1
|
Gao W, Li Y, Yuan J, He Q. The Shared and Distinct Mechanisms Underlying Fear of Evaluation in Social Anxiety: The Roles of Negative and Positive Evaluation. Depress Anxiety 2025; 2025:9559056. [PMID: 40297823 PMCID: PMC12037245 DOI: 10.1155/da/9559056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Social anxiety disorder (SAD) is associated with persistent fear of negative evaluation (FNE) and fear of positive evaluation (FPE), which play critical roles in the development and maintenance of anxiety symptoms. However, it remains unclear how FNE and FPE contribute to the common and different symptoms of social anxiety. In this review, we tried to elucidate the shared and distinct mechanisms underlying fear of evaluation and clarify the impact of FNE and FPE on social anxiety by integrating the theories, external expressions, and internal mechanisms. First, FNE and FPE share evolutionary functions but have distinct motivations for maintaining social role stability. Second, FNE and FPE share similar emotions and avoidance behaviors but contribute to distinct comorbid symptoms in SAD, including eating disorders and alcohol abuse. Third, FNE and FPE share emotional and social pain circuits but have different dysfunctions in the prefrontal, cingulate, and reward brain regions, which are associated with rejection sensitivity and anhedonia features. Overall, this review sheds light on the cognitive and neural mechanisms of SAD based on fear of evaluation, highlighting both the shared and distinctive aspects of FNE and FPE. These insights have important implications for the development of effective interventions for social anxiety.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Yanping Li
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - JiaJin Yuan
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Sichuan Normal University, Chengdu, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Zhang X, Wu B, Yang X, Kemp GJ, Wang S, Gong Q. Abnormal large-scale brain functional network dynamics in social anxiety disorder. CNS Neurosci Ther 2024; 30:e14904. [PMID: 39107947 PMCID: PMC11303268 DOI: 10.1111/cns.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
AIMS Although static abnormalities of functional brain networks have been observed in patients with social anxiety disorder (SAD), the brain connectome dynamics at the macroscale network level remain obscure. We therefore used a multivariate data-driven method to search for dynamic functional network connectivity (dFNC) alterations in SAD. METHODS We conducted spatial independent component analysis, and used a sliding-window approach with a k-means clustering algorithm, to characterize the recurring states of brain resting-state networks; then state transition metrics and FNC strength in the different states were compared between SAD patients and healthy controls (HC), and the relationship to SAD clinical characteristics was explored. RESULTS Four distinct recurring states were identified. Compared with HC, SAD patients demonstrated higher fractional windows and mean dwelling time in the highest-frequency State 3, representing "widely weaker" FNC, but lower in States 2 and 4, representing "locally stronger" and "widely stronger" FNC, respectively. In State 1, representing "widely moderate" FNC, SAD patients showed decreased FNC mainly between the default mode network and the attention and perceptual networks. Some aberrant dFNC signatures correlated with illness duration. CONCLUSION These aberrant patterns of brain functional synchronization dynamics among large-scale resting-state networks may provide new insights into the neuro-functional underpinnings of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xun Yang
- School of Public AffairsChongqing UniversityChongqingChina
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical SciencesUniversity of LiverpoolLiverpoolUK
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamenChina
| |
Collapse
|
3
|
Zhang P, Wan X, Jiang J, Liu Y, Wang D, Ai K, Liu G, Zhang X, Zhang J. A causal effect study of cortical morphology and related covariate networks in classical trigeminal neuralgia patients. Cereb Cortex 2024; 34:bhae337. [PMID: 39123310 DOI: 10.1093/cercor/bhae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Structural covariance networks and causal effects within can provide critical information on gray matter reorganization and disease-related hierarchical changes. Based on the T1WI data of 43 classical trigeminal neuralgia patients and 45 controls, we constructed morphological similarity networks of cortical thickness, sulcal depth, fractal dimension, and gyrification index. Moreover, causal structural covariance network analyses were conducted in regions with morphological abnormalities or altered nodal properties, respectively. We found that patients showed reduced sulcal depth, gyrification index, and fractal dimension, especially in the salience network and the default mode network. Additionally, the integration of the fractal dimension and sulcal depth networks was significantly reduced, accompanied by decreased nodal efficiency of the bilateral temporal poles, and right pericalcarine cortex within the sulcal depth network. Negative causal effects existed from the left insula to the right caudal anterior cingulate cortex in the gyrification index map, also from bilateral temporal poles to right pericalcarine cortex within the sulcal depth network. Collectively, patients exhibited impaired integrity of the covariance networks in addition to the abnormal gray matter morphology in the salience network and default mode network. Furthermore, the patients may experience progressive impairment in the salience network and from the limbic system to the sensory system in network topology, respectively.
Collapse
Affiliation(s)
- Pengfei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, No. 12, Urumqi Middle Road, Jingan District, Shanghai 200040, China
| | - Jingqi Jiang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Yang Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Danyang Wang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Kai Ai
- Department of Clinical and Technical Supports, Philips Healthcare, No. 64 West Section, South 2nd Ring Road, Yanta District, Xi'an 710000, China
| | - Guangyao Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinding Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| |
Collapse
|
4
|
Zhang X, Yang X, Wu B, Pan N, He M, Wang S, Kemp GJ, Gong Q. Large-scale brain functional network abnormalities in social anxiety disorder. Psychol Med 2023; 53:6194-6204. [PMID: 36330833 PMCID: PMC10520603 DOI: 10.1017/s0033291722003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value. METHODS Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses. RESULTS SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy. CONCLUSIONS SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361000, China
| |
Collapse
|
5
|
Zhang X, Lai H, Li Q, Yang X, Pan N, He M, Kemp GJ, Wang S, Gong Q. Disrupted brain gray matter connectome in social anxiety disorder: a novel individualized structural covariance network analysis. Cereb Cortex 2023; 33:9627-9638. [PMID: 37381581 DOI: 10.1093/cercor/bhad231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023] Open
Abstract
Phenotyping approaches grounded in structural network science can offer insights into the neurobiological substrates of psychiatric diseases, but this remains to be clarified at the individual level in social anxiety disorder (SAD). Using a recently developed approach combining probability density estimation and Kullback-Leibler divergence, we constructed single-subject structural covariance networks (SCNs) based on multivariate morphometry (cortical thickness, surface area, curvature, and volume) and quantified their global/nodal network properties using graph-theoretical analysis. We compared network metrics between SAD patients and healthy controls (HC) and analyzed the relationship to clinical characteristics. We also used support vector machine analysis to explore the ability of graph-theoretical metrics to discriminate SAD patients from HC. Globally, SAD patients showed higher global efficiency, shorter characteristic path length, and stronger small-worldness. Locally, SAD patients showed abnormal nodal centrality mainly involving left superior frontal gyrus, right superior parietal lobe, left amygdala, right paracentral gyrus, right lingual, and right pericalcarine cortex. Altered topological metrics were associated with the symptom severity and duration. Graph-based metrics allowed single-subject classification of SAD versus HC with total accuracy of 78.7%. This finding, that the topological organization of SCNs in SAD patients is altered toward more randomized configurations, adds to our understanding of network-level neuropathology in SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Han Lai
- Department of Medical Psychology, Army Medical University, Chongqing 400038, China
| | - Qingyuan Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China
| | - Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Min He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| |
Collapse
|
6
|
Gan S, Li W. Aberrant neural correlates of multisensory processing of audiovisual social cues related to social anxiety: An electrophysiological study. Front Psychiatry 2023; 14:1020812. [PMID: 36761870 PMCID: PMC9902659 DOI: 10.3389/fpsyt.2023.1020812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is characterized by abnormal fear to social cues. Although unisensory processing to social stimuli associated with social anxiety (SA) has been well described, how multisensory processing relates to SA is still open to clarification. Using electroencephalography (EEG) measurement, we investigated the neural correlates of multisensory processing and related temporal dynamics in social anxiety disorder (SAD). METHODS Twenty-five SAD participants and 23 healthy control (HC) participants were presented with angry and neutral faces, voices and their combinations with congruent emotions and they completed an emotional categorization task. RESULTS We found that face-voice combinations facilitated auditory processing in multiple stages indicated by the acceleration of auditory N1 latency, attenuation of auditory N1 and P250 amplitudes, and decrease of theta power. In addition, bimodal inputs elicited cross-modal integrative activity which is indicated by the enhancement of visual P1, N170, and P3/LPP amplitudes and superadditive response of P1 and P3/LPP. More importantly, excessively greater integrative activity (at P3/LPP amplitude) was found in SAD participants, and this abnormal integrative activity in both early and late temporal stages was related to the larger interpretation bias of miscategorizing neutral face-voice combinations as angry. CONCLUSION The study revealed that neural correlates of multisensory processing was aberrant in SAD and it was related to the interpretation bias to multimodal social cues in multiple processing stages. Our findings suggest that deficit in multisensory processing might be an important factor in the psychopathology of SA.
Collapse
Affiliation(s)
- Shuzhen Gan
- Shanghai Changning Mental Health Center, Shanghai, China.,Shanghai Mental Health Center, Shanghai, China
| | - Weijun Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning, China
| |
Collapse
|
7
|
Correlates of individual voice and face preferential responses during resting state. Sci Rep 2022; 12:7117. [PMID: 35505233 PMCID: PMC9065073 DOI: 10.1038/s41598-022-11367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Human nonverbal social signals are transmitted to a large extent by vocal and facial cues. The prominent importance of these cues is reflected in specialized cerebral regions which preferentially respond to these stimuli, e.g. the temporal voice area (TVA) for human voices and the fusiform face area (FFA) for human faces. But it remained up to date unknown whether there are respective specializations during resting state, i.e. in the absence of any cues, and if so, whether these representations share neural substrates across sensory modalities. In the present study, resting state functional connectivity (RSFC) as well as voice- and face-preferential activations were analysed from functional magnetic resonance imaging (fMRI) data sets of 60 healthy individuals. Data analysis comprised seed-based analyses using the TVA and FFA as regions of interest (ROIs) as well as multi voxel pattern analyses (MVPA). Using the face- and voice-preferential responses of the FFA and TVA as regressors, we identified several correlating clusters during resting state spread across frontal, temporal, parietal and occipital regions. Using these regions as seeds, characteristic and distinct network patterns were apparent with a predominantly convergent pattern for the bilateral TVAs whereas a largely divergent pattern was observed for the bilateral FFAs. One region in the anterior medial frontal cortex displayed a maximum of supramodal convergence of informative connectivity patterns reflecting voice- and face-preferential responses of both TVAs and the right FFA, pointing to shared neural resources in supramodal voice and face processing. The association of individual voice- and face-preferential neural activity with resting state connectivity patterns may support the perspective of a network function of the brain beyond an activation of specialized regions.
Collapse
|
8
|
Kim H, Kim BH, Kim MK, Eom H, Kim JJ. Alteration of resting-state functional connectivity network properties in patients with social anxiety disorder after virtual reality-based self-training. Front Psychiatry 2022; 13:959696. [PMID: 36203841 PMCID: PMC9530634 DOI: 10.3389/fpsyt.2022.959696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Social anxiety disorder (SAD) is a mental disorder characterized by excessive anxiety in social situations. This study aimed to examine the alteration of resting-state functional connectivity in SAD patients related to the virtual reality-based self-training (VRS) which enables exposure to social situations in a controlled environment. Fifty-two SAD patients were randomly assigned to the experimental group who received the VRS, or the control group who did not. Self-report questionnaires and resting-state functional magnetic resonance imaging (fMRI) were performed to assess clinical symptoms and analyze the resting-state network properties, respectively. Significant decrease in social anxiety and an increase in self-esteem was found in the experimental group. From the resting-state fMRI analysis, alteration of local network properties in the left dorsolateral prefrontal gyrus (-10.0%, p = 0.025), left inferior frontal gyrus (-32.3%, p = 0.044), left insula (-17.2%, p = 0.046), left Heschl's gyrus (-21.2%, p = 0.011), bilateral inferior temporal gyrus (right: +122.6%, p = 0.045; left:-46.7%, p = 0.015), and right calcarine sulcus (+17.0%, p = 0.010) were found in the experimental group. Average shortest path length (+8.3%, p = 0.008) and network efficiency (-7.6%, p = 0.011) are found to be altered from the global network property analysis. In addition, the experimental group displayed more positive and more negative changes in the correlation trend of average shortest path length (p = 0.004) and global network efficiency (p = 0.014) with the severity of social anxiety, respectively. These results suggest potential effectiveness of the VRS, which is possibly related to the change of aberrant processing and control of visual and auditory linguistic stimuli and the adaptive change in rumination pattern.
Collapse
Affiliation(s)
- Hun Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Byung-Hoon Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyeong Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyojung Eom
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Jin Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Crawford B, Muhlert N, MacDonald G, Lawrence AD. Brain structure correlates of expected social threat and reward. Sci Rep 2020; 10:18010. [PMID: 33093488 PMCID: PMC7582181 DOI: 10.1038/s41598-020-74334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Prospection (mentally simulating future events) generates emotionally-charged mental images that guide social decision-making. Positive and negative social expectancies-imagining new social interactions to be rewarding versus threatening-are core components of social approach and avoidance motivation, respectively. Interindividual differences in such positive and negative future-related cognitions may be underpinned by distinct neuroanatomical substrates. Here, we asked 100 healthy adults to vividly imagine themselves in a novel self-relevant event that was ambiguous with regards to possible social acceptance or rejection. During this task we measured participants' expectancies for social reward (anticipated feelings of social connection) or threat (anticipated feelings of rejection). On a separate day they underwent structural MRI; voxel-based morphometry was used to explore the relation between social reward and threat expectancies and regional grey matter volumes (rGMV). Increased rGMV in key default-network regions involved in prospection, socio-emotional cognition, and subjective valuation, including ventromedial prefrontal cortex, correlated with both higher social reward and lower social threat expectancies. In contrast, social threat expectancies uniquely correlated with rGMV of regions involved in social attention (posterior superior temporal sulcus, pSTS) and interoception (somatosensory cortex). These findings provide novel insight into the neurobiology of future-oriented cognitive-affective processes critical to adaptive social functioning.
Collapse
Affiliation(s)
- Bonni Crawford
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Geoff MacDonald
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
10
|
Kreifelts B, Ethofer T, Wiegand A, Brück C, Wächter S, Erb M, Lotze M, Wildgruber D. The Neural Correlates of Face-Voice-Integration in Social Anxiety Disorder. Front Psychiatry 2020; 11:657. [PMID: 32765311 PMCID: PMC7381153 DOI: 10.3389/fpsyt.2020.00657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/24/2020] [Indexed: 12/04/2022] Open
Abstract
Faces and voices are very important sources of threat in social anxiety disorder (SAD), a common psychiatric disorder where core elements are fears of social exclusion and negative evaluation. Previous research in social anxiety evidenced increased cerebral responses to negative facial or vocal expressions and also generally increased hemodynamic responses to voices and faces. But it is unclear if also the cerebral process of face-voice-integration is altered in SAD. Applying functional magnetic resonance imaging, we investigated the correlates of the audiovisual integration of dynamic faces and voices in SAD as compared to healthy individuals. In the bilateral midsections of the superior temporal sulcus (STS) increased integration effects in SAD were observed driven by greater activation increases during audiovisual stimulation as compared to auditory stimulation. This effect was accompanied by increased functional connectivity with the visual association cortex and a more anterior position of the individual integration maxima along the STS in SAD. These findings demonstrate that the audiovisual integration of facial and vocal cues in SAD is not only systematically altered with regard to intensity and connectivity but also the individual location of the integration areas within the STS. These combined findings offer a novel perspective on the neuronal representation of social signal processing in individuals suffering from SAD.
Collapse
Affiliation(s)
- Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Ariane Wiegand
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Carolin Brück
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Sarah Wächter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Michael Erb
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Martin Lotze
- Functional Imaging Group, Department for Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| | - Dirk Wildgruber
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| |
Collapse
|