1
|
Hamzei F, Ritter A, Güllmar D. Implicit Motor Learning Under Anodal or Cathodal tDCS During fMRI Induces Partially Distinct Network Responses. Eur J Neurosci 2025; 61:e70053. [PMID: 40075554 PMCID: PMC11903934 DOI: 10.1111/ejn.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
How anodal transcranial direct current stimulation (atDCS) and cathodal tDCS (ctDCS) affect brain networks is still unclear. Previous fMRI studies have yielded controversial results regarding the effects of atDCS and ctDCS on fMRI activation. The present study hypothesizes that the choice of fMRI paradigm may be a contributing factor to this divergence. Therefore, the present study employed two distinct fMRI paradigms, characterized by varying degrees of complexity: finger tapping as a simple fMRI paradigm and an implicit serial reaction time task (SRTT) as a more challenging paradigm. Seventy-five healthy subjects were randomized to receive either atDCS, ctDCS, or sham stimulation during fMRI. The main effects of the blood oxygenation level-dependent (BOLD) signal were contrasted between groups. SRTT, but not FT, was capable of eliciting differences in modulatory effects on the network between groups. Analysis of functional connectivity between ROIs showed that atDCS and ctDCS shared common and distinct SRTT networks. Correlations between BOLD signal (in ROIs) and the reaction time (RT) recorded during fMRI showed that in the atDCS group, faster RT was associated with higher BOLD signal in the most ROIs, while in the ctDCS group, faster RT was mostly associated with lower BOLD signal activity. The sham group exhibited a combination of these associations. We suggest that atDCS accelerates RT by "pushing" the network, while the network response under ctDCS was a "compensatory" response. The polarity of tDCS differentially modulated the adaptive plasticity of remotely connected regions, based on the concept of functional organization of distributed segregated networks.
Collapse
Affiliation(s)
- Farsin Hamzei
- Section of Neurological Rehabilitation, Clinic of NeurologyUniversity Hospital JenaJenaGermany
- Department of NeurologyMoritz Klinik Bad KlosterlausnitzBad KlosterlausnitzGermany
| | - Alexander Ritter
- Section of Neurological Rehabilitation, Clinic of NeurologyUniversity Hospital JenaJenaGermany
| | - Daniel Güllmar
- Medical Physics Group, Department of RadiologyUniversity Hospital JenaJenaGermany
| |
Collapse
|
2
|
Borin G, Sato SD, Spencer RMC, Choi JT. Sleep benefits perceptual but not movement-based learning of locomotor sequences. Sci Rep 2024; 14:15868. [PMID: 38982186 PMCID: PMC11233676 DOI: 10.1038/s41598-024-66177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Practicing complex locomotor skills, such as those involving a step sequence engages distinct perceptual and motor mechanisms that support the recall of learning under new conditions (i.e., skill transfer). While sleep has been shown to enhance learning of sequences of fine movements (i.e., sleep-dependent consolidation), here we examined whether this benefit extends to learning of a locomotor pattern. Specifically, we tested the perceptual and motor learning of a locomotor sequence following sleep compared to wake. We hypothesized that post-practice sleep would increase locomotor sequence learning in the perceptual, but not in the motor domain. In this study, healthy young adult participants (n = 48; 18-33 years) practiced a step length sequence on a treadmill cued by visual stimuli displayed on a screen during training. Participants were then tested in a perceptual condition (backward walking with the same visual stimuli), or a motor condition (forward walking but with an inverted screen). Skill was assessed immediately, and again after a 12-h delay following overnight sleep or daytime wake (n = 12 for each interval/condition). Off-line learning improved following sleep compared to wake, but only for the perceptual condition. Our results suggest that perceptual and motor sequence learning are processed separately after locomotor training, and further points to a benefit of sleep that is rooted in the perceptual as opposed to the motor aspects of motor learning.
Collapse
Affiliation(s)
- Gabriela Borin
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sumire D Sato
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL, 32611, USA
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Rebecca M C Spencer
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia T Choi
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA.
