1
|
Kung PH, Greaves MD, Guerrero-Hreins E, Harrison BJ, Davey CG, Felmingham KL, Carey H, Sumithran P, Brown RM, Moffat BA, Glarin RK, Jamieson AJ, Steward T. Habenula contributions to negative self-cognitions. Nat Commun 2025; 16:4231. [PMID: 40335503 PMCID: PMC12059057 DOI: 10.1038/s41467-025-59611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
Self-related cognitions are integral to personal identity and psychological wellbeing. Persistent engagement with negative self-cognitions can precipitate mental ill health; whereas the ability to restructure them is protective. Here, we leverage ultra-high field 7T fMRI and dynamic causal modelling to characterise a negative self-cognition network centred on the habenula - a small midbrain region linked to the encoding of punishment and negative outcomes. We model habenula effective connectivity in a discovery sample of healthy young adults (n = 45) and in a replication cohort (n = 56) using a cognitive restructuring task during which participants repeated or restructured negative self-cognitions. The restructuring of negative self-cognitions elicits an excitatory effect from the habenula to the posterior orbitofrontal cortex that is reliably observed across both samples. Furthermore, we identify an excitatory effect of the habenula on the posterior cingulate cortex during both the repeating and restructuring of self-cognitions. Our study provides evidence demonstrating the habenula's contribution to processing self-cognitions. These findings yield unique insights into habenula's function beyond processing external reward/punishment to include abstract internal experiences.
Collapse
Affiliation(s)
- Po-Han Kung
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Matthew D Greaves
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
- School of Psychological Sciences, Monash University, Victoria, Australia
| | - Eva Guerrero-Hreins
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Ben J Harrison
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | | | - Kim L Felmingham
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Holly Carey
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Priya Sumithran
- Department of Surgery, School of Translational Medicine, Monash University, Victoria, Australia
- Department of Endocrinology and Diabetes, Alfred Health, Victoria, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Victoria, Australia
| | - Rebecca K Glarin
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Victoria, Australia
| | - Alec J Jamieson
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.
- Department of Psychiatry, University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Tian Y, Zheng J, Zhu X, Liu X, Li H, Wang J, Yang Q, Zeng LH, Shi Z, Gong M, Hu Y, Xu H. A prefrontal-habenular circuitry regulates social fear behaviour. Brain 2024; 147:4185-4199. [PMID: 38963812 DOI: 10.1093/brain/awae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
The medial prefrontal cortex (mPFC) has been implicated in the pathophysiology of social impairments, including social fear. However, the precise subcortical partners that mediate mPFC dysfunction on social fear behaviour have not been identified. Using a social fear conditioning paradigm, we induced robust social fear in mice and found that the lateral habenula (LHb) neurons and LHb-projecting mPFC neurons are activated synchronously during social fear expression. Moreover, optogenetic inhibition of the mPFC-LHb projection significantly reduced social fear responses. Importantly, consistent with animal studies, we observed an elevated prefrontal-habenular functional connectivity in subclinical individuals with higher social anxiety characterized by heightened social fear. These results unravel a crucial role of the prefrontal-habenular circuitry in social fear regulation and suggest that this pathway could serve as a potential target for the treatment of social fear symptoms often observed in many psychiatric disorders.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Junqiang Zheng
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiao Zhu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xue Liu
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haoyang Li
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Wang
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qian Yang
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Zhiguo Shi
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengyuan Gong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, China
| | - Han Xu
- Department of Psychiatry of the Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Lingang Laboratory, Shanghai 200031, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Liu Q, Wang X, Cao Y, Gao F, Xia J, Du H, Liao H, Tan C, Fan J, Zhu X. Structural and resting-state connection abnormalities of habenula in obsessive-compulsive disorder. Psychol Med 2024; 54:2283-2290. [PMID: 38515276 DOI: 10.1017/s003329172400045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
BACKGROUND Previous studies have suggested that the habenula (Hb) may be involved in the mechanism of obsessive-compulsive disorder (OCD). However, the specific role of Hb in OCD remains unclear. This study aimed to explore the structural and functional abnormalities of Hb in OCD and their relationship with the clinical symptoms. METHODS Eighty patients with OCD and 85 healthy controls (HCs) were recruited as the primary dataset. The grey matter volume, resting-state functional connectivity (FC), and effective connectivity (EC) of the Hb were calculated and compared between OCD group and HCs. An independent replication dataset was used to verify the stability and robustness of the results. RESULTS Patients with OCD exhibited smaller Hb volume and increased FC of right Hb-left hippocampus than HCs. Dynamic causal model revealed an increased EC from left hippocampus to right Hb and a less inhibitory causal influence from the right Hb to left hippocampus in the OCD group compared to HCs. Similar results were found in the replication dataset. CONCLUSIONS This study suggested that abnormal structure of Hb and hippocampus-Hb connectivity may contribute to the pathological basis of OCD.
