1
|
Stone AJ, Blockley NP. Improving quantitative BOLD-based measures of oxygen extraction fraction using hyperoxia BOLD-derived measures of blood volume. Magn Reson Med 2025. [PMID: 40391663 DOI: 10.1002/mrm.30559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025]
Abstract
PURPOSE Streamlined quantitative BOLD (sqBOLD) is a refinement of the quantitative BOLD (qBOLD) technique capable of producing noninvasive and quantitative maps of oxygen extraction fraction (OEF) in a clinically feasible scan time. However, sqBOLD measurements of OEF have been reported as being systematically lower than expected in healthy brain. Because the qBOLD framework infers OEF from the ratio of the reversible transverse relaxation rate (R 2 ' $$ {\mathrm{R}}_2^{\prime } $$ ) and deoxygenated blood volume (DBV), this underestimation has been attributed the overestimation of DBV. Therefore, this study proposes the use of an independent measure of DBV using hyperoxia BOLD and investigates whether this results in improved estimates of OEF. METHODS Monte Carlo simulations were used to simulate the qBOLD and hyperoxia-BOLD signals and to compare the systematic and noise-related errors of sqBOLD and the new hyperoxia-qBOLD (hqBOLD) technique. Experimentally, sqBOLD and hqBOLD measurements were performed and compared with TRUST (T2 relaxation under spin tagging)-based oximetry in the sagittal sinus. RESULTS Simulations showed a large improvement in the uncertainty of DBV measurements, leading to a much improved dynamic range for OEF measurements with hqBOLD. In a group of 10 healthy volunteers, hqBOLD produced measurements of OEF in cortical gray matter (OEFhqBOLD = 38.1 ± 10.1%) that were not significantly different from TRUST oximetry measures (OEFTRUST = 40.4 ± 7.7%), whereas sqBOLD-derived measures (OEFsqBOLD = 16.1 ± 3.1%) were found to be significantly different. CONCLUSION The simulations and experiments in this study demonstrate that an independent measure of DBV provides improved estimates of OEF.
Collapse
Affiliation(s)
- Alan J Stone
- Wellcome Center for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Medical Physics and Clinical Engineering, Beaumont Hospital, Dublin, Ireland
- National Neuroscience Center, Beaumont Hospital, Dublin, Ireland
- Center for Physics and Health in Medicine, School of Physics, University College Dublin, Dublin, Ireland
| | - Nicholas P Blockley
- Wellcome Center for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Alzaidi AA, Panek R, Blockley NP. Quantitative BOLD (qBOLD) imaging of oxygen metabolism and blood oxygenation in the human body: A scoping review. Magn Reson Med 2024; 92:1822-1837. [PMID: 39072791 DOI: 10.1002/mrm.30165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE There are many approaches to the quantitative BOLD (qBOLD) technique described in the literature, differing in pulse sequences, MRI parameters and data processing. Thus, in this review, we summarized the acquisition methods, approaches used for oxygenation quantification and clinical populations investigated. METHODS Three databases were systematically searched (Medline, Embase, and Web of Science) for published research that used qBOLD methods for quantification of oxygen metabolism. Data extraction and synthesis were performed by one author and reviewed by a second author. RESULTS A total of 93 relevant papers were identified. Acquisition strategies were summarized, and oxygenation parameters were found to have been investigated in many pathologies such as steno-occlusive diseases, stroke, glioma, and multiple sclerosis disease. CONCLUSION A summary of qBOLD approaches for oxygenation measurements and applications could help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Ahlam A Alzaidi
- David Greenfield Human Physiology Unit, School of Life Sciences, University of Nottingham, Nottingham, UK
- Radiology Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Rafal Panek
- Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nicholas P Blockley
