and the interrelationship among ventromedial prefrontal cortex activity, autonomic response, and problem alcohol use.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut; Department of Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut.
| |
Collapse
|
38
|
Salat DH, Kennedy KM. Current themes and issues in neuroimaging of aging processes: Editorial overview to the special issue on imaging the nonpathological aging brain. Neuroimage 2019; 201:116046. [PMID: 31376520 DOI: 10.1016/j.neuroimage.2019.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- David H Salat
- Martinous Center for Biomedical Imaging, Massachusets General Hospital, Department of Radiology, Harvard University, USA
| | - Kristen M Kennedy
- School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, USA.
| |
Collapse
|
39
|
Williams PG, Cribbet MR, Tinajero R, Rau HK, Thayer JF, Suchy Y. The association between individual differences in executive functioning and resting high-frequency heart rate variability. Biol Psychol 2019; 148:107772. [PMID: 31577925 DOI: 10.1016/j.biopsycho.2019.107772] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
Abstract
Both resting high-frequency heart rate variability (HF-HRV) and executive functioning (EF) are individual differences implicated in vulnerability to a wide range of adverse outcomes. The overlapping set of associations, along with theoretical models positing connections between the brain regions subserving the executive functions and the parasympathetic nervous system, suggest that the two factors should be correlated. Seeking to address limitations in prior research, the current study examined the association between EF, measured comprehensively with individually-administered neuropsychological tests and controlling for lower-order cognitive processes, and resting physiology, measured with impedence cardiography, in healthy, community participants (68% female; mean age = 27, SD = 6.5). Results confirmed a significant association between EF and resting HF-HRV, but no association with resting state sympathetic nervous system activation (pre-ejection period). These findings may inform future investigation of transdiagnostic mechanisms related to these two individual difference factors.
Collapse
Affiliation(s)
| | | | | | - Holly K Rau
- VA Puget Sound Health Care System, United States
| | | | | |
Collapse
|
40
|
Sűdy ÁR, Ella K, Bódizs R, Káldi K. Association of Social Jetlag With Sleep Quality and Autonomic Cardiac Control During Sleep in Young Healthy Men. Front Neurosci 2019; 13:950. [PMID: 31555086 PMCID: PMC6742749 DOI: 10.3389/fnins.2019.00950] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/22/2019] [Indexed: 01/23/2023] Open
Abstract
Social jetlag (SJL), the difference in sleep timing between work and free days is a consequence of the discrepancy between the individual’s circadian rhythm and the social clock. SJL is considered a chronic stress factor and has been linked to various health problems. In this field study, we examined for the first time the association between SJL and cardiac regulation during sleep. 33 healthy young men aged 20–26 years participated in the study. The median SJL was used as a cut-off value to assign the participants into two groups with either lower or higher SJL. As a marker of autonomic control we analyzed heart rate variability (HRV) and addressed intra-individual differences between workdays and free days. In subjects with higher SJL, pNN50, an indicator of vagal activity was lower in the first 3 h of sleep on workday as compared to free day (day × sleep block × group, p = 0.015), indicating a more adaptable regulation on free days, when subjects slept according to their own preference. However, in subjects with lower SJL, no HRV differences were found between the two nights. SJL showed correlation with the free day-workday differences of both pNN50 and another vagal index, RMSSD in the first 2 h of sleep (p = 0.023 and 0.047, respectively). In subjects with higher SJL, a different HF power on workdays and free days (p = 0.031) also indicated that a shift in sleep timing is accompanied by an altered parasympathetic activity in the first few hours of sleep. Furthermore, subjective sleep quality on workdays was negatively associated with SJL (p = 0.02), and subjects with higher SJL reported worse sleep quality on workday than on free day (p = 0.027). Taken together, our data call attention on the potential effect of SJL on sleep quality and vagal activity during sleep.
Collapse
Affiliation(s)
- Ágnes Réka Sűdy
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Krisztina Ella
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.,National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Krisztina Káldi
- Department of Physiology, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Mulcahy JS, Larsson DEO, Garfinkel SN, Critchley HD. Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. Neuroimage 2019; 202:116072. [PMID: 31386920 DOI: 10.1016/j.neuroimage.2019.116072] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
The dynamic embodiment of psychological processes is evident in the association of health outcomes, behavioural traits and psychological functioning with Heart Rate Variability (HRV). The dominant high-frequency component of HRV is an index of the central neural control of heart rhythm, mediated via the parasympathetic vagus nerve. HRV provides a potential objective measure of action policies for the adaptive and predictive allostatic regulation of homeostasis within the cardiovascular system. In its support, a network of brain regions (referred to as the 'central autonomic network') maps internal state, and controls autonomic responses. This network includes regions of prefrontal cortex, anterior cingulate cortex, insula, amygdala, periaqueductal grey, pons and medulla. Human neuroimaging studies of neural activation and functional connectivity broadly endorse this architecture, and its link with cardiac regulation at rest and dysregulation in clinical states that include affective disorders. In this review, we appraise neuroimaging research and related evidence for HRV as an informative marker of autonomic integration with affect and cognition, taking a perspective on function and organisation. We consider evidence for the utility of HRV as a metric to inform targeted interventions to improve autonomic and affective dysregulation, and suggest research questions for further investigation.