Collapse
Affiliation(s)
- Qian Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Yanyuan Cao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Feng Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Jie Xia
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Hongyu Du
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Medical Psychological Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| |
Collapse
|
4
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos‐Petropulu A, Al‐Sharif N, Leaver AM, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Modulation of habenular and nucleus accumbens functional connectivity by ketamine in major depression. Brain Behav 2024; 14:e3511. [PMID: 38894648 PMCID: PMC11187958 DOI: 10.1002/brb3.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 04/13/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is associated with dysfunctional reward processing, which involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Since ketamine elicits rapid antidepressant and antianhedonic effects in MDD, this study sought to investigate how serial ketamine infusion (SKI) treatment modulates static and dynamic functional connectivity (FC) in Hb and NAc functional networks. METHODS MDD participants (n = 58, mean age = 40.7 years, female = 28) received four ketamine infusions (0.5 mg/kg) 2-3 times weekly. Resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments were collected at baseline and 24 h post-SKI. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Changes in FC pre-to-post SKI, and correlations with changes with mood and anhedonia were examined. Comparisons of FC between patients and healthy controls (HC) at baseline (n = 55, mean age = 32.6, female = 31), and between HC assessed twice (n = 16) were conducted as follow-up analyses. RESULTS Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in mood ratings. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. No differences were observed between HC at baseline or over time. CONCLUSION Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions in MDD. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Joana R. Loureiro
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ashish K. Sahib
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Noor Al‐Sharif
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Amber M. Leaver
- Department of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| | - Benjamin Wade
- Division of Neuropsychiatry and NeuromodulationMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Shantanu Joshi
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Roger P. Woods
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Katherine L. Narr
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Wang J, Li G, Ji G, Hu Y, Zhang W, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow ND, Wang GJ, Zhang Y. Habenula Volume and Functional Connectivity Changes Following Laparoscopic Sleeve Gastrectomy for Obesity Treatment. Biol Psychiatry 2024; 95:916-925. [PMID: 37480977 DOI: 10.1016/j.biopsych.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Neuroimaging studies have revealed alterations in habenular (Hb) structure and functional connectivity (FC) in psychiatric conditions. The Hb plays a particularly critical role in regulating negative emotions, which trigger excessive food intake and obesity. However, obesity and weight loss intervention (i.e., laparoscopic sleeve gastrectomy [LSG])-associated changes in Hb structure and FC have not been studied. METHODS We used voxel-based morphometry analysis to measure changes in gray matter volume (GMV) in the Hb in 56 patients with obesity at pre-LSG and 12 months post-LSG and in 78 normal-weight (NW) control participants. Then, we conducted Hb seed-based resting-state FC (RSFC) to examine obesity-related and LSG-induced alterations in RSFC. Finally, we used mediation analysis to characterize the interrelationships among Hb GMV, RSFC, and behaviors. RESULTS Compared with NW participants, Hb GMV was smaller in patients at pre-LSG and increased at 12 months post-LSG to levels equivalent to that of NW; in addition, increases in Hb GMV were correlated with reduced body mass index (BMI). Compared with NW participants, pre-LSG patients showed greater RSFCs of the Hb-insula, Hb-precentral gyrus, and Hb-rolandic operculum and weaker RSFCs of the Hb-thalamus, Hb-hypothalamus, and Hb-caudate; LSG normalized these RSFCs. Decreased RSFC of the Hb-insula was correlated with reduced BMI, Yale Food Addiction Scale rating, and emotional eating; reduced hunger levels were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus; and reduced BMI and Yale Food Addiction Scale ratings were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus, respectively. The bidirectional relationships between Hb GMV and RSFC of the Hb-insula contributed to reduced BMI. CONCLUSIONS These findings indicate that LSG increased Hb GMV and that its related improvement in RSFC of the Hb-insula may mediate long-term benefits of LSG for eating behaviors and weight loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Juan Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Bian B, Zhang B, Wong C, Dou L, Pan X, Wang H, Guo S, Zhang H, Zhang L. Recent Advances in Habenula Imaging Technology: A Comprehensive Review. J Magn Reson Imaging 2024; 59:737-746. [PMID: 37254969 DOI: 10.1002/jmri.28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
The habenula (Hb) is involved in many natural human behaviors, and the relevance of its alterations in size and neural activity to several psychiatric disorders and addictive behaviors has been presumed and investigated in recent years using magnetic resonance imaging (MRI). Although the Hb is small, an increasing number of studies have overcome the difficulties in MRI. Conventional structural-based imaging also has great defects in observing the Hb contrast with adjacent structures. In addition, more and more attention should be paid to the Hb's functional, structural, and quantitative imaging studies. Several advanced MRI methods have recently been employed in clinical studies to explore the Hb and its involvement in psychiatric diseases. This review summarizes the anatomy and function of the human Hb; moreover, it focuses on exploring the human Hb with noninvasive MRI approaches, highlighting strategies to overcome the poor contrast with adjacent structures and the need for multiparametric MRI to develop imaging markers for diagnosis and treatment follow-up. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- BingYang Bian
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - Bei Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - ChinTing Wong
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Le Dou
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - XingChen Pan
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - HongChao Wang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - ShiYu Guo
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - HuiMao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - Lei Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| |
Collapse
|
7
|
Samanci B, Tan S, Michielse S, Kuijf ML, Temel Y. The habenula in Parkinson's disease: Anatomy, function, and implications for mood disorders - A narrative review. J Chem Neuroanat 2024; 136:102392. [PMID: 38237746 DOI: 10.1016/j.jchemneu.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Parkinson's disease (PD), a widespread neurodegenerative disorder, often coexists with mood disorders. Degeneration of serotonergic neurons in brainstem raphe nuclei have been linked to depression and anxiety. Additionally, the locus coeruleus and its noradrenergic neurons are among the first areas to degenerate in PD and contribute to stress, emotional memory, motor, sensory, and autonomic symptoms. Another brain region of interest is habenula, which is especially related to anti-reward processing, and its function has recently been linked to PD and to mood-related symptoms. There are several neuroimaging studies that investigated role of the habenula in mood disorders. Differences in habenular size and hemispheric symmetry were found in healthy controls compared to individuals with mood disorders. The lateral habenula, as a link between the dopaminergic and serotonergic systems, is thought to contribute to depressive symptoms in PD. However, there is only one imaging study about role of habenula in mood disorders in PD, although the relationship between PD and mood disorders is known. There is little known about habenula pathology in PD but given these observations, the question arises whether habenular dysfunction could play a role in PD and the development of PD-related mood disorders. In this review, we evaluate neuroimaging techniques and studies that investigated the habenula in the context of PD and mood disorders. Future studies are important to understand habenula's role in PD patients with mood disorders. Thus, new potential diagnostic and treatment opportunities would be found for mood disorders in PD.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
8
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos-Petropulu A, Al-Sharif N, Leaver A, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Ketamine treatment modulates habenular and nucleus accumbens static and dynamic functional connectivity in major depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23299282. [PMID: 38106178 PMCID: PMC10723506 DOI: 10.1101/2023.12.01.23299282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dysfunctional reward processing in major depressive disorder (MDD) involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Ketamine elicits rapid antidepressant and alleviates anhedonia in MDD. To clarify how ketamine perturbs reward circuitry in MDD, we examined how serial ketamine infusions (SKI) modulate static and dynamic functional connectivity (FC) in Hb and NAc networks. MDD participants (n=58, mean age=40.7 years, female=28) received four ketamine infusions (0.5mg/kg) 2-3 times weekly. Resting-state fMRI scans and clinical assessments were collected at baseline and 24 hours post-SKI completion. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Paired t-tests examined changes in FC pre-to-post SKI, and correlations were used to determine relationships between FC changes with mood and anhedonia. Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in Hamilton Depression Rating Scale. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Joana R Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Noor Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Benjamin Wade
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Citrenbaum C, Corlier J, Ngo D, Vince-Cruz N, Wilson A, Wilke S, Krantz D, Tadayonnejad R, Ginder N, Levitt J, Lee JH, Strouse T, Corse A, Vyas P, Leuchter AF. Pretreatment pupillary reactivity is associated with outcome of Repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder (MDD). J Affect Disord 2023; 339:412-417. [PMID: 37437737 DOI: 10.1016/j.jad.2023.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Pre-treatment biomarkers for outcome of repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder (MDD) have proven elusive. One promising family of biomarkers involves the autonomic nervous system (ANS), which is dysregulated in individuals with MDD. METHODS We examined the relationship between the pre-treatment pupillary light reflex (PLR) and rTMS outcome in 51 MDD patients. Outcome was measured as the percent change in the 30-item Inventory of Depressive Symptomatology Self Rated (IDS-SR) score from baseline to treatment 30. RESULTS Patients showed significant improvement with rTMS treatment. There was a significant correlation between baseline pupillary Constriction Amplitude (CA) and clinical improvement over the treatment course (R = 0.41, p = 0.003). LIMITATIONS We examined a limited number of subjects who received heterogeneous treatment protocols. Almost all patients in the study received psychotropic medications concomitant with rTMS treatment. CONCLUSION PLR measured before treatment may be a predictive biomarker for clinical improvement from rTMS in subjects with MDD.