- David Greenfield Human Physiology Unit, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Singh N, MacNicol E, DiPasquale O, Randall K, Lythgoe D, Mazibuko N, Simmons C, Selvaggi P, Stephenson S, Turkheimer FE, Cash D, Zelaya F, Colasanti A. The effects of acute Methylene Blue administration on cerebral blood flow and metabolism in humans and rats. J Cereb Blood Flow Metab 2023; 43:95-105. [PMID: 36803299 PMCID: PMC10638993 DOI: 10.1177/0271678x231157958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/09/2022] [Accepted: 12/26/2022] [Indexed: 02/23/2023]
Abstract
Methylene Blue (MB) is a brain-penetrating drug with putative neuroprotective, antioxidant and metabolic enhancing effects. In vitro studies suggest that MB enhances mitochondrial complexes activity. However, no study has directly assessed the metabolic effects of MB in the human brain. We used in vivo neuroimaging to measure the effect of MB on cerebral blood flow (CBF) and brain metabolism in humans and in rats. Two doses of MB (0.5 and 1 mg/kg in humans; 2 and 4 mg/kg in rats; iv) induced reductions in global cerebral blood flow (CBF) in humans (F(1.74, 12.17)5.82, p = 0.02) and rats (F(1,5)26.04, p = 0.0038). Human cerebral metabolic rate of oxygen (CMRO2) was also significantly reduced (F(1.26, 8.84)8.01, p = 0.016), as was the rat cerebral metabolic rate of glucose (CMRglu) (t = 2.6(16) p = 0.018). This was contrary to our hypothesis that MB will increase CBF and energy metrics. Nevertheless, our results were reproducible across species and dose dependent. One possible explanation is that the concentrations used, although clinically relevant, reflect MB's hormetic effects, i.e., higher concentrations produce inhibitory rather than augmentation effects on metabolism. Additionally, here we used healthy volunteers and healthy rats with normal cerebral metabolism where MB's ability to enhance cerebral metabolism might be limited.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ottavia DiPasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Karen Randall
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ndabezinhle Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephanie Stephenson
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alessandro Colasanti
- Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Waddle SL, Garza M, Ying C, Davis LT, Jordan LC, An H, Donahue MJ. Vascular space occupancy asymmetric spin echo (VASO-ASE) for non-invasive quantification of cerebral oxygen extraction fraction. Magn Reson Med 2023; 90:211-221. [PMID: 36880522 PMCID: PMC10149592 DOI: 10.1002/mrm.29618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE Asymmetric spin echo (ASE) MRI is a method for measuring regional oxygen extraction fraction (OEF); however, extravascular tissue models have been shown to under-estimate OEF. The hypothesis investigated here is that the addition of a vascular-space-occupancy (VASO) pre-pulse will more fully suppress blood water signal and provide global OEF values more consistent with physiological expectation and 15 O positron emission tomography (PET)-validated T2 -relaxation-under-spin-tagging (TRUST) OEF measures. METHODS Healthy adults (n = 14; age = 27.7 ± 5.2 y; sex = 7/7 male/female) were scanned at 3.0T. Multi-echo ASE without inter-readout refocusing (ASERF- ), multi-echo ASE with inter-readout refocusing (ASERF+ ), and single-echo VASO-ASE were acquired twice each with common spatial resolution = 3.44 × 3.44 × 3.0 mm and τ = 0-20 ms (interval = 0.5 ms). TRUST was acquired twice sequentially for independent global OEF assessment (τCPMG = 10 ms; effective TEs = 0, 40, 80, and 160 ms; spatial resolution = 3.4 × 3.4 × 5 mm). OEF intraclass-correlation-coefficients (ICC), summary statistics, and group-wise differences were assessed (Wilcoxon rank-sum; significance: two-sided p < 0.05). RESULTS ASERF+ (OEF = 36.8 ± 1.9%) and VASO-ASE (OEF = 34.4 ± 2.3%) produced OEF values similar to TRUST (OEF = 36.5 ± 4.6%, human calibration model; OEF = 32.7 ± 4.9%, bovine calibration model); however, ASERF- yielded lower OEF (OEF = 26.1 ± 1.0%; p < 0.01) relative to TRUST. VASO-ASE (ICC = 0.61) yielded lower ICC compared to other ASE variants (ICC >0.89). CONCLUSION VASO-ASE and TRUST provide similar OEF values; however, VASO-ASE spatial coverage and repeatability improvements are required.