Collapse
Affiliation(s)
- James S Mulcahy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RY, UK.
| | | | - Sarah N Garfinkel
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RY, UK; Sackler Centre for Consciousness Science, University of Sussex, Falmer, BN1 9RR, UK; Sussex Partnership NHS Foundation Trust, Brighton, BN2 3EW, UK
| | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RY, UK; Sackler Centre for Consciousness Science, University of Sussex, Falmer, BN1 9RR, UK; Sussex Partnership NHS Foundation Trust, Brighton, BN2 3EW, UK
| |
Collapse
|
42
|
Siennicka A, Quintana DS, Fedurek P, Wijata A, Paleczny B, Ponikowska B, Danel DP. Resting heart rate variability, attention and attention maintenance in young adults. Int J Psychophysiol 2019; 143:126-131. [PMID: 31255739 DOI: 10.1016/j.ijpsycho.2019.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023]
Abstract
Heart rate variability (HRV) is a widely used measure that reflects autonomic (parasympathetic) control of the heart. HRV has been linked with attentional performance, but it is unclear to what extent resting HRV is associated with both attention and attentional maintenance. In order to address this, we calculated HRV in seventy-four young and healthy volunteers (43 men, age: 21.6 ± 2.4), who completed the D2 Test of Attention (D2), which was used to calculate an index of Concentration Performance (CP) and a measure of attention maintenance, the coefficient of variation (CV). After accounting for the effects of sex and age on HRV, there was no significant association between HRV and CP (p = .2), but a significant relationship between HRV and CV (p = .03). Overall, our study demonstrates that attention maintenance, but not attentional performance, is associated with higher resting state HRV which suggests that attentional performance from D2 subtest-to-subtest may reflect HRV's facilitation of behaviour flexibility.
Collapse
Affiliation(s)
- A Siennicka
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland; Department of Cardiology, Military Hospital in Wroclaw, Poland.
| | - D S Quintana
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - P Fedurek
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - A Wijata
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| | - B Paleczny
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland; Department of Cardiology, Military Hospital in Wroclaw, Poland
| | - B Ponikowska
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| | - D P Danel
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
43
|
de la Cruz F, Schumann A, Köhler S, Reichenbach JR, Wagner G, Bär KJ. The relationship between heart rate and functional connectivity of brain regions involved in autonomic control. Neuroimage 2019; 196:318-328. [PMID: 30981856 DOI: 10.1016/j.neuroimage.2019.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The peripheral autonomic nervous system (ANS) adjusts the heart rate (HR) to intrinsic and extrinsic demands. It is controlled by a group of functionally connected brain regions assembling the so-called central autonomic network (CAN). More specifically, forebrain cortical regions, limbic and brainstem structures within the CAN have been identified as important components of circuits involved in HR regulation. The present study aimed to investigate whether functional connectivity (FC) between these regions varies in subjects with different heart rates. Thus, 84 healthy subjects were separated according to their HR in slow, medium and fast. We observed a direct association between HR and FC in CAN regions, where stronger FC was related to slower HR. This relationship, however, is non-linear, follows an exponential course and is not restricted to CAN areas only. The network-based analysis (NBS) using time series from 262 independent anatomical ROIs revealed significantly increased functional connectivity in subjects with slow HR compared to subjects with fast HR mainly in regions being part of the salience network, but also of the default-mode network. We additionally simulated the effect of aliasing on the functional connectivity using several TRs and heart rates to exclude the possibility that FC differences might be due to different aliasing effects in the data. The result of the simulation indicated that aliasing cannot explain our findings. Thus, present results imply a functionally meaningful coupling between FC and HR that need to be accounted for in future studies. Moreover, given the established link between HR and emotional, cognitive and social processes, present findings may also be considered to explain individual differences in brain activation or connectivity when using corresponding paradigms in the MR scanner to investigate such processes.
Collapse
Affiliation(s)
- Feliberto de la Cruz
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Andy Schumann
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefanie Köhler
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany; Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University, Jena, Germany
| | - Gerd Wagner
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Karl-Jürgen Bär
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| |
Collapse
|
44
|
Tamburella F, Piras F, Piras F, Spanò B, Tramontano M, Gili T. Cerebral Perfusion Changes After Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Front Physiol 2019; 10:403. [PMID: 31024346 PMCID: PMC6460882 DOI: 10.3389/fphys.2019.00403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/22/2019] [Indexed: 01/03/2023] Open
Abstract
Osteopathic Manipulative Treatment (OMT) is a therapeutic approach aimed at enhancing the body's self-regulation focusing on somatic dysfunctions correction. Despite evidence of OMT effectiveness, the underlying neurophysiological mechanisms, as well as blood perfusion effects, are still poorly understood. The study aim was to address OMT effects on cerebral blood flow (CBF) in asymptomatic young volunteers as measured by Magnetic Resonance Arterial Spin Labeling (ASL) method. Thirty blinded participants were randomized to OMT or placebo, and evaluated with an MRI protocol before manual intervention (T0), immediately after (T1), and 3 days later (T2). After T0 MRI, participants received 45 min of OMT, focused on correcting whole body somatic dysfunctions, or placebo manual treatment, consisting of passive touches in a protocolled order. After treatment, participants completed a de-blinding questionnaire about treatment perception. Results show significant differences due to treatment only for the OMT group (OMTg): perfusion decreased (compared to T0) in a cluster comprising the left posterior cingulate cortex (PCC) and the superior parietal lobule, while increased at T2 in the contralateral PCC. Furthermore, more than 60% of participants believed they had undergone OMT. The CBF modifications at T2 suggest that OMT produced immediate but reversible effects on CBF.
Collapse
Affiliation(s)
| | | | | | | | | | - Tommaso Gili
- IMT School for Advanced Studies Lucca, Lucca, Italy
| |
Collapse
|