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL, 32611, USA.
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
3
|
Kaminski E, Carius D, Knieke J, Mizuguchi N, Ragert P. Complex sequential learning is not facilitated by transcranial direct current stimulation over DLPFC or M1. Eur J Neurosci 2024; 59:2046-2058. [PMID: 38270331 DOI: 10.1111/ejn.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which was found to have a positive modulatory effect on online sequence acquisition or offline motor consolidation, depending on the relative role of the associated brain region. Primary motor regions (M1) and dorsolateral prefrontal cortices (DLPFC) have both been related to sequential learning. However, research so far did not systematically disentangle their differential roles in online and offline learning especially in more complex sequential paradigms. In this study, the influence of anodal M1 leg area-tDCS and anodal DLPFC-tDCS applied during complex sequential learning (online and offline) was investigated using a complex whole body serial reaction time task (CWB-SRTT) in 42 healthy volunteers. TDCS groups did not differ from sham tDCS group regarding their response and reaction time (online) and also not in terms of overnight consolidation (offline). Sequence specific learning and the number of recalled items also did not differ between groups. Results may be related to unspecific parameters such as timing of the stimulation or current intensity but can also be attributed to the relative role of M1 and DLPFC during early complex learning. Taken together, the current study provides preliminary evidence that M1 leg area or DLPFC modulation by means of tDCS does not improve complex sequential skill learning. SIGNIFICANCE STATEMENT: Understanding motor learning is helpful to deepen our knowledge about the human ability to acquire new skills. Complex sequential learning tasks have only been studied, sparsely, but are particularly mimicking challenges of daily living. The present study studied early motor learning in a complex serial reaction time task while transcranial direct current stimulation (tDCS) was either applied to leg primary motor cortex or bilateral dorsolateral prefrontal cortex. TDCS did not affect sequential learning, neither directly during performance nor in terms of sequence consolidation. Results provide preliminary information that M1 or bilateral DLPFC modulation does not improve early complex motor learning.
Collapse
Affiliation(s)
- Elisabeth Kaminski
- Faculty of Sport Science, Department of Movement Neuroscience, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Carius
- Faculty of Sport Science, Department of Movement Neuroscience, University of Leipzig, Leipzig, Germany
| | - Jan Knieke
- Faculty of Sport Science, Department of Movement Neuroscience, University of Leipzig, Leipzig, Germany
| | - Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Kyoto, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kyoto, Japan
| | - Patrick Ragert
- Faculty of Sport Science, Department of Movement Neuroscience, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
4
|
Kristensen TD, Raghava JM, Skjerbæk MW, Dhollander T, Syeda W, Ambrosen KS, Bojesen KB, Nielsen MØ, Pantelis C, Glenthøj BY, Ebdrup BH. Fibre density and fibre-bundle cross-section of the corticospinal tract are distinctly linked to psychosis-specific symptoms in antipsychotic-naïve patients with first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1797-1812. [PMID: 37012463 PMCID: PMC10713712 DOI: 10.1007/s00406-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance image (MRI) processing, clinical diversity, antipsychotic exposure, and substance use may underlie some of the variability. By application of refined methodology and careful sampling, we rectified common confounders investigating WM and symptom correlates in a sample of strictly antipsychotic-naïve first-episode patients with schizophrenia. Eighty-six patients and 112 matched controls underwent diffusion MRI. Using fixel-based analysis (FBA), we extracted fibre-specific measures such as fibre density and fibre-bundle cross-section. Group differences on fixel-wise measures were examined with multivariate general linear modelling. Psychopathology was assessed with the Positive and Negative Syndrome Scale. We separately tested multivariate correlations between fixel-wise measures and predefined psychosis-specific versus anxio-depressive symptoms. Results were corrected for multiple comparisons. Patients displayed reduced fibre density in the body of corpus callosum and in the middle cerebellar peduncle. Fibre density and fibre-bundle cross-section of the corticospinal tract were positively correlated with suspiciousness/persecution, and negatively correlated with delusions. Fibre-bundle cross-section of isthmus of corpus callosum and hallucinatory behaviour were negatively correlated. Fibre density and fibre-bundle cross-section of genu and splenium of corpus callosum were negative correlated with anxio-depressive symptoms. FBA revealed fibre-specific properties of WM abnormalities in patients and differentiated associations between WM and psychosis-specific versus anxio-depressive symptoms. Our findings encourage an itemised approach to investigate the relationship between WM microstructure and clinical symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark.