Collapse
Affiliation(s)
- Spencer L. Waddle
- Department of Neurology, Vanderbilt University Medical Center, Nashville ,TN, USA
| | - Maria Garza
- Department of Neurology, Vanderbilt University Medical Center, Nashville ,TN, USA
| | - Chunwei Ying
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - L. Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C. Jordan
- Department of Neurology, Vanderbilt University Medical Center, Nashville ,TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville ,TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Li H, Wang C, Yu X, Luo Y, Wang H. Measurement of Cerebral Oxygen Extraction Fraction Using Quantitative BOLD Approach: A Review. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:101-118. [PMID: 36939794 PMCID: PMC9883382 DOI: 10.1007/s43657-022-00081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Quantification of brain oxygenation and metabolism, both of which are indicators of the level of brain activity, plays a vital role in understanding the cerebral perfusion and the pathophysiology of brain disorders. Magnetic resonance imaging (MRI), a widely used clinical imaging technique, which is very sensitive to magnetic susceptibility, has the possibility of substituting positron emission tomography (PET) in measuring oxygen metabolism. This review mainly focuses on the quantitative blood oxygenation level-dependent (qBOLD) method for the evaluation of oxygen extraction fraction (OEF) in the brain. Here, we review the theoretic basis of qBOLD, as well as existing acquisition and quantification methods. Some published clinical studies are also presented, and the pros and cons of qBOLD method are discussed as well.
Collapse
Affiliation(s)
- Hongwei Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
| | - Xuchen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434 China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433 China
- Human Phenome Institute, Fudan University, Shanghai, 201203 China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, (Fudan University), Ministry of Education, Shanghai, 200433 China
| |
Collapse
|
6
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Whole-brain 3D mapping of oxygen metabolism using constrained quantitative BOLD. Neuroimage 2022; 250:118952. [PMID: 35093519 PMCID: PMC9007034 DOI: 10.1016/j.neuroimage.2022.118952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Quantitative BOLD (qBOLD) MRI permits noninvasive evaluation of hemodynamic and metabolic states of the brain by quantifying parametric maps of deoxygenated blood volume (DBV) and hemoglobin oxygen saturation level of venous blood (Yv), and along with a measurement of cerebral blood flow (CBF), the cerebral metabolic rate of oxygen (CMRO2). The method, thus should have potential to provide important information on many neurological disorders as well as normal cerebral physiology. One major challenge in qBOLD is to separate de-oxyhemoglobin’s contribution to R2′ from other sources modulating the voxel signal, for instance, R2, R2′ from non-heme iron (R′2,nh), and macroscopic magnetic field variations. Further, even with successful separation of the several confounders, it is still challenging to extract DBV and Yv from the heme-originated R2′ because of limited sensitivity of the qBOLD model. These issues, which have not been fully addressed in currently practiced qBOLD methods, have so far precluded 3D whole-brain implementation of qBOLD. Thus, the purpose of this work was to develop a new 3D MRI oximetry technique that enables robust qBOLD parameter mapping across the entire brain. To achieve this goal, we employed a rapid, R2′-sensitive, steady-state 3D pulse sequence (termed ‘AUSFIDE’) for data acquisition, and implemented a prior-constrained qBOLD processing pipeline that exploits a plurality of preliminary parameters obtained via AUSFIDE, along with additionally measured cerebral venous blood volume. Numerical simulations and in vivo studies at 3 T were performed to evaluate the performance of the proposed, constrained qBOLD mapping in comparison to the parent qBOLD method. Measured parameters (Yv, DBV, R′2,nh, nonblood magnetic susceptibility) in ten healthy subjects demonstrate the expected contrast across brain territories, while yielding group-averages of 64.0 ± 2.3 % and 62.2 ± 3.1 % for Yv and 2.8 ± 0.5 % and 1.8 ± 0.4 % for DBV in cortical gray and white matter, respectively. Given the Yv measurements, additionally quantified CBF in seven of the ten study subjects enabled whole-brain 3D CMRO2 mapping, yielding group averages of 134.2 ± 21.1 and 79.4 ± 12.6 µmol/100 g/min for cortical gray and white matter, in good agreement with literature values. The results suggest feasibility of the proposed method as a practical and reliable means for measuring neurometabolic parameters over an extended brain coverage.