Collapse
Affiliation(s)
- Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Doan Ngo
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Andrew Wilson
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Scott Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - David Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA; Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nathaniel Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - John H Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Thomas Strouse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Andrew Corse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | | | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
| |
Collapse
|
10
|
Openshaw RL, Thomson DM, Bristow GC, Mitchell EJ, Pratt JA, Morris BJ, Dawson N. 16p11.2 deletion mice exhibit compromised fronto-temporal connectivity, GABAergic dysfunction, and enhanced attentional ability. Commun Biol 2023; 6:557. [PMID: 37225770 DOI: 10.1038/s42003-023-04891-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Autism spectrum disorders are more common in males, and have a substantial genetic component. Chromosomal 16p11.2 deletions in particular carry strong genetic risk for autism, yet their neurobiological impact is poorly characterised, particularly at the integrated systems level. Here we show that mice reproducing this deletion (16p11.2 DEL mice) have reduced GABAergic interneuron gene expression (decreased parvalbumin mRNA in orbitofrontal cortex, and male-specific decreases in Gad67 mRNA in parietal and insular cortex and medial septum). Metabolic activity was increased in medial septum, and in its efferent targets: mammillary body and (males only) subiculum. Functional connectivity was altered between orbitofrontal, insular and auditory cortex, and between septum and hippocampus/subiculum. Consistent with this circuit dysfunction, 16p11.2 DEL mice showed reduced prepulse inhibition, but enhanced performance in the continuous performance test of attentional ability. Level 1 autistic individuals show similarly heightened performance in the equivalent human test, also associated with parietal, insular-orbitofrontal and septo-subicular dysfunction. The data implicate cortical and septal GABAergic dysfunction, and resulting connectivity changes, as the cause of pre-attentional and attentional changes in autism.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Greg C Bristow
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, UK
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK.
| | - Neil Dawson
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, UK.
| |
Collapse
|
11
|
Xue K, Chen J, Wei Y, Chen Y, Han S, Wang C, Zhang Y, Song X, Cheng J. Altered static and dynamic functional connectivity of habenula in first-episode, drug-naïve schizophrenia patients, and their association with symptoms including hallucination and anxiety. Front Psychiatry 2023; 14:1078779. [PMID: 36741115 PMCID: PMC9892902 DOI: 10.3389/fpsyt.2023.1078779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of schizophrenia (SCH) is related to the dysfunction of monoamine neurotransmitters, and the habenula participates in regulating the synthesis and release of dopamine. We examined the static functional connectivity (sFC) and dynamic functional connectivity (dFC) of habenula in first-episode schizophrenia patients using resting state functional magnetic resonance imaging (rs-fMRI) in this study. METHODS A total of 198 first-Episode, drug-Naïve schizophrenia patients and 199 healthy controls (HC) underwent rs-fMRI examinations. The sFC and dFC analysis with habenula as seed was performed to produce a whole-brain diagram initially, which subsequently were compared between SCH and HC groups. Finally, the correlation analysis of sFC and dFC values with the Positive and Negative Symptom Scale (PANSS) were performed. RESULTS Compared with the HC groups, the left habenula showed increased sFC with the bilateral middle temporal gyrus, bilateral superior temporal gyrus, and right temporal pole in the SCH group, and the right habenula exhibited increased sFC with the left middle temporal gyrus, left superior temporal gyrus, and left angular gyrus. Additionally, compared with the HC group, the left habenula showed decreased dFC with the bilateral cuneus gyrus and bilateral calcarine gyrus in the SCH group. The PANSS negative sub-scores were positively correlated with the sFC values of the bilateral habenula with the bilateral middle temporal gyrus, superior temporal gyrus and angular gyrus. The PANSS general sub-scores were positively correlated with the sFC values of the right habenula with the left middle temporal gyrus and left superior temporal gyrus. The hallucination scores of PANSS were negatively correlated with the sFC values of the left habenula with the bilateral cuneus gyrus and bilateral calcarine gyrus; The anxiety scores of PANSS were positively correlated with the dFC values of the left habenula with the right temporal pole. CONCLUSION This study provides evidence that the habenula of the first-episode schizophrenia patients presented abnormal static functional connectivity with temporal lobe and angular gyrus, and additionally showed weakened stability of functional connectivity in occipital lobe. This abnormality is closely related to the symptoms of hallucination and anxiety in schizophrenia, which may indicate that the habenula involved in the pathophysiology of schizophrenia by affecting the dopamine pathway.