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Martin W Skjerbæk
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Warda Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Sasaki R, Kojima S, Otsuru N, Yokota H, Saito K, Shirozu H, Onishi H. Beta resting-state functional connectivity predicts tactile spatial acuity. Cereb Cortex 2023; 33:9514-9523. [PMID: 37344255 PMCID: PMC10431746 DOI: 10.1093/cercor/bhad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Tactile perception is a complex phenomenon that is processed by multiple cortical regions via the primary somatosensory cortex (S1). Although somatosensory gating in the S1 using paired-pulse stimulation can predict tactile performance, the functional relevance of cortico-cortical connections to tactile perception remains unclear. We investigated the mechanisms by which corticocortical and local networks predict tactile spatial acuity in 42 adults using magnetoencephalography (MEG). Resting-state MEG was recorded with the eyes open, whereas evoked responses were assessed using single- and paired-pulse electrical stimulation. Source data were used to estimate the S1-seed resting-state functional connectivity (rs-FC) in the whole brain and the evoked response in the S1. Two-point discrimination threshold was assessed using a custom-made device. The beta rs-FC revealed a negative correlation between the discrimination threshold and S1-superior parietal lobule, S1-inferior parietal lobule, and S1-superior temporal gyrus connection (all P < 0.049); strong connectivity was associated with better performance. Somatosensory gating of N20m was also negatively correlated with the discrimination threshold (P = 0.015), with weak gating associated with better performance. This is the first study to demonstrate that specific beta corticocortical networks functionally support tactile spatial acuity as well as the local inhibitory network.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, National Hospital Organization Nishiniigata Chuo Hospital, 1-14-1 Masago, Nishi-Ku, Niigata City, Niigata 950-2085, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
6
|
Lum JAG, Byrne LK, Barhoun P, Hyde C, Hill AT, Enticott PG, Clark GM. Resting state electroencephalography power correlates with individual differences in implicit sequence learning. Eur J Neurosci 2023; 58:2838-2852. [PMID: 37317510 DOI: 10.1111/ejn.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Neuroimaging resting state paradigms have revealed synchronised oscillatory activity is present even in the absence of completing a task or mental operation. One function of this neural activity is likely to optimise the brain's sensitivity to forthcoming information that, in turn, likely promotes subsequent learning and memory outcomes. The current study investigated whether this extends to implicit forms of learning. A total of 85 healthy adults participated in the study. Resting state electroencephalography was first acquired from participants before they completed a serial reaction time task. On this task, participants implicitly learnt a visuospatial-motor sequence. Permutation testing revealed a negative correlation between implicit sequence learning and resting state power in the upper theta band (6-7 Hz). That is, lower levels of resting state power in this frequency range were associated with superior levels of implicit sequence learning. This association was observed at midline-frontal, right-frontal and left-posterior electrodes. Oscillatory activity in the upper theta band supports a range of top-down processes including attention, inhibitory control and working memory, perhaps just for visuospatial information. Our results may be indicating that disengaging theta-supported top-down attentional processes improves implicit learning of visuospatial-motor information that is embedded in sensory input. This may occur because the brain's sensitivity to this type of information is optimally achieved when learning is driven by bottom-up processes. Moreover, the results of this study further demonstrate that resting state synchronised brain activity influences subsequent learning and memory.