Collapse
|
8
|
Yin Y, Shu S, Qin L, Shan Y, Gao JH, Lu J. Effects of mild hypoxia on oxygen extraction fraction responses to brain stimulation. J Cereb Blood Flow Metab 2021; 41:2216-2228. [PMID: 33563081 PMCID: PMC8393298 DOI: 10.1177/0271678x21992896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterizing the effect of limited oxygen availability on brain metabolism during brain activation is an essential step towards a better understanding of brain homeostasis and has obvious clinical implications. However, how the cerebral oxygen extraction fraction (OEF) depends on oxygen availability during brain activation remains unclear, which is mostly attributable to the scarcity and safety of measurement techniques. Recently, a magnetic resonance imaging (MRI) method that enables noninvasive and dynamic measurement of the OEF has been developed and confirmed to be applicable to functional MRI studies. Using this novel method, the present study investigated the motor-evoked OEF response in both normoxia (21% O2) and hypoxia (12% O2). Our results showed that OEF activation decreased in the brain areas involved in motor task execution. Decreases in the motor-evoked OEF response were greater under hypoxia (-21.7% ± 5.5%) than under normoxia (-11.8% ± 3.7%) and showed a substantial decrease as a function of arterial oxygen saturation. These findings suggest a different relationship between oxygen delivery and consumption during hypoxia compared to normoxia. This methodology may provide a new perspective on the effects of mild hypoxia on brain function.
Collapse
Affiliation(s)
- Yayan Yin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Su Shu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lang Qin
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institution for Brain Research, Peking University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Wang Y, Fellah S, Fields ME, Guilliams KP, Binkley MM, Eldeniz C, Shimony JS, Reis M, Vo KD, Chen Y, Lee JM, An H, Ford AL. Cerebral Oxygen Metabolic Stress, Microstructural Injury, and Infarction in Adults With Sickle Cell Disease. Neurology 2021; 97:e902-e912. [PMID: 34172536 PMCID: PMC8408504 DOI: 10.1212/wnl.0000000000012404] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To determine the patient- and tissue-based relationships between cerebral hemodynamic and oxygen metabolic stress, microstructural injury, and infarct location in adults with sickle cell disease (SCD). METHODS Control and SCD participants underwent brain MRI to quantify cerebral blood flow (CBF), oxygen extraction fraction (OEF), mean diffusivity (MD), and fractional anisotropy (FA) within normal-appearing white matter (NAWM), and infarcts on FLAIR. Multivariable linear regression examined the patient- and voxel-based associations between hemodynamic and metabolic stress (defined as elevated CBF and OEF, respectively), white matter microstructure, and infarct location. RESULTS Of 83 control and SCD participants, adults with SCD demonstrated increased CBF (50.9 vs 38.8 mL/min/100g, p<0.001), increased OEF (0.35 vs 0.25, p<0.001), increased MD (0.76 vs 0.72 x 10-3mm2 s-1, p=0.005), and decreased FA (0.40 vs 0.42, p=0.021) within NAWM compared to controls. In multivariable analysis, increased OEF (β=0.19, p=0.035), but not CBF (β=0.00, p=0.340), independently predicted increased MD in the SCD cohort, while neither were predictors in controls. On voxel-wise regression, the SCD cohort demonstrated widespread OEF elevation, encompassing deep white matter regions of elevated MD and reduced FA, which spatially extended beyond high density infarct locations from the SCD cohort. CONCLUSION Elevated OEF, a putative index of cerebral oxygen metabolic stress, may provide a metric of ischemic vulnerability which could enable individualization of therapeutic strategies in SCD. The patient- and tissue-based relationships between elevated OEF, elevated MD, and cerebral infarcts suggest that oxygen metabolic stress may underlie microstructural injury prior to the development of cerebral infarcts in SCD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Slim Fellah
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Melanie E Fields
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO
| | - Kristin P Guilliams
- Division of Pediatric Neurology, Washington University School of Medicine, St. Louis, MO
| | - Michael M Binkley
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Martin Reis
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Katie D Vo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Yasheng Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Hongyu An
- Department of Neurology, Washington University School of Medicine, St. Louis, MO.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Andria L Ford
- Department of Neurology, Washington University School of Medicine, St. Louis, MO; .,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
10
|
He Y, Wang M, Yu X. High spatiotemporal vessel-specific hemodynamic mapping with multi-echo single-vessel fMRI. J Cereb Blood Flow Metab 2020; 40:2098-2114. [PMID: 31696765 PMCID: PMC7786852 DOI: 10.1177/0271678x19886240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High-resolution fMRI enables noninvasive mapping of the hemodynamic responses from individual penetrating vessels in animal brains. Here, a 2D multi-echo single-vessel fMRI (MESV-fMRI) method has been developed to map the fMRI signal from arterioles and venules with a 100 ms sampling rate at multiple echo times (TE, 3-30 ms) and short acquisition windows (<1 ms). The T2*-weighted signal shows the increased extravascular effect on venule voxels as a function of TE. In contrast, the arteriole voxels show an increased fMRI signal with earlier onset than venules voxels at the short TE (3 ms) with increased blood inflow and volume effects. MESV-fMRI enables vessel-specific T2* mapping and presents T2*-based fMRI time courses with higher contrast-to-noise ratios (CNRs) than the T2*-weighted fMRI signal at a given TE. The vessel-specific T2* mapping also allows semi-quantitative estimation of the oxygen saturation levels (Y) and their changes (ΔY) at a given blood volume fraction upon neuronal activation. The MESV-fMRI method enables vessel-specific T2* measurements with high spatiotemporal resolution for better modeling of the fMRI signal based on the hemodynamic parameters.
Collapse
Affiliation(s)
- Yi He
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, Germany.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Maosen Wang
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, Germany
| | - Xin Yu
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
11
|
Kaczmarz S, Hyder F, Preibisch C. Oxygen extraction fraction mapping with multi-parametric quantitative BOLD MRI: Reduced transverse relaxation bias using 3D-GraSE imaging. Neuroimage 2020; 220:117095. [PMID: 32599265 PMCID: PMC7730517 DOI: 10.1016/j.neuroimage.2020.117095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/22/2023] Open
Abstract
Magnetic resonance imaging (MRI)-based quantification of the blood-oxygenation-level-dependent (BOLD) effect allows oxygen extraction fraction (OEF) mapping. The multi-parametric quantitative BOLD (mq-BOLD) technique facilitates relative OEF (rOEF) measurements with whole brain coverage in clinically applicable scan times. Mq-BOLD requires three separate scans of cerebral blood volume and transverse relaxation rates measured by gradient-echo (1/T2*) and spin-echo (1/T2). Although the current method is of clinical merit in patients with stroke, glioma and internal carotid artery stenosis (ICAS), there are relaxation measurement artefacts that impede the sensitivity of mq-BOLD and artificially elevate reported rOEF values. We posited that T2-related biases caused by slice refocusing imperfections during rapid 2D-GraSE (Gradient and Spin Echo) imaging can be reduced by applying 3D-GraSE imaging sequences, because the latter requires no slice selective pulses. The removal of T2-related biases would decrease overestimated rOEF values measured by mq-BOLD. We characterized effects of T2-related bias in mq-BOLD by comparing the initially employed 2D-GraSE and two proposed 3D-GraSE sequences to multiple single spin-echo reference measurements, both in vitro and in vivo. A phantom and 25 participants, including young and elderly healthy controls as well as ICAS-patients, were scanned. We additionally proposed a procedure to reliably identify and exclude artefact affected voxels. In the phantom, 3D-GraSE derived T2 values had 57% lower deviation from the reference. For in vivo scans, the formerly overestimated rOEF was reduced by −27% (p < 0.001). We obtained rOEF = 0.51, which is much closer to literature values from positron emission tomography (PET) measurements. Furthermore, increased sensitivity to a focal rOEF elevation in an ICAS-patient was demonstrated. In summary, the application of 3D-GraSE improves the mq-BOLD-based rOEF quantification while maintaining clinically feasible scan times. Thus, mq-BOLD with non-slice selective T2 imaging is highly promising to improve clinical diagnostics of cerebrovascular diseases such as ICAS.
Collapse
Affiliation(s)
- Stephan Kaczmarz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Munich, Germany.
| | - Fahmeed Hyder
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Neurology, Munich, Germany
| |
Collapse
|