1
|
Abraham I, Shahsavarani S, Zimmerman B, Husain FT, Baryshnikov Y. Hemodynamic cortical ripples through cyclicity analysis. Netw Neurosci 2024; 8:1105-1128. [PMID: 39735496 PMCID: PMC11674492 DOI: 10.1162/netn_a_00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/23/2024] [Indexed: 12/31/2024] Open
Abstract
A fine-grained understanding of dynamics in cortical networks is crucial to unpacking brain function. Resting-state functional magnetic resonance imaging (fMRI) gives rise to time series recordings of the activity of different brain regions, which are aperiodic and lack a base frequency. Cyclicity analysis, a novel technique robust under time reparametrizations, is effective in recovering the temporal ordering of such time series, collectively considered components of a multidimensional trajectory. Here, we extend this analytical method for characterizing the dynamic interaction between distant brain regions and apply it to the data from the Human Connectome Project. Our analysis detected cortical traveling waves of activity propagating along a spatial axis, resembling cortical hierarchical organization with consistent lead-lag relationships between specific brain regions in resting-state scans. In fMRI scans involving tasks, we observed short bursts of task-modulated strong temporal ordering that dominate overall lead-lag relationships between pairs of regions in the brain that align temporally with stimuli from the tasks. Our results suggest a possible role played by waves of excitation sweeping through brain regions that underlie emergent cognitive functions.
Collapse
Affiliation(s)
- Ivan Abraham
- Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, Urbana, USA
| | | | - Benjamin Zimmerman
- Helfgott Institute, National University of Natural Medicine, Portland, USA
| | - Fatima T. Husain
- Beckman Institute for Advanced Science & Technology, University of Illinois, Urbana-Champaign, USA
- Department of Speech & Hearing Science, University of Illinois, Urbana-Champaign, Urbana, USA
| | - Yuliy Baryshnikov
- Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, Urbana, USA
- Department of Mathematics, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
2
|
Xu Y, Long X, Feng J, Gong P. Interacting spiral wave patterns underlie complex brain dynamics and are related to cognitive processing. Nat Hum Behav 2023:10.1038/s41562-023-01626-5. [PMID: 37322235 DOI: 10.1038/s41562-023-01626-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.
Collapse
Affiliation(s)
- Yiben Xu
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia
| | - Xian Long
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, New South Wales, Australia.
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Mäki-Marttunen V. Influence of vigilance-related arousal on brain dynamics: Potentials of new approaches. Neuroimage 2023; 270:119963. [PMID: 36822247 DOI: 10.1016/j.neuroimage.2023.119963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Growing research has focused on how mesoscopic activity in the brain develops over time and space. Recent influential studies using functional imaging have characterized brain dynamics in terms of the spread of activation across the brain following a unimodal to transmodal axis. In parallel, a number of studies have assessed changes of brain connectivity in terms of vigilance-linked arousal. Here I offer a view on how these two lines of research can lead to a deeper understanding of how arousal shapes the brain's dynamic behavior. This knowledge could have great impact on the investigation of mental disease.
Collapse
Affiliation(s)
- Verónica Mäki-Marttunen
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Wassenaarseweg 52, AK, Leiden 2333, The Netherlands.
| |
Collapse
|
4
|
Lacy TC, Robinson PA, Aquino KM, Pang JC. Cortical depth-dependent modeling of visual hemodynamic responses. J Theor Biol 2021; 535:110978. [PMID: 34952032 DOI: 10.1016/j.jtbi.2021.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
A physiologically based three-dimensional (3D) hemodynamic model is developed to predict the experimentally observed blood oxygen level dependent (BOLD) responses versus the cortical depth induced by visual stimuli. Prior 2D approximations are relaxed in order to analyze 3D blood flow dynamics as a function of cortical depth. Comparison of the predictions with experimental data for evoked stimuli demonstrates that the full 3D model performs at least as well as previous approaches while remaining parsimonious. In particular, the 3D model requires significantly fewer assumptions and model parameters than previous models such that there is no longer need to define depth-specific parameter values for spatial spreading, peak amplitude, and hemodynamic velocity.
Collapse
Affiliation(s)
- Thomas C Lacy
- School of Physics, University of Sydney, New South Wales, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales, Australia
| | - Peter A Robinson
- School of Physics, University of Sydney, New South Wales, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales, Australia
| | - Kevin M Aquino
- School of Physics, University of Sydney, New South Wales, Australia; The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - James C Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia; QIMR Berghofer Medical Research Institute, Queensland, Australia.
| |
Collapse
|
5
|
Raut RV, Snyder AZ, Mitra A, Yellin D, Fujii N, Malach R, Raichle ME. Global waves synchronize the brain's functional systems with fluctuating arousal. SCIENCE ADVANCES 2021; 7:7/30/eabf2709. [PMID: 34290088 PMCID: PMC8294763 DOI: 10.1126/sciadv.abf2709] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/04/2021] [Indexed: 05/04/2023]
Abstract
We propose and empirically support a parsimonious account of intrinsic, brain-wide spatiotemporal organization arising from traveling waves linked to arousal. We hypothesize that these waves are the predominant physiological process reflected in spontaneous functional magnetic resonance imaging (fMRI) signal fluctuations. The correlation structure ("functional connectivity") of these fluctuations recapitulates the large-scale functional organization of the brain. However, a unifying physiological account of this structure has so far been lacking. Here, using fMRI in humans, we show that ongoing arousal fluctuations are associated with global waves of activity that slowly propagate in parallel throughout the neocortex, thalamus, striatum, and cerebellum. We show that these waves can parsimoniously account for many features of spontaneous fMRI signal fluctuations, including topographically organized functional connectivity. Last, we demonstrate similar, cortex-wide propagation of neural activity measured with electrocorticography in macaques. These findings suggest that traveling waves spatiotemporally pattern brain-wide excitability in relation to arousal.
Collapse
Affiliation(s)
- Ryan V Raut
- Department of Radiology, Washington University, St. Louis, MO 63110, USA.
| | - Abraham Z Snyder
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Anish Mitra
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Dov Yellin
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Marcus E Raichle
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Yousefi B, Keilholz S. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Neuroimage 2021; 231:117827. [PMID: 33549755 DOI: 10.1016/j.neuroimage.2021.117827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
The intrinsic activity of the human brain, observed with resting-state fMRI (rsfMRI) and functional connectivity, exhibits macroscale spatial organization such as functional networks and gradients. Dynamic analysis techniques have shown that functional connectivity is a mere summary of time-varying patterns with distinct spatial and temporal characteristics. A better understanding of these patterns might provide insight into aspects of the brain's intrinsic activity that cannot be inferred by functional connectivity or the spatial maps derived from it, such as functional networks and gradients. Here, we describe three spatiotemporal patterns of coordinated activity across the whole brain obtained by averaging similar ~20-second-long segments of rsfMRI timeseries. In each of these patterns, activity propagates along a particular macroscale functional gradient, simultaneously across the cerebral cortex and in most other brain regions. In some regions, like the thalamus, the propagation suggests previously-undescribed gradients. The coordinated activity across areas is consistent with known tract-based connections, and nuanced differences in the timing of peak activity between regions point to plausible driving mechanisms. The magnitude of correlation within and particularly between functional networks is remarkably diminished when these patterns are regressed from the rsfMRI timeseries, a quantitative demonstration of their significant role in functional connectivity. Taken together, our results suggest that a few recurring patterns of propagating intrinsic activity along macroscale gradients give rise to and coordinate functional connections across the whole brain.
Collapse
Affiliation(s)
- Behnaz Yousefi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta 30322, GA, United States
| | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta 30322, GA, United States.
| |
Collapse
|
7
|
Knapen T. Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain. Proc Natl Acad Sci U S A 2021; 118:e2017032118. [PMID: 33372144 PMCID: PMC7812773 DOI: 10.1073/pnas.2017032118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human visual system is organized as a hierarchy of maps that share the topography of the retina. Known retinotopic maps have been identified using simple visual stimuli under strict fixation, conditions different from everyday vision which is active, dynamic, and complex. This means that it remains unknown how much of the brain is truly visually organized. Here I demonstrate widespread stable visual organization beyond the traditional visual system, in default-mode network and hippocampus. Detailed topographic connectivity with primary visual cortex during movie-watching, resting-state, and retinotopic-mapping experiments revealed that visual-spatial representations throughout the brain are warped by cognitive state. Specifically, traditionally visual regions alternate with default-mode network and hippocampus in preferentially representing the center of the visual field. This visual role of default-mode network and hippocampus would allow these regions to interface between abstract memories and concrete sensory impressions. Together, these results indicate that visual-spatial organization is a fundamental coding principle that structures the communication between distant brain regions.
Collapse
Affiliation(s)
- Tomas Knapen
- Spinoza Centre for Neuroimaging, Royal Netherlands Academy of Sciences, Meibergdreef 75, 1105 BK Amsterdam, The Netherlands;
- Cognitive Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
8
|
Kotila A, Järvelä M, Korhonen V, Loukusa S, Hurtig T, Ebeling H, Kiviniemi V, Raatikainen V. Atypical Inter-Network Deactivation Associated With the Posterior Default-Mode Network in Autism Spectrum Disorder. Autism Res 2020; 14:248-264. [PMID: 33206471 DOI: 10.1002/aur.2433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Previous studies have suggested that atypical deactivation of functional brain networks contributes to the complex cognitive and behavioral profile associated with autism spectrum disorder (ASD). However, these studies have not considered the temporal dynamics of deactivation mechanisms between the networks. In this study, we examined (a) mutual deactivation and (b) mutual activation-deactivation (i.e., anticorrelated) time-lag patterns between resting-state networks (RSNs) in young adults with ASD (n = 20) and controls (n = 20) by applying the recently defined dynamic lag analysis (DLA) method, which measures time-lag variations peak-by-peak between the networks. In order to achieve temporally accurate lag patterns, the brain imaging data was acquired with a fast functional magnetic resonance imaging (fMRI) sequence (TR = 100 ms). Group-level independent component analysis was used to identify 16 RSNs for the DLA. We found altered mutual deactivation timings in ASD in (a) three of the deactivated and (b) two of the transiently anticorrelated (activated-deactivated) RSN pairs, which survived the strict threshold for significance of surrogate data. Of the significant RSN pairs, 80% included the posterior default-mode network (DMN). We propose that temporally altered deactivation mechanisms, including timings and directionality, between the posterior DMN and RSNs mediating processing of socially relevant information may contribute to the ASD phenotype. LAY SUMMARY: To understand autistic traits on a neural level, we examined temporal fluctuations in information flow between brain regions in young adults with autism spectrum disorder (ASD) and controls. We used a fast neuroimaging procedure to investigate deactivation mechanisms between brain regions. We found that timings and directionality of communication between certain brain regions were temporally altered in ASD, suggesting atypical deactivation mechanisms associated with the posterior default-mode network.
Collapse
Affiliation(s)
- Aija Kotila
- Research Unit of Logopedics, the Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Matti Järvelä
- Research Unit of Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Vesa Korhonen
- Research Unit of Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Soile Loukusa
- Research Unit of Logopedics, the Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Tuula Hurtig
- Research Unit of Clinical Neuroscience, Psychiatry, University of Oulu, Oulu, Finland.,Clinic of Child Psychiatry, Oulu University Hospital and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Hanna Ebeling
- Clinic of Child Psychiatry, Oulu University Hospital and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Research Unit of Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Ville Raatikainen
- Research Unit of Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| |
Collapse
|
9
|
Gravel N, Renken RJ, Harvey BM, Deco G, Cornelissen FW, Gilson M. Propagation of BOLD Activity Reveals Task-dependent Directed Interactions Across Human Visual Cortex. Cereb Cortex 2020; 30:5899-5914. [PMID: 32577717 DOI: 10.1093/cercor/bhaa165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/13/2020] [Accepted: 05/02/2020] [Indexed: 11/14/2022] Open
Abstract
It has recently been shown that large-scale propagation of blood-oxygen-level-dependent (BOLD) activity is constrained by anatomical connections and reflects transitions between behavioral states. It remains to be seen, however, if the propagation of BOLD activity can also relate to the brain's anatomical structure at a more local scale. Here, we hypothesized that BOLD propagation reflects structured neuronal activity across early visual field maps. To explore this hypothesis, we characterize the propagation of BOLD activity across V1, V2, and V3 using a modeling approach that aims to disentangle the contributions of local activity and directed interactions in shaping BOLD propagation. It does so by estimating the effective connectivity (EC) and the excitability of a noise-diffusion network to reproduce the spatiotemporal covariance structure of the data. We apply our approach to 7T fMRI recordings acquired during resting state (RS) and visual field mapping (VFM). Our results reveal different EC interactions and changes in cortical excitability in RS and VFM, and point to a reconfiguration of feedforward and feedback interactions across the visual system. We conclude that the propagation of BOLD activity has functional relevance, as it reveals directed interactions and changes in cortical excitability in a task-dependent manner.
Collapse
Affiliation(s)
- Nicolás Gravel
- Neural Dynamics of Visual Cognition Group, Department of Education and Psychology, Freie University Berlin, 14195 Berlin, Germany.,Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Remco J Renken
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.,Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,School of Psychological Sciences, Monash University, VIC 3800 Melbourne, Australia
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Matthieu Gilson
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| |
Collapse
|