Collapse
Affiliation(s)
- Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Linda K Byrne
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Pamela Barhoun
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
7
|
Beta rhythmicity in human motor cortex reflects neural population coupling that modulates subsequent finger coordination stability. Commun Biol 2022; 5:1375. [PMID: 36522455 PMCID: PMC9755311 DOI: 10.1038/s42003-022-04326-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Human behavior is not performed completely as desired, but is influenced by the inherent rhythmicity of the brain. Here we show that anti-phase bimanual coordination stability is regulated by the dynamics of pre-movement neural oscillations in bi-hemispheric primary motor cortices (M1) and supplementary motor area (SMA). In experiment 1, pre-movement bi-hemispheric M1 phase synchrony in beta-band (M1-M1 phase synchrony) was online estimated from 129-channel scalp electroencephalograms. Anti-phase bimanual tapping preceded by lower M1-M1 phase synchrony exhibited significantly longer duration than tapping preceded by higher M1-M1 phase synchrony. Further, the inter-individual variability of duration was explained by the interaction of pre-movement activities within the motor network; lower M1-M1 phase synchrony and spectral power at SMA were associated with longer duration. The necessity of cortical interaction for anti-phase maintenance was revealed by sham-controlled repetitive transcranial magnetic stimulation over SMA in another experiment. Our results demonstrate that pre-movement cortical oscillatory coupling within the motor network unknowingly influences bimanual coordination performance in humans after consolidation, suggesting the feasibility of augmenting human motor ability by covertly monitoring preparatory neural dynamics.
Collapse
|
8
|
Maudrich T, Kandt H, Ragert P, Kenville R. Whole-body sensorimotor skill learning in football players: No evidence for motor transfer effects. PLoS One 2022; 17:e0271412. [PMID: 35816510 PMCID: PMC9273065 DOI: 10.1371/journal.pone.0271412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Besides simple movement sequences, precise whole-body motor sequences are fundamental for top athletic performance. It has long been questioned whether athletes have an advantage when learning new whole-body motor sequences. In a previous study, we did not find any superior learning or transfer effects of strength and endurance athletes in a complex whole-body serial reaction time task (CWB-SRTT). In the present study, we aimed to extend this research by increasing the overlap of task requirements between CWB-SRTT and a specific sports discipline. For this purpose, we assessed differences between football players and non-athletes during motor sequence learning using CWB-SRTT. 15 non-athletes (CG) and 16 football players (FG) performed the CWB-SRTT over 2 days separated by one week. Median reaction times and movement times were analyzed as well as differences in sequence-specific CWB-SRTT learning rates and retention. Our findings did not reveal any differences in sequence-specific or non-sequence-specific improvement, nor retention rates between CG and FG. We speculate that this might relate to a predominately cognitive-induced learning effect during CWB-SRTT which negates the assumed motor advantage of the football players.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Saxony, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
- * E-mail: (TM); (RK)
| | - Hannah Kandt
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Saxony, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Saxony, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Saxony, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
- * E-mail: (TM); (RK)
| |
Collapse
|
9
|
Ueta K, Mizuguchi N, Sugiyama T, Isaka T, Otomo S. The Motor Engram of Functional Connectivity Generated by Acute Whole-Body Dynamic Balance Training. Med Sci Sports Exerc 2022; 54:598-608. [PMID: 34772904 PMCID: PMC8920009 DOI: 10.1249/mss.0000000000002829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE Whole-body dynamic balance is necessary for both athletic activities and activities of daily living. This study aimed to investigate the effect of acute dynamic balance training on neural networks. METHODS We evaluated resting-state functional connectivity (rs-FC), white matter fiber density, fiber-bundle cross-section, and gray matter volume in 28 healthy young adults (14 women) before and after 30 min of slackline training using a randomized, counterbalanced crossover design. RESULTS The rs-FC between the left lateral prefrontal cortex (PFC) and the foot area of the primary sensorimotor (SM1) cortex increased significantly after slackline training compared with that after a control condition involving ergometer-based aerobic exercise. In addition, changes in rs-FC between the left lateral PFC and the primary sensorimotor were correlated with performance changes after training (i.e., offline process) rather than online learning. We also observed a main effect of time between the hippocampus and the cingulate cortex, including the anterior areas, and between the bilateral lateral PFC. Although we observed no structural changes, fiber density in the commissural fiber pathway before the first balance assessment was correlated with initial balance capability. CONCLUSIONS Our findings demonstrate that acute whole-body dynamic balance training alters specific rs-FC, and that this change is associated with performance changes after training. In addition, rs-FC changes in cognitive regions were modulated by both acute dynamic balance training and aerobic exercise. These findings have the potential to influence various fields (e.g., sports neuroscience, neurorehabilitation) and may aid in the development of methods that can improve motor and cognitive performance.
Collapse
Affiliation(s)
- Kenji Ueta
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Takashi Sugiyama
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Tadao Isaka
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Satoshi Otomo
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| |
Collapse
|
10
|
Lehmann N, Villringer A, Taubert M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci Rep 2022; 12:1107. [PMID: 35064175 PMCID: PMC8783021 DOI: 10.1038/s41598-022-05145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, mounting evidence from animal models and studies in humans has accumulated for the role of cardiovascular exercise (CE) in improving motor performance and learning. Both CE and motor learning may induce highly dynamic structural and functional brain changes, but how both processes interact to boost learning is presently unclear. Here, we hypothesized that subjects receiving CE would show a different pattern of learning-related brain plasticity compared to non-CE controls, which in turn associates with improved motor learning. To address this issue, we paired CE and motor learning sequentially in a randomized controlled trial with healthy human participants. Specifically, we compared the effects of a 2-week CE intervention against a non-CE control group on subsequent learning of a challenging dynamic balancing task (DBT) over 6 consecutive weeks. Structural and functional MRI measurements were conducted at regular 2-week time intervals to investigate dynamic brain changes during the experiment. The trajectory of learning-related changes in white matter microstructure beneath parieto-occipital and primary sensorimotor areas of the right hemisphere differed between the CE vs. non-CE groups, and these changes correlated with improved learning of the CE group. While group differences in sensorimotor white matter were already present immediately after CE and persisted during DBT learning, parieto-occipital effects gradually emerged during motor learning. Finally, we found that spontaneous neural activity at rest in gray matter spatially adjacent to white matter findings was also altered, therefore indicating a meaningful link between structural and functional plasticity. Collectively, these findings may lead to a better understanding of the neural mechanisms mediating the CE-learning link within the brain.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany. .,Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,Mind and Brain Institute, Charité and Humboldt University, Luisenstraße 56, 10117, Berlin, Germany
| | - Marco Taubert
- Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.,Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
11
|
Maudrich T, Kenville R, Schempp C, Noack E, Ragert P. Comparison of whole-body sensorimotor skill learning between strength athletes, endurance athletes and healthy sedentary adults. Heliyon 2021; 7:e07723. [PMID: 34409186 PMCID: PMC8361077 DOI: 10.1016/j.heliyon.2021.e07723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 10/28/2022] Open
Abstract
Motor sequences represent an integral part of human motor ability. Apart from simple movement sequences, complex coordinated movement sequences are the building blocks for peak athletic performance. Accordingly, optimized temporal and spatial coordination of muscle action across multiple limbs may be a distinguishing feature between athletes and non-athletes in many sports. In the present study, we aimed to assess differences between strength and endurance athletes and non-athletes during learning of a complex whole-body serial reaction time task (CWB-SRTT). For this purpose, 26 nonathletes (NAG) and 25 athletes (AG) learned the CWB-SRTT over 2 days separated by 7 days. Mean response times of participants were recorded and statistically analyzed for sequence-specific and non-sequence-specific improvements, as well as differences in learning rates and retention. Furthermore, AG was subdivided into strength (SG) and endurance (EG) athletes, and all analysis steps were repeated. Our results show a better mean response time of AG compared to NAG. However, we could not detect differences in sequence-specific or non-sequence-specific learning, as well as different retention rates between NAG and AG or SG and EG. We assume here that a potential lack of motor transfer between general athletic abilities and the specific complex motor sequence mainly accounts for our findings.
Collapse
Affiliation(s)
- Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Caroline Schempp
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany
| | - Eric Noack
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
12
|
Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. Neuroimage 2021; 241:118417. [PMID: 34298083 DOI: 10.1016/j.neuroimage.2021.118417] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.
Collapse
|
13
|
Liang X, Yeh CH, Domínguez D JF, Poudel G, Swinnen SP, Caeyenberghs K. Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients. Neuroimage Clin 2021; 30:102621. [PMID: 33780865 PMCID: PMC8022866 DOI: 10.1016/j.nicl.2021.102621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adolescents. Young TBI patients suffer from gross motor deficits, such as postural control deficits, which can severely compromise their daily life activities. However, little attention has been devoted to uncovering the underlying white matter changes in response to training in TBI. In this study, we used longitudinal fixel-based analysis (FBA), an advanced diffusion imaging analysis technique, to investigate the effect of a balance training program on white matter fibre density and morphology in a group of young TBI patients. METHODS Young patients with moderate-to-severe TBI (N = 17, 10 females, mean age = 13 ± 3 years) and age-matched controls (N = 17) underwent a home-based balance training program. Diffusion MRI scans together with gross motor assessments, including the gross motor items of the Bruininks-Oseretsky Test of Motor Proficiency, the Activities-Specific Balance Confidence (ABC) Scale, and the Sensory Organization Test (SOT) were administered before and at completion of 8-weeks of training. We used FBA to compare microstructural differences in fibre density (FD), macrostructural (morphological) changes in fibre cross-section (FC), and the combined FD and FC (FDC) metric across the whole brain. We then performed a longitudinal analysis to test whether training restores the white matter in the regions found to be damaged before treatment. RESULTS Whole-brain fixel-based analysis revealed lower FD and FC in TBI patients compared to the control group across several commissural tracts, association fibres and projection fibres, with FD reductions of up to 50%. Following training, TBI patients showed a significant interaction effect between Group and Time for the SOT test, as well as significant increases in macrostructural white matter (i.e., FC & FDC) in left sensorimotor tracts. The amount of change in FC and FDC over time was, however, not associated with behavioural changes. DISCUSSION Our fixel-based findings identified both microstructural and macrostructural abnormalities in young TBI patients. The longitudinal results provide a deeper understanding of the neurobiological mechanisms underlying balance training, which will allow clinicians to make more effective treatment decisions in everyday clinical practice with brain-injured patients.
Collapse
Affiliation(s)
- Xiaoyun Liang
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Govinda Poudel
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Stephan P Swinnen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| |
Collapse
|
14
|
Neurofeedback of scalp bi-hemispheric EEG sensorimotor rhythm guides hemispheric activation of sensorimotor cortex in the targeted hemisphere. Neuroimage 2020; 223:117298. [PMID: 32828924 DOI: 10.1016/j.neuroimage.2020.117298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022] Open
Abstract
Oscillatory electroencephalographic (EEG) activity is associated with the excitability of cortical regions. Visual feedback of EEG-oscillations may promote sensorimotor cortical activation, but its spatial specificity is not truly guaranteed due to signal interaction among interhemispheric brain regions. Guiding spatially specific activation is important for facilitating neural rehabilitation processes. Here, we tested whether users could explicitly guide sensorimotor cortical activity to the contralateral or ipsilateral hemisphere using a spatially bivariate EEG-based neurofeedback that monitors bi-hemispheric sensorimotor cortical activities for healthy participants. Two different motor imageries (shoulder and hand MIs) were selected to see how differences in intrinsic corticomuscular projection patterns might influence activity lateralization. We showed sensorimotor cortical activities during shoulder, but not hand MI, can be brought under ipsilateral control with guided EEG-based neurofeedback. These results are compatible with neuroanatomy; shoulder muscles are innervated bihemispherically, whereas hand muscles are mostly innervated contralaterally. We demonstrate the neuroanatomically-inspired approach enables us to investigate potent neural remodeling functions that underlie EEG-based neurofeedback via a BCI.
Collapse
|
15
|
Kirkovski M, Fuelscher I, Hyde C, Donaldson PH, Ford TC, Rossell SL, Fitzgerald PB, Enticott PG. Fixel Based Analysis Reveals Atypical White Matter Micro- and Macrostructure in Adults With Autism Spectrum Disorder: An Investigation of the Role of Biological Sex. Front Integr Neurosci 2020; 14:40. [PMID: 32903660 PMCID: PMC7438780 DOI: 10.3389/fnint.2020.00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Atypical white matter (WM) microstructure is commonly implicated in the neuropathophysiology of autism spectrum disorder (ASD). Fixel based analysis (FBA), at the cutting-edge of diffusion-weighted imaging, can account for crossing WM fibers and can provide indices of both WM micro- and macrostructure. We applied FBA to investigate WM structure between 25 (12 males, 13 females) adults with ASD and 24 (12 males, 12 females) matched controls. As the role of biological sex on the neuropathophysiology of ASD is of increasing interest, this was also explored. There were no significant differences in WM micro- or macrostructure between adults with ASD and matched healthy controls. When data were stratified by sex, females with ASD had reduced fiber density and cross-section (FDC), a combined metric comprised of micro- and macrostructural measures, in the corpus callosum, a finding not detected between the male sub-groups. We conclude that micro- and macrostructural WM aberrations are present in ASD, and may be influenced by biological sex.
Collapse
Affiliation(s)
- Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Health Care and Central Clinical School Monash University, Melbourne, VIC, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Tseng SC, Chang SH, Hoerth KM, Nguyen ATA, Perales D. Anodal Transcranial Direct Current Stimulation Enhances Retention of Visuomotor Stepping Skills in Healthy Adults. Front Hum Neurosci 2020; 14:251. [PMID: 32676018 PMCID: PMC7333563 DOI: 10.3389/fnhum.2020.00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) paired with exercise training can enhance learning and retention of hand tasks; however, there have been few investigations of the effects of tDCS on leg skill improvements. The purpose of this study was to investigate whether tDCS paired with visuomotor step training can promote skill learning and retention. We hypothesized that pairing step training with anodal tDCS would improve skill learning and retention, evidenced by decreased step reaction times (RTs), both immediately (online skill gains) and 30 min after training (offline skill gains). Twenty healthy adults were randomly assigned to one of two groups, in which 20-min anodal or sham tDCS was applied to the lower limb motor cortex and paired with visuomotor step training. Step RTs were determined across three time points: (1) before brain stimulation (baseline); (2) immediately after brain stimulation (P0); and (3) 30 min after brain stimulation (P3). A continuous decline in RT was observed in the anodal tDCS group at both P0 and P3, with a significant decrease in RT at P3; whereas there were no improvements in RT at P0 and P3 in the sham group. These findings do not support our hypothesis that anodal tDCS enhances online learning, as RT was not decreased significantly immediately after stimulation. Nevertheless, the results indicate that anodal tDCS enhances offline learning, as RT was significantly decreased 30 min after stimulation, likely because of tDCS-induced neural modulation of cortical and subcortical excitability, synaptic efficacy, and spinal neuronal activity.
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- Neuroscience Laboratory, School of Physical Therapy, Texas Woman's University, Houston, TX, United States
| | - Shuo-Hsiu Chang
- Motor Recovery Laboratory, Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristine M Hoerth
- Neuroscience Laboratory, School of Physical Therapy, Texas Woman's University, Houston, TX, United States
| | - Anh-Tu A Nguyen
- Neuroscience Laboratory, School of Physical Therapy, Texas Woman's University, Houston, TX, United States
| | - Daniel Perales
- Neuroscience Laboratory, School of Physical Therapy, Texas Woman's University, Houston, TX, United States
| |
Collapse
|