Collapse
Affiliation(s)
- Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Duan Y, Tsai PJ, Salmeron BJ, Hu Y, Gu H, Lu H, Cadet JL, Stein EA, Yang Y. Compulsive drug-taking is associated with habenula-frontal cortex connectivity. Proc Natl Acad Sci U S A 2022; 119:e2208867119. [PMID: 36469769 PMCID: PMC9897479 DOI: 10.1073/pnas.2208867119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 12/07/2022] Open
Abstract
As a critical node connecting the forebrain with the midbrain, the lateral habenula (LHb) processes negative feedback in response to aversive events and plays an essential role in value-based decision-making. Compulsive drug use, a hallmark of substance use disorder, is attributed to maladaptive decision-making regarding aversive drug-use-related events and has been associated with dysregulation of various frontal-midbrain circuits. To understand the contributions of frontal-habenula-midbrain circuits in the development of drug dependence, we employed a rat model of methamphetamine self-administration (SA) in the presence of concomitant footshock, which has been proposed to model compulsive drug-taking in humans. In this longitudinal study, functional MRI data were collected at pretraining baseline, after 20 d of long-access SA phase, and after 5 d of concomitant footshock coupled with SA (punishment phase). Individual differences in response to punishment were quantified by a "compulsivity index (CI)," defined as drug infusions at the end of punishment phase, normalized by those at the end of SA phase. Functional connectivity of LHb with the frontal cortices and substantia nigra (SN) after the punishment phase was positively correlated with the CI in rats that maintained drug SA despite receiving increasing-intensity footshock. In contrast, functional connectivity of the same circuits was negatively correlated with CI in rats that significantly reduced SA. These findings suggest that individual differences in compulsive drug-taking are reflected by alterations within frontal-LHb-SN circuits after experiencing the negative consequences from SA, suggesting these circuits may serve as unique biomarkers and potential therapeutic targets for individualized treatment of addiction.
Collapse
Affiliation(s)
- Ying Duan
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
| | - Yuzheng Hu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang310058, P.R. China
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD21224
| |
Collapse
|
13
|
King SG, Gaudreault PO, Malaker P, Kim JW, Alia-Klein N, Xu J, Goldstein RZ. Prefrontal-habenular microstructural impairments in human cocaine and heroin addiction. Neuron 2022; 110:3820-3832.e4. [PMID: 36206758 PMCID: PMC9671835 DOI: 10.1016/j.neuron.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The habenula (Hb) is central to adaptive reward- and aversion-driven behaviors, comprising a hub for higher-order processing networks involving the prefrontal cortex (PFC). Despite an established role in preclinical models of cocaine addiction, the translational significance of the Hb and its connectivity with the PFC in humans is unclear. Using diffusion tractography, we detailed PFC structural connectivity with the Hb and two control regions, quantifying tract-specific microstructural features in healthy and cocaine-addicted individuals. White matter was uniquely impaired in PFC-Hb projections in both short-term abstainers and current cocaine users. Abnormalities in this tract further generalized to an independent sample of heroin-addicted individuals and were associated, in an exploratory analysis, with earlier onset of drug use across the addiction subgroups, potentially serving as a predisposing marker amenable for early intervention. Importantly, these findings contextualize a plausible PFC-Hb circuit in the human brain, supporting preclinical evidence for its impairment in cocaine addiction.
Collapse
Affiliation(s)
- Sarah G King
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre-Olivier Gaudreault
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Wang M, Chen X, Hu Y, Zhou Y, Wang C, Zheng W, Liu W, Lan X, Ning Y, Zhang B. Functional connectivity between the habenula and default mode network and its association with the antidepressant effect of ketamine. Depress Anxiety 2022; 39:352-362. [PMID: 34964207 DOI: 10.1002/da.23238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recently, an animal model for depression has shown that ketamine, an N-methyl- d-aspartate receptor (NMDAR) antagonist, elicits a rapid-acting antidepressant effect by blocking NMDAR-dependent bursting in the lateral habenula (Hb). However, evidence from human studies remains scarce. METHODS This study explored the changes of resting-state functional connectivity (FC) of the Hb in responders and nonresponders who was diagnosed with unipolar or bipolar depression before and after ketamine treatment. The response was defined as a ≥50% reduction in the total MADRS score at Day 13 (24 h following the sixth infusion) in comparison with the baseline score. Correlation analyses were performed to identify an association between symptom improvement and the signals of the significantly different brain regions detected in the above imaging analysis. RESULTS In the post-hoc region-of-interest analysis, an enhanced baseline FC between Hb and several hubs of the default mode network (including angulate cortex, precuneus, medial prefrontal cortex, and middle temporal cortex) was observed in responders (≥50% decrease in the Montgomery-Asberg Scale at 2 weeks) compared with nonresponders. CONCLUSIONS These pilot findings may suggest a potential neural mechanism by which ketamine exerts its robust antidepressant efficacy via downregulation of aberrant habenular FC with parts of the default mode network.
Collapse
Affiliation(s)
- Mingqia Wang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Chen
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiru Hu
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yangling Zhou
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Chengyu Wang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Zheng
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weijian Liu
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofeng Lan
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuping Ning
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
The human mediodorsal thalamus: Organization, connectivity, and function. Neuroimage 2022; 249:118876. [PMID: 34998970 DOI: 10.1016/j.neuroimage.2022.118876] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The human mediodorsal thalamic nucleus (MD) is crucial for higher cognitive functions, while the fine anatomical organization of the MD and the function of each subregion remain elusive. In this study, using high-resolution data provided by the Human Connectome Project, an anatomical connectivity-based method was adopted to unveil the topographic organization of the MD. Four fine-grained subregions were identified in each hemisphere, including the medial (MDm), central (MDc), dorsal (MDd), and lateral (MDl), which recapitulated previous cytoarchitectonic boundaries from histological studies. The subsequent connectivity analysis of the subregions also demonstrated distinct anatomical and functional connectivity patterns, especially with the prefrontal cortex. To further evaluate the function of MD subregions, partial least squares analysis was performed to examine the relationship between different prefrontal-subregion connectivity and behavioral measures in 1012 subjects. The results showed subregion-specific involvement in a range of cognitive functions. Specifically, the MDm predominantly subserved emotional-cognition domains, while the MDl was involved in multiple cognitive functions especially cognitive flexibility and inhibition. The MDc and MDd were correlated with fluid intelligence, processing speed, and emotional cognition. In conclusion, our work provides new insights into the anatomical and functional organization of the MD and highlights the various roles of the prefrontal-thalamic circuitry in human cognition.
Collapse
|
16
|
Wang J, Li G, Hu Y, Zhang W, Zhang L, Tan Z, Li H, Jia Z, von Deneen KM, Li X, Yu J, Han Y, Cui G, Manza P, Shokri-Kojori E, Tomasi D, Volkow ND, Nie Y, Ji G, Zhang Y, Wang GJ. Habenular and mediodorsal thalamic connectivity predict persistent weight loss after laparoscopic sleeve gastrectomy. Obesity (Silver Spring) 2022; 30:172-182. [PMID: 34889060 DOI: 10.1002/oby.23325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The aim of this study was to investigate laparoscopic sleeve gastrectomy (LSG)-induced changes in connectivity between regions involved with reward/antireward and cognitive control and the extent to which these changes persist after surgery and predict sustainable weight loss. METHODS Whole-brain local functional connectivity density (lFCD) was studied in 25 participants with obesity who underwent resting-state functional MRI before (PreLSG), 1 month after (PostLSG1 ), and 12 months after (PostLSG12 ) LSG and compared with 25 normal-weight controls. Regions with significant time effects of LSG on functional connectivity density were identified for subsequent seed-based connectivity analyses and to examine associations with behavior. RESULTS LSG significantly increased lFCD in the mediodorsal thalamic nucleus (MD) and in the habenula (Hb) at PostLSG12 compared with PreLSG/PostLSG1 , whereas it decreased lFCD in the posterior cingulate cortex/precuneus (PCC/PreCun) at PostLSG1 /PostLSG12 , and these changes were associated with reduction in BMI. In contrast, controls had no significant lFCD differences between baseline and repeated measures. MD had stronger connectivity with PreCun and Hb at PostLSG12 compared with PreLSG/PostLSG1 , and the increased MD-left PreCun and Hb-MD connectivity correlated with decreases in hunger and BMI, respectively. PCC/PreCun had stronger connectivity with the insula at PostLSG1-12 . CONCLUSIONS The findings highlight the importance of reward and interoceptive regions as well as that of regions mediating negative emotions in the long-term therapeutic benefits of LSG.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lei Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Zhenzhen Jia
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xiaohua Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Jung JY, Cho SE, Kim N, Kang CK, Kang SG. Decreased resting-state functional connectivity of the habenula-cerebellar in a major depressive disorder. Front Psychiatry 2022; 13:925823. [PMID: 36147982 PMCID: PMC9485485 DOI: 10.3389/fpsyt.2022.925823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In animal experiments, the habenula and septal nuclei are known as the key brain areas of depression. However, there are few magnetic resonance imaging (MRI) studies on the functional connectivity between these areas and the subcortical areas in humans with major depression. We aimed to investigate the difference in resting-state functional connectivity (RSFC) among the major regions of interest (ROI) in the subcortical areas, including both the habenula and septal nuclei. METHODS We performed the seed-to-voxel analysis to investigate the RSFC between both the habenula and septal nucleus, as well as other subcortical regions. Furthermore, ROI-to-ROI analysis was performed among the combinations of ROI pairs in the subcortical areas. RESULTS The seed-to-voxel analysis showed a lower RSFC between the left habenula and the cerebellum in major depressive disorder (MDD) than in healthy controls (HCs). As a result of ROI-to-ROI analysis in subcortical areas, a total of 31 pairs of FCs in the MDD group showed a lower RSFC than in the HCs group. CONCLUSION This study revealed a lower RSFC between the left habenula and cerebellum in patients with MDD and reduced RSFC among numerous subcortical areas. These new findings on the neural circuitry of MDD might contribute to an in-depth understanding of depression.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Department of Health Science, Gachon University Graduate School, Incheon, South Korea
| | - Seo-Eun Cho
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Nambeom Kim
- Department of Biomedical Engineering Research Center, Gachon University, Incheon, South Korea
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon, South Korea
| | - Seung-Gul Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
18
|
Khalighinejad N, Garrett N, Priestley L, Lockwood P, Rushworth MFS. A habenula-insular circuit encodes the willingness to act. Nat Commun 2021; 12:6329. [PMID: 34732720 PMCID: PMC8566457 DOI: 10.1038/s41467-021-26569-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
The decision that it is worth doing something rather than nothing is a core yet understudied feature of voluntary behaviour. Here we study "willingness to act", the probability of making a response given the context. Human volunteers encountered opportunities to make effortful actions in order to receive rewards, while watching a movie inside a 7 T MRI scanner. Reward and other context features determined willingness-to-act. Activity in the habenula tracked trial-by-trial variation in participants' willingness-to-act. The anterior insula encoded individual environment features that determined this willingness. We identify a multi-layered network in which contextual information is encoded in the anterior insula, converges on the habenula, and is then transmitted to the supplementary motor area, where the decision is made to either act or refrain from acting via the nigrostriatal pathway.
Collapse
Affiliation(s)
- Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
| | - Neil Garrett
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- School of Psychology, University of East Anglia, Norwich, UK
| | - Luke Priestley
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
| | - Patricia Lockwood
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
| |
Collapse
|
19
|
Gao J, Li Y, Wei Q, Li X, Wang K, Tian Y, Wang J. Habenula and left angular gyrus circuit contributes to response of electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2021; 15:2246-2253. [PMID: 33244628 DOI: 10.1007/s11682-020-00418-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
The habenula (Hb), one of the hottest structures in depression, has been widely demonstrated to be involved in the neurobiology of depression. Although the structural and functional abnormalities of Hb have been reported in major depressive disorders (MDD) patients, the role of Hb in treatment response in MDD remains unclear. In this study, resting-state functional connectivity (RSFC) and Granger causality analysis (GCA) were performed to investigate the intrinsic and causal changes of Hb in MDD after ECT. Moreover, support vector classification was applied to find out whether the changed functional and causal connections of Hb can effectively distinguish the MDD patients from healthy controls. The RSFC and GCA identified increased RSFC strength between bilateral Hb and left angular gyrus (AG), decreased causal connectivity strength from left AG to left Hb, from right Hb to left AG, and bidirectional interactions between left and right Hb in MDD patients after ECT. The changed causal connectivities from left AG to left Hb, and from right Hb to left AG were correlated with the changed depression symptoms and impaired delay memory recall performances. Furthermore, the functional and causal connectivities between left AG and bilateral Hb could serve as a biomarker to differentiate MDD from HCs. These results provided new evidence for the importance of Hb in depression and revealed that the interactions between Hb and left AG contribute to ECT response in MDD. Our findings will facilitate the future treatment of depression with the target of Hb in MDD and other brain disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineer, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Yuanyuan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Qiang Wei
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xuemei Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Medical Psychology, Anhui Medical University, 230022, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, 230022, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China.
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China.
| |
Collapse
|
20
|
Germann J, Mameli M, Elias GJB, Loh A, Taha A, Gouveia FV, Boutet A, Lozano AM. Deep Brain Stimulation of the Habenula: Systematic Review of the Literature and Clinical Trial Registries. Front Psychiatry 2021; 12:730931. [PMID: 34484011 PMCID: PMC8415908 DOI: 10.3389/fpsyt.2021.730931] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
The habenula is a small bilateral epithalamic structure that plays a key role in the regulation of the main monoaminergic systems. It is implicated in many aspects of behavior such as reward processing, motivational behavior, behavioral adaptation, and sensory integration. A role of the habenula has been indicated in the pathophysiology of a number of neuropsychiatric disorders such as depression, addiction, obsessive-compulsive disorder, and bipolar disorder. Neuromodulation of the habenula using deep brain stimulation (DBS) as potential treatment has been proposed and a first successful case of habenula DBS was reported a decade ago. To provide an overview of the current state of habenula DBS in human subjects for the treatment of neuropsychiatric disorders we conducted a systematic review of both the published literature using PUBMED and current and past registered clinical trials using ClinicalTrials.gov as well as the International Clinical Trials Registry Platform. Using PRISMA guidelines five articles and five registered clinical trials were identified. The published articles detailed the results of habenula DBS for the treatment of schizophrenia, depression, obsessive-compulsive disorder, and bipolar disorder. Four are single case studies; one reports findings in two patients and positive clinical outcome is described in five of the six patients. Of the five registered clinical trials identified, four investigate habenula DBS for the treatment of depression and one for obsessive-compulsive disorder. One trial is listed as terminated, one is recruiting, two are not yet recruiting and the status of the fifth is unknown. The planned enrollment varies between 2 to 13 subjects and four of the five are open label trials. While the published studies suggest a potential role of habenula DBS for a number of indications, future trials and studies are necessary. The outcomes of the ongoing clinical trials will provide further valuable insights. Establishing habenula DBS, however, will depend on successful randomized clinical trials to confirm application and clinical benefit of this promising intervention.
Collapse
Affiliation(s)
- Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, Lausanne, Switzerland
- INSERM, UMR-S 839, Paris, France
| | - Gavin J. B. Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Alaa Taha
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Flavia Venetucci Gouveia
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Ely BA, Nguyen TNB, Tobe RH, Walker AM, Gabbay V. Multimodal Investigations of Reward Circuitry and Anhedonia in Adolescent Depression. Front Psychiatry 2021; 12:678709. [PMID: 34366915 PMCID: PMC8345280 DOI: 10.3389/fpsyt.2021.678709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 02/01/2023] Open
Abstract
Depression is a highly prevalent condition with devastating personal and public health consequences that often first manifests during adolescence. Though extensively studied, the pathogenesis of depression remains poorly understood, and efforts to stratify risks and identify optimal interventions have proceeded slowly. A major impediment has been the reliance on an all-or-nothing categorical diagnostic scheme based solely on whether a patient endorses an arbitrary number of common symptoms for a sufficiently long period. This approach masks the well-documented heterogeneity of depression, a disorder that is highly variable in presentation, severity, and course between individuals and is frequently comorbid with other psychiatric conditions. In this targeted review, we outline the limitations of traditional diagnosis-based research and instead advocate an alternative approach centered around symptoms as unique dimensions of clinical dysfunction that span across disorders and more closely reflect underlying neurobiological abnormalities. In particular, we highlight anhedonia-the reduced ability to anticipate and experience pleasure-as a specific, quantifiable index of reward dysfunction and an ideal candidate for dimensional investigation. Anhedonia is a core symptom of depression but also a salient feature of numerous other conditions, and its severity varies widely within clinical and even healthy populations. Similarly, reward dysfunction is a hallmark of depression but is evident across many psychiatric conditions. Reward function is especially relevant in adolescence, a period characterized by exaggerated reward-seeking behaviors and rapid maturation of neural reward circuitry. We detail extensive work by our research group and others to investigate the neural and systemic factors contributing to reward dysfunction in youth, including our cumulative findings using multiple neuroimaging and immunological measures to study depressed adolescents but also trans-diagnostic cohorts with diverse psychiatric symptoms. We describe convergent evidence that reward dysfunction: (a) predicts worse clinical outcomes, (b) is associated with functional and chemical abnormalities within and beyond the neural reward circuitry, (c) is linked to elevated peripheral levels of inflammatory biomarkers, and (d) manifests early in the course of illness. Emphasis is placed on high-resolution neuroimaging techniques, comprehensive immunological assays, and data-driven analyses to fully capture and characterize the complex, interconnected nature of these systems and their contributions to adolescent reward dysfunction.
Collapse
Affiliation(s)
- Benjamin A. Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tram N. B. Nguyen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Russell H. Tobe
- Department of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Audrey M. Walker
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
22
|
Meta-analytic clustering dissociates brain activity and behavior profiles across reward processing paradigms. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:215-235. [PMID: 31872334 DOI: 10.3758/s13415-019-00763-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reward learning is a ubiquitous cognitive mechanism guiding adaptive choices and behaviors, and when impaired, can lead to considerable mental health consequences. Reward-related functional neuroimaging studies have begun to implicate networks of brain regions essential for processing various peripheral influences (e.g., risk, subjective preference, delay, social context) involved in the multifaceted reward processing construct. To provide a more complete neurocognitive perspective on reward processing that synthesizes findings across the literature while also appreciating these peripheral influences, we used emerging meta-analytic techniques to elucidate brain regions, and in turn networks, consistently engaged in distinct aspects of reward processing. Using a data-driven, meta-analytic, k-means clustering approach, we dissociated seven meta-analytic groupings (MAGs) of neuroimaging results (i.e., brain activity maps) from 749 experimental contrasts across 176 reward processing studies involving 13,358 healthy participants. We then performed an exploratory functional decoding approach to gain insight into the putative functions associated with each MAG. We identified a seven-MAG clustering solution that represented dissociable patterns of convergent brain activity across reward processing tasks. Additionally, our functional decoding analyses revealed that each of these MAGs mapped onto discrete behavior profiles that suggested specialized roles in predicting value (MAG-1 & MAG-2) and processing a variety of emotional (MAG-3), external (MAG-4 & MAG-5), and internal (MAG-6 & MAG-7) influences across reward processing paradigms. These findings support and extend aspects of well-accepted reward learning theories and highlight large-scale brain network activity associated with distinct aspects of reward processing.
Collapse
|
23
|
Ely BA, Liu Q, DeWitt SJ, Mehra LM, Alonso CM, Gabbay V. Data-driven parcellation and graph theory analyses to study adolescent mood and anxiety symptoms. Transl Psychiatry 2021; 11:266. [PMID: 33941762 PMCID: PMC8093238 DOI: 10.1038/s41398-021-01321-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 02/03/2023] Open
Abstract
Adolescence is a period of rapid brain development when psychiatric symptoms often first emerge. Studying adolescents may therefore facilitate the identification of neural alterations early in the course of psychiatric conditions. Here, we sought to utilize new, high-quality brain parcellations and data-driven graph theory approaches to characterize associations between resting-state networks and the severity of depression, anxiety, and anhedonia symptoms-salient features across psychiatric conditions. As reward circuitry matures considerably during adolescence, we examined both Whole Brain and three task-derived reward networks. Subjects were 87 psychotropic-medication-free adolescents (age = 12-20) with diverse psychiatric conditions (n = 68) and healthy controls (n = 19). All completed diagnostic interviews, dimensional clinical assessments, and 3T resting-state fMRI (10 min/2.3 mm/TR = 1 s). Following high-quality Human Connectome Project-style preprocessing, multimodal surface matching (MSMAll) alignment, and parcellation via the Cole-Anticevic Brain-wide Network Partition, weighted graph theoretical metrics (Strength Centrality = CStr; Eigenvector Centrality = CEig; Local Efficiency = ELoc) were estimated within each network. Associations with symptom severity and clinical status were assessed non-parametrically (two-tailed pFWE < 0.05). Across subjects, depression scores correlated with ventral striatum CStr within the Reward Attainment network, while anticipatory anhedonia correlated with CStr and ELoc in the subgenual anterior cingulate, dorsal anterior cingulate, orbitofrontal cortex, caudate, and ventral striatum across multiple networks. Group differences and associations with anxiety were not detected. Using detailed functional and clinical measures, we found that adolescent depression and anhedonia involve increased influence and communication efficiency in prefrontal and limbic reward areas. Resting-state network properties thus reflect positive valence system anomalies related to discrete reward sub-systems and processing phases early in the course of illness.
Collapse
Affiliation(s)
- Benjamin A. Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY USA
| | - Qi Liu
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY USA
| | - Samuel J. DeWitt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Lushna M. Mehra
- Department of Psychology, Florida State University, Tallahassee, FL USA
| | - Carmen M. Alonso
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY USA
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA. .,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
24
|
Kark SM, Birnie MT, Baram TZ, Yassa MA. Functional Connectivity of the Human Paraventricular Thalamic Nucleus: Insights From High Field Functional MRI. Front Integr Neurosci 2021; 15:662293. [PMID: 33967711 PMCID: PMC8096909 DOI: 10.3389/fnint.2021.662293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a small but highly connected nucleus of the dorsal midline thalamus. The PVT has garnered recent attention as a context-sensitive node within the thalamocortical arousal system that modulates state-dependent motivated behaviors. Once considered related to generalized arousal responses with non-specific impacts on behavior, accumulating evidence bolsters the contemporary view that discrete midline thalamic subnuclei belong to specialized corticolimbic and corticostriatal circuits related to attention, emotions, and cognition. However, the functional connectivity patterns of the human PVT have yet to be mapped. Here, we combined high-quality, high-resolution 7T and 3T resting state MRI data from 121 young adult participants from the Human Connectome Project (HCP) and thalamic subnuclei atlas masks to investigate resting state functional connectivity of the human PVT. The 7T results demonstrated extensive positive functional connectivity with the brainstem, midbrain, ventral and dorsal medial prefrontal cortex (mPFC), anterior and posterior cingulate, ventral striatum, hippocampus, and amygdala. These connections persist upon controlling for functional connectivity of the rest of the thalamus. Whole-brain contrasts provided further evidence that, compared to three nearby midline thalamic subnuclei, functional connectivity of the PVT is strong with the hippocampus, amygdala, ventral and dorsal mPFC, and middle temporal gyrus. These findings suggest that, even during rest, the human PVT is functionally coupled with many regions known to be structurally connected to rodent and non-human primate PVT. Further, cosine similarity analysis results suggested the PVT is integrated into the default mode network (DMN), an intrinsic connectivity network associated with episodic memory and self-referential thought. The current work provides a much-needed foundation for ongoing and future work examining the functional roles of the PVT in humans.
Collapse
Affiliation(s)
- Sarah M. Kark
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Matthew T. Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
25
|
Rivas-Grajales AM, Salas R, Robinson ME, Qi K, Murrough JW, Mathew SJ. Habenula Connectivity and Intravenous Ketamine in Treatment-Resistant Depression. Int J Neuropsychopharmacol 2020; 24:383-391. [PMID: 33249434 PMCID: PMC8130203 DOI: 10.1093/ijnp/pyaa089] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ketamine's potent and rapid antidepressant properties have shown great promise to treat severe forms of major depressive disorder (MDD). A recently hypothesized antidepressant mechanism of action of ketamine is the inhibition of N-methyl-D-aspartate receptor-dependent bursting activity of the habenula (Hb), a small brain structure that modulates reward and affective states. METHODS Resting-state functional magnetic resonance imaging was conducted in 35 patients with MDD at baseline and 24 hours following treatment with i.v. ketamine. A seed-to-voxel functional connectivity (FC) analysis was performed with the Hb as a seed-of-interest. Pre-post changes in FC and the associations between changes in FC of the Hb and depressive symptom severity were examined. RESULTS A reduction in Montgomery-Åsberg Depression Rating Scale scores from baseline to 24 hours after ketamine infusion was associated with increased FC between the right Hb and a cluster in the right frontal pole (t = 4.65, P = .03, false discovery rate [FDR]-corrected). A reduction in Quick Inventory of Depressive Symptomatology-Self Report score following ketamine was associated with increased FC between the right Hb and clusters in the right occipital pole (t = 5.18, P < .0001, FDR-corrected), right temporal pole (t = 4.97, P < .0001, FDR-corrected), right parahippocampal gyrus (t = 5.80, P = .001, FDR-corrected), and left lateral occipital cortex (t = 4.73, P = .03, FDR-corrected). Given the small size of the Hb, it is possible that peri-habenular regions contributed to the results. CONCLUSIONS These preliminary results suggest that the Hb might be involved in ketamine's antidepressant action in patients with MDD, although these findings are limited by the lack of a control group.
Collapse
Affiliation(s)
- Ana Maria Rivas-Grajales
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- The Menninger Clinic, Houston, Texas, USA
| | - Meghan E Robinson
- Core for Advanced Magnetic Resonance Imaging and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Karen Qi
- Department of Cognitive Neuroscience, Rice University, Houston, Texas, USA
| | - James W Murrough
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry; Department of Neuroscience; and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New Yorks, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Correspondence: Sanjay J. Mathew, MD, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza MS: BCM350, Houston, TX 77030, USA ()
| |
Collapse
|
26
|
Oh H, Lee J, Gosnell SN, Patriquin M, Kosten T, Salas R. Orbitofrontal, dorsal striatum, and habenula functional connectivity in psychiatric patients with substance use problems. Addict Behav 2020; 108:106457. [PMID: 32371303 DOI: 10.1016/j.addbeh.2020.106457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Substance abuse is commonly defined as the persistence of drug use despite negative consequences. Recent preclinical work has shown that higher input from the orbitofrontal cortex (OFC) to the dorsal striatum was associated with compulsive reward-seeking behavior despite negative effects. It remains unknown whether drug use is associated with the connectivity between the OFC and dorsal striatum in humans. We studied the resting state functional connectivity (RSFC) between the OFC, dorsal striatum, and habenula (and the whole brain in a separate analysis) in psychiatric inpatients with high (PU, problem users) and low (LU, low users) substance use. We matched PU and LU for psychiatric comorbidities. We found that PU showed higher RSFC between the left OFC and the left dorsal striatum than LU. RSFC between the habenula and both OFC and dorsal striatum was also higher in PU, which suggests the habenula may be a part of the same circuit. Finally, higher RSFC between the OFC and insula was also observed in PU. Our data shows that OFC, habenula, dorsal striatum, and insula may play an important role in PU. Furthermore, we postulate that the habenula may link the mesolimbic and cortico-striatal systems, which are altered in PU.
Collapse
Affiliation(s)
- Hyuntaek Oh
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Jaehoon Lee
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Department of Educational Psychology and Leadership, College of Education, Texas Tech University, Lubbock, TX, USA
| | - Savannah N Gosnell
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Michael E DeBakey VA Medical Center, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Michelle Patriquin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Thomas Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA; Michael E DeBakey VA Medical Center, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
Leong SL, Glue P, Manning P, Vanneste S, Lim LJ, Mohan A, De Ridder D. Anterior Cingulate Cortex Implants for Alcohol Addiction: A Feasibility Study. Neurotherapeutics 2020; 17:1287-1299. [PMID: 32323203 PMCID: PMC7641294 DOI: 10.1007/s13311-020-00851-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abnormal neural activity, particularly in the rostrodorsal anterior cingulate cortex (rdACC), appears to be responsible for intense alcohol craving. Neuromodulation of the rdACC using cortical implants may be an option for individuals with treatment-resistant alcohol dependence. This study assessed the effectiveness and feasibility of suppressing alcohol craving using cortical implants of the rdACC using a controlled one-group pre- and post-test study design. Eight intractable alcohol-dependent participants (four males and four females) were implanted with two Lamitrode 44 electrodes over the rdACC bilaterally connected to an internal pulse generator (IPG). The primary endpoint, self-reported alcohol craving reduced by 60.7% (p = 0.004) post- compared to pre-stimulation. Adverse events occurred in four out of the eight participants. Electrophysiology findings showed that among responders, there was a post-stimulation decrease (p = 0.026) in current density at the rdACC for beta 1 band (13-18 Hz). Results suggest that rdACC stimulation using implanted electrodes may potentially be a feasible method for supressing alcohol craving in individuals with severe alcohol use disorder. However, to further establish safety and efficacy, larger controlled clinical trials are needed.
Collapse
Affiliation(s)
- Sook Ling Leong
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand.
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Patrick Manning
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Louisa Joyce Lim
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Anusha Mohan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Dirk De Ridder
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
28
|
Mao CP, Chen FR, Huo JH, Zhang L, Zhang GR, Zhang B, Zhou XQ. Altered resting-state functional connectivity and effective connectivity of the habenula in irritable bowel syndrome: A cross-sectional and machine learning study. Hum Brain Mapp 2020; 41:3655-3666. [PMID: 32488929 PMCID: PMC7416021 DOI: 10.1002/hbm.25038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/04/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a disorder involving dysfunctional brain–gut interactions characterized by chronic recurrent abdominal pain, altered bowel habits, and negative emotion. Previous studies have linked the habenula to the pathophysiology of negative emotion and pain. However, no studies to date have investigated habenular function in IBS patients. In this study, we investigated the resting‐state functional connectivity (rsFC) and effective connectivity of the habenula in 34 subjects with IBS and 34 healthy controls and assessed the feasibility of differentiating IBS patients from healthy controls using a machine learning method. Our results showed significantly enhanced rsFC of the habenula‐left dorsolateral prefrontal cortex (dlPFC) and habenula‐periaqueductal grey (PAG, dorsomedial part), as well as decreased rsFC of the habenula‐right thalamus (dorsolateral part), in the IBS patients compared with the healthy controls. Habenula‐thalamus rsFC was positively correlated with pain intensity (r = .467, p = .005). Dynamic causal modeling (DCM) revealed significantly decreased effective connectivity from the right habenula to the right thalamus in the IBS patients compared to the healthy controls that was negatively correlated with disease duration (r = −.407, p = .017). In addition, IBS was classified with an accuracy of 71.5% based on the rsFC of the habenula‐dlPFC, habenula‐thalamus, and habenula‐PAG in a support vector machine (SVM), which was further validated in an independent cohort of subjects (N = 44, accuracy = 65.2%, p = .026). Taken together, these findings establish altered habenular rsFC and effective connectivity in IBS, which extends our mechanistic understanding of the habenula's role in IBS.
Collapse
Affiliation(s)
- Cui P Mao
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fen R Chen
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiao H Huo
- School of Computer Science and Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Liang Zhang
- School of Computer Science and Engineering, Xidian University, Xi'an, Shaanxi, China
| | - Gui R Zhang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Zhang
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao Q Zhou
- Department of Medical Imaging